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The role of counterfactuals in the foundations of equilibrium concepts

in game theory

Introduction

In spite of the particular conditions under which a collection of strategies is an
equilibrium within a game, it is always necessary that players do not find unilateral
deviations profitable.! In other words, players should not have an incentive to deviate
from an equilibrium when their opponents conform to it. On the other hand, players are
typically assumed to decide upon strategies; that is, they are supposed to choose an
action for every possible circumstance in which they might be called to play. This
implies that they might have to decide upon their responses at nodes that are not
reached under equilibrium.

In simultaneous move games players can not actually respond to deviations by
their opponents because no player can observe any action before playing. Therefore,
hypotheses about events that could have occurred as a consequence of a deviation are
constructions that deserve a trivial analysis given that such a dependence does not
potentially exist.

The situation is radically different in non simultanecous move games; namely
extensive form games with observed actions. Consider for instance an extensive form

game with perfect information. Before choosing strategies every player must speculate

1 This necessary condition that all equilibria must fulfill can be

represented by the notion of Nash Equilibrium. A Nash equilibrium is
a collection or profile of strategies, one for each player in the
game such that each player's strategy is an optimal response to the

other players' strategies.



upon the possible outcomes of his play. It could be said that no observation has taken
place yet and that therefore the situation is qualitatively similar to that of a
simultaneous move game. However, the player who is analyzing the consequences of a
deviation ought to consider the possible reactions by the players who observe his move
and play after him.

A premise of the present study is that the reasoning which supports an
equilibrium in a simultaneous move game has a different cognitive or epistemological
nature compared to that in a non-simultaneous move game. The reason is that only in
non-simultaneous move games actions might in principle be observed. It can also be
claimed that the introspective reasoning accomplished by each player represents these
hypothetical thoughts as if play was actually performed. However, this is true only
when actions might potentially be observed. In this case deviations might confer some
information and therefore have a causal consequence upon the play of the other
players.

An equilibrium must always be supported by a set of conditionals that describe
what would happen in every possible state of the game. These conjectures assure that it
is not profitable to deviate and that therefore the corresponding collection of strategies
constitutes an equilibrium. These conjectures are of two sorts: the indicative
conditionals which describe the structure of the game and the features of the
equilibrium under consideration and the counterfactual conditionals that represent
players' hypotheses about what would have happened had somebody deviated. The
second type of conditionals constitute conjectures about the occurrence of events that

are not expected in equilibrium, that 1s, they are conditionals with false antecedents.



Let us think of a strategy as a set of maps each going from the set of nodes
where this player might have to play to the set of actions available to him at that node.
Every map represents a possible way in which a player would have played had that
node been reached. Although the standard models in game theory define strategies in
this way, that is, as a set of contingent actions, they do not properly formalize this
aspect; hypothetical constructions are implicitly equated with material conditionals.?
This aspect of the formalization is of crucial importance in terms of the foundation of
an equilibrium. For instance, if we assert that the consequent of a material conditional
is true then it does not matter whether the antecedent is true or not because the
implication obtains in any case. Consider the following conditional: "had node 'n' been
reached then action 'a’ would have been played". 1f we fix the action taken at that
node by means of introducing a behavioral assumption and analyze the conditional as a
material one, then the truth of the predicate "node 'n' is reached” is irrelevant. The
conditional would be true regardless of whether the node is actually reached. Off-the-
equilibrium contingencies have a false antecedent and therefore, the truth of the
consequent can not affect that of the conditional if taken as a material one.

Out-of-equilibrium conditionals are important because a player can not choose
a strategy if he can not assert what would have happened otherwise. In other words,
the play of a given equilibrium by each player is justified if and only if each of them

either knows or believes that "had he deviated he would have not been better off." Our

2 A material conditional is a conditional whose truth depends upon

the truth of its antecedent and consequent (conditionals in
mathematics always satisfy this criteria). The material conditional
"if P then Q" can be defined as "either Q is true or P is false" or

"it is not true that P is true and Q is not".



main premise is that in order to obtain a proper foundation for the notion of equilibrium
in extensive form games players need to assert the truth condition of these
counterfactuals in an appropriate framework.

Within the theory of games it is typically assumed that players construct
hypotheses concerning the contingent play of their opponents based upon the
assumption that it is common knowledge that everyone aims at maximizing his payoffs.
In the present study we assume in addition that players are endowed with a common
framework to judge the truth of the counterfactuals which support the equilibrium
under consideration. With this purpose we apply two closely related theories of
counterfactuals: those developed by David Lewis and Jonathan Bennett respectively.?
Our aim is to study the consequences of respectively incorporating these accepted
frameworks to the foundations of two refinements of the basic concept of Nash
equilibrium in extensive form games: backwards induction and sequential equilibrium.
We test the consistency of the results implied by these expanded frameworks and
analyze the outcomes of having players form beliefs in the manner prescribed by our
interpretation of these theories of counterfactuals.

The monography is organized as follows. In the first chapter we address the
issue of whether common knowledge of rationality leads to backwards induction. This
question has promoted a considerable yet unsolved controversy in the literature. Our
aim is to specify the conditions under which the results achieved in the literature obtain
in terms of our framework. In the second chapter we analyze two refinements to the

notion of sequential equilibrium in signaling games: the Intuitive Criterion postulated

3 These theories are explained in detail in sections 3.2 and 3.3

respectively.



by Cho and Kreps and Divinity postulated by Banks and Sobel. Within our
interpretation of the theories of counterfactuals presented in the first chapter we
analyze the extent to which a player might signal a piece of information that his
opponent lacks. Based upon this analysis we impose different restrictions upon the
beliefs of the uninformed player and establish the conditions for existence of different
sorts of equilibria. In addition we propose a modification to Divinity in order to further

refine the set of equilibrium outcomes.



I. The backwards induction solution to the centipede game

1. Introduction

As it was pointed out in the general introduction, players' reasoning about the
responses to their actions are crucial constituents of an equilibrium. As it is extensively
acknowledge in the literature, these thought experiments depend not only upon the
logical framework used by the players, but also upon their knowledge and beliefs about
the game and about the knowledge and beliefs of the other players.

In extensive form games with perfect information, the backwards induction
refinement requires that each action that forms part of an equilibrium strategy be a best
response in every possible subgame starting from every final node of the game. Players
must hypothesize about the outcome at every possible subgame regardless of the
identity of the player at each node and by a backwards tracking reasoning, completely
construct their strategies as they reach the first node at which they might have the
chance to play.

It is typically asserted that in the case of games with perfect information,
common knowledge of maximizing behavior leads to the backwards induction
equilibrium because it guarantees that players have no incentive to deviate along any
possible path of the game (see Aumann [1]); yet this is an open matter. As it has been
asserted before, in these types of games deviations might have an informational value
and might lead to responses. Therefore, every player needs a conjecture not only about
the corresponding counterfactual scenarios at which each player might find himself but
also about the conjectures of his opponents regarding his conjectures and so on.

In the literature of non cooperative extensive form games with perfect

information, the centipede game is one whose backwards induction solution still



motivates a considerable amount of disagreement concerning its logical foundations.
Two issues sustain the controversy regarding this game. On the one hand there is the
question of how to give meaning to the assumption of rationality in the context of
counterfactual reasoning and on the other, assuming that this is possible, how to derive
the backwards induction outcome from this supposition.

With respect to the first issue, Reny [17] asserts that common knowledge of
rationality is not attainable in games exhibiting the properties of the centipede game.
After observing a deviation in a centipede game with three or more nodes there cannot
be common knowledge that the players are maximizers. On the other hand, Binmore
[6] asserts that the irrationality of a player who deviates in the centipede game is an
open matter because it is not clear what the opponent should deduce about the
rationality and further play of the deviator.

To concentrate on the second issue, assume that it is possible for the players to
have common knowledge of rationality. The issue of how to derive the backwards
induction outcome when hypothetical thinking is present is also a matter of
controversy. Binmore [6] proposes to enlarge the model to allow impossible events to
occur. He does this by assuming a game with an infinite set of players so that there
exists a non-empty set of measure zero of irrational players. On the other hand,
Bicchieri ([4]&[5]) proves that under the assumption of common knowledge of
rationality there is a lower and an upper bound of mutual knowledge that can support
the backwards induction outcome. The lower bound involves a level of mutual
knowledge for the root player equal to the number of nodes in the equilibrium path
minus one. Samet [18] proves that common hypothesis of rationality at each node

implies backwards induction and that for each node off-the-equilibrium path there is



common hypothesis that if that node were to be reached then it would be the case that
not all players are rational.

The purpose of this chapter is to test the internal consistency of the solution
concept by presenting a formalization of the backwards induction solution to the
centipede game capable of incorporating counterfactual reasoning at off the equilibrium
nodes. The aim is to find sufficient and necessary conditions regarding players'
knowledge and beliefs capable of yielding the truth of the supporting counterfactuals in
order to justify this equilibrium concept.

With the purpose of formalizing counterfactual reasoning two closely related
theories of counterfactuals are introduced. These theories have been proposed by
David Lewis [15] and Jonathan Bennett [3] respectively. Under our interpretation of
Lewis's approach and the assumption of common knowledge of rationality (as it will be
defined below) the backwards induction outcome can be obtained. The reason is that in
this case, common knowledge of rationality can be expected to hold after a deviation
given that, within our interpretation of this theory, players are not led to update their
beliefs concerning the rationality of their opponents at counterfactual scenarios.

Under our interpretation of Bennett's theory and the assumption of common
knowledge of rationality the theory becomes inconsistent. This result is similar in spirit
to the one in Bicchieri [5] although it is obtained under different conditions. Unless the
amount of mutual knowledge of the root player is reduced to a level equal to the
number of nodes in the equilibrium path minus one, backwards induction can not be
supported. Relaxing the assumption of common knowledge or rationality in favor of
common belief implies that there may exist scenarios compatible with backwards

induction where no inconsistency obtains although common belief in rationality needs



to be dropped in these situations. This result resembles one of the outcomes in Samet
[18].

The organization of this chapter is as follows. The first section explains the
notion of a counterfactual and the nature of the counterfactuals involved in games. The
second presents the framework and formalization of the backwards induction solution
in terms of counterfactual reasoning. The third section incorporates the two mentioned
theories of counterfactuals to analyze the truth conditions of the corresponding
conditionals under different assumptions of rationality. To conclude, the fourth
presents an overall evaluation of the results in perspective with their philosophical

justifications and implications.

1.1 Counterfactual conditionals

A counterfactual or a subjunctive conditional is an implication of the following
form:

Had P happened then Q would have happened.

The counterfactual connective will be denoted by " [J— " and the previous
subjunctive conditional will be denoted by "P [J—Q", where "P" and "Q" are two
propositions defined within some language L.4 The difference between a counterfactual
and an indicative conditional represented by "If P then Q" is that P is necessarily false
in the case of a counterfactual.

Truth functional analysis establishes that "if P then Q" is true in the following

circumstance: Q is true or P is false. If this approach were to be followed in the case of

4 The expressions: propositions, predicates, sentences or formulas

will be used indistinctively from now on.



counterfactual conditionals we would be left with no clear result; any conditional with a
false antecedent would be true regardless of the truth condition of the consequent.
Moreover, Stalnaker [20] observes that "the falsity of the antecedent is never sufficient
reason to affirm a conditional, even an indicative conditional." That is, conditionals no
matter whether indicative or subjunctive establish a connection or function between
propositions that is not necessarily represented by this truth functional analysis. The
truth functional analysis only deals with the truth conditions of the propositions in
isolation yet the conditional alludes to some connection or function between the
propositions.

Within purely logical or mathematical systems the connection between
propositions is ruled by a set of axioms. In this case truth functional analysis is
sufficient. However, when conditionals refer to other types of frameworks this criteria
is not sufficient. Consider for instance the following conditional: "If John studies for
the test he will pass the exam." Would we try to assert the truth of this conditional by
answering whether it is true that John will study and whether it is true that he will pass
the exam? The answer is clearly negative. We will say that the conditional is true only if
we can support the opinion that studying is enough to pass an exam. Were we to
consider that luck is what matters then it could be true that John studied and passed the
exam, but actually did so as a consequence of being lucky. The conditional will be
rendered true by just taking care of the truth condition of the corresponding
propositions when we know that the reason why John passed was not that he studied.

Counterfactual conditionals are similar to indicative conditionals in this respect.
Imagine John did not study and he did not pass the exam. We could say "had John

studied he would have passed the exam". Again consider a purely truth functional

10



analysis. John did not study. Therefore, the antecedent is false and the subjunctive
conditional is true regardless of whether he passed the exam. Is this enough to solve
the previous counterfactual? Obviously, not. In order to do so, we need to have a
hypothesis of how studying could have affected passing the exam. As in the case of
idicative conditionals, we need to test whether the connection, counterfactual or not,
exists.

One approach to the task of solving counterfactuals starts with the premise that
the issue of how to assert the truth of a counterfactual is basically the question of how
to inductively project a predicate (see Goodman [11]). This is a principle-oriented
criteria because it stresses the existence of a principle that links the predicates that form
part of the conditional. Although counterfactuals deal with events that have not
happened and therefore can not be solved by means of empirical tests, we can
construct a criteria based on some observed regularity that represents the connection
between the antecedent and the consequent. For instance, a player that decided to play
an equilibrium strategy cannot test what would have happened otherwise because he is
not going to deviate. He needs a hypothesis concerning the repercussions of his
deviation and this hypothesis cannot be brought about by a test within this game.
Players may be able to form a hypothesis based on previous experience with the same
game or players. However, if they decide to play the equilibrium that is because the
"otherwise-hypothesis" has a definite answer®. In other words, players cannot run a test
while they play the game to discover something they should have known in order to

decide a priori how to play. When this answer cannot be established players are left

5 This includes their assigning probability wvalues or ranges when

decisions are modeled in uncertain environments.
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with no rational choice. Given that counterfactuals cannot be handled by
experimentation or logical manipulation, there is a need for a set of principles to
characterize the conditions under which the corresponding predicate can be projected.
In the first example, the predicate is "students that study pass exams". To say that "had
John studied he would have passed the exam" is true is to assert that the predicate
"students that study pass exams" can be extended from a sample to an unobserved case
which is John's case.

This approach is not very powerful when we can not identify a principle or
predicate to project, when we don't have enough information, or our sample of past
predictions is not good enough to trust projections. Moreover, there are cases in
which the nature of the connection can not be completely established from observation.
Consider the counterfactuals involved in game theoretical reasoning. The previous
approach would be useful if we thought of behavior in games as determined by a
human disposition or capacity. In this case we would assume that players' behavior is
intrinsically ruled by a principle. Players within a game may never fully characterize this
principle but at least in certain environments they may be able to construct a well
entrenched hypothesis given their sample of observations.

The literature in games, has developed a consensus regarding the issue that
rational choices are not rational because they are chosen by rational players. In general
it is asserted that a person is rational if he chooses rationally (see Binmore [6]&[7]).
Leaving this matter aside, we are going to introduce an alternative framework to the
solution of counterfactuals that seems to be more compatible with this last concept of

rationality. This is the approach to counterfactuals in terms of possible worlds.
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Within the possible-worlds framework (see Stalnaker [20]) the truth of a
counterfactual does not necessarily depend on the existence of a principle or law. To
evaluate whether P [J—Q is true one has to realize the following thought experiment:
"add the antecedent (hypothetically) to your stock of knowledge (or beliefs), and then
consider whether or not the consequent is true" (Stalnaker [20]). When there is a
principle or a connection involved, then it should be part of the beliefs that we should
hold and we should consider as hypothetically true any consequence that, by this
principle, follows from the antecedent. When no connection is suspected or believed
one should analyze the counterfactual in terms of the beliefs in the corresponding
propositions and the relevant issue is whether or not the counterfactual antecedent and
consequent can be believed to hold at the same time. Following this approach, which is
similar in spirit to Frank Ramsey's test for evaluating the acceptability of hypothetical
statements, Stalnaker [20 and Lewis ([15]&[16]) have suggested two closely related
theories of counterfactuals (see Harper [12]).

When we believe that the antecedent is false (for instance, when the antecedent
entails a deviation by some player) the thought experiment within which the antecedent
is true may not consist in the mere addition of the antecedent to the stock of beliefs
without resulting in a contradiction. Therefore, the beliefs that contradict the
antecedent should be deleted or revised. The problem is that there may not be a unique
way to do so. A deviation may imply at least one of the following things: 1) the deviator
is simply irrational either in terms of his reasoning capacities or formation of beliefs, ii)
he is rational in terms of his reasoning capacities but he just made a mistake iii) he did it

on purpose due to the lack of knowledge about his opponents' knowledge or iv) as in
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1i1) but due to the lack of knowledge concerning either the structure of the game or his
opponents' rationality.

There is no way to avoid the multiplicity of possible explanations and the issue
is that whatever the players believe should be commonly held for the equilibrium
outcome to be consistent.

Possible world theories establish a metric to evaluate which of the possible
explanations should be chosen. A possible P-world is an epistemological entity, a state
of mind of a player represented by his knowledge and belief in which proposition P is
true. For instance, the previous four explanations represent possible worlds in which a
deviation is believed to have occurred. They are all deviation-compatible scenarios.
Possible world theories assert, roughly speaking, that in order to evaluate the truth of a
counterfactual representing a deviation we need a criteria to select which of the above
worlds is the most plausible. In the case of game theory, this criteria requires a
behavioral assumption that in general is represented by the concept of rationality. In
other words, we need to find the world (or worlds) that contains the minimal departure
from the equilibrium world and evaluate, in terms of players' rationality, which
consequent or response holds in that closest world. The equilibrium world will be
defined as the actual world and we will assume that in this world, players are rational
(in a suitably defined way) and have some degree of mutual knowledge in their

rationality.

1.2 Counterfactuals in Game Theory

Consider the following example that closely resembles off-the-equilibrium path

reasoning:
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John is looking down the street standing at the top of the Empire State
Building. As he starts walking down the stairs he says to himself: "Hmm, had I
jumped off I would have killed myself..."

A very close friend of his is asked later on whether he thinks it is true
that "had John jumped off the Empire State building he would have killed
himself".

Well, he says, I know John very well; he is a rational person. He
would have not jumped off hadn't there been a safety net underneath... I hold

that counterfactual is false...®

Rationality in strategic contexts is a complex phenomena. There is on the one
hand the rationality that alludes to players' capacity to optimize given their knowledge
and beliefs and on the other their rationality in terms of belief formation. However,
there is a further issue that is particularly critical in games where actions can be
observed. Players do not only need to decide but to act upon their decisions.
Moreover, given the fact that actions are observed, actual performances will confer
some information to the other players and therefore may have an impact in their
decisions about how to further play the game. If a deviation is understood as some
imperfection in the mapping from decisions to actions then the assumption concerning
the rationality in reasoning and belief formation of the deviator does not need to be
updated. When this is ruled out some intentionality must be assumed. When John's
friend is asked about the truth of the counterfactual that had John jumping from the top

of the building, he is assuming that nothing can go wrong with John's capability to

6 This example is discussed in Jackson [12] and Bennett [2].
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perform what he wants and that therefore a world in which John jumps is a world in
which a safety net needs to exist. There are two issues here. On the one hand, it is
reasonable to assume that in the actual world John can fully control his capability of
not falling in an unintended way yet this capacity may be deleted in the Aypothetical
world in which he jumps. This relaxation can be considered as a thought experiment
that is, the envisagement of a hypothetical world in which the only different fact with
respect to the actual world is that John jumps and where no further changes interfere
with the outcome of the fall. The question is how valid is this criteria within a game
because the counterfactual consequent, that is the response to a deviation, may change
if the occurrence of a deviation implies further occurrences of other deviations.

On the other hand, there is the issue of what are the parameters or features of
the world that we are allowed to change. Counterfactuals are acknowledged to be
context dependent and subject to incomplete specification. John's friend may know that
in the actual world, the one in which John did not jump, there was no safety net.
However in the hypothetical scenario in which John jumps his friend's willingness to
keep full rationality (absence of wrong performances) obliges him to introduce a net.
Which similarity with the real world should be preserved? That concerning the safety
net or that which assumes that nothing can go wrong? Assume we think that John is
rational because he does not typically jump from the top of skyscrapers. This is his
decision. However, had he either decided or done otherwise in that case, where there
was no safety net, he would have died. We would assert that the counterfactual under
analysis is true because although John did not choose to jump he could have done so

and had he jumped off in a world in which the only difference with the actual is John's
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decision or performance then he would have killed himself. Is this reasoning the only
possible one? Obviously no. His friend does not seem to think this way.

Following the parallel with game theory consider a case such that if John jumps
then his friend will face the decision of whether to jump or not from the same building.
Now his reasoning will lead him to the conclusion that jumping must be harmless if
John jumps since there must be a safety net at the bottom. If the utility he derives from
reaching the floor alive after jumping is higher than the one he gets by not jumping and
if he is rational in the sense of optimizing upon beliefs, then he should contingently
jump as well. Assume now that the friend's decision should be made before John is
actually at the top of the building. Will John's friend jump contingent on John's
Jjumping?

In a world in which John jumps his friend gets some information that makes him
change his decision (we assume he would have not jumped in the absence of a net).
However John's friend could have updated his stock of beliefs to attribute the
hypothetical occurrence of the jump to some unexplainable reason but kept the absence
of a net which he believes is a fact in the actual world where he has to decide whether

to jump or not.

2. The backwards induction solution to the centipede game

2.1 The centipede game

Consider the following version of the Centipede game: there are two players,
called them 1 and 2 respectively. Player 1 starts the game by deciding whether to take a
pile of money that lies on the table. If he takes it the game ends and he gets a payoff

equal to u, whereas his opponent gets v;. If he leaves the money then player 2 has to
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decide upon the same type of actions; that is, between taking or leaving the money.
Again if she takes it she gets a payoff of v; whereas player 1 gets u;. If player 2 leaves
the money then player 1 has the final move. It he takes player 1 and player 2 get

respectively uy and v,. Otherwise they get payoffs equal to u; and v, respectively.

1 2 3 (u3,v4)

(ug,vy) (ug,v3) (V4,V2)

The pair of letters between parenthesis at the termination points represent the
players' payoffs and they are such that u,>u;, us>u; and v3> v, . ('u' and 'v' stand for
player 1's and 2's payoffs respectively).

The numbers between parenthesis represent the label of the nodes.

t,, stands for taking the money at node n, n=1,2,3.

1, stands for leaving the money at node n, n=1,2,3.

The backwards induction solution to this game has every player taking the
money at each node, that is playing "t,", for n=1,2,3 whether -on- or -off-the-
equilibrium path. The argument briefly says that if player 1 gives player 2 the chance to
play he would take the money for he would expect the first player to do so at the last
node. Knowing this, player 1 decides to take the money at the first node.

The controversial issue is that equilibrium play is based upon beliefs at nodes

off-the-equilibrium path that do not properly model how the information which would
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be available at each stage is handled. In the counterfactual hypothesis that the second
node is reached, the players are supposed to ignore that something counter to full
rationality ought to have occurred, namely, that 1; has been played. The irrational
nature of this play crucially depends on player 1's expectation about the behavior of
player 2 at the next node which in turn depends on player 2's expectation about player
1's further play. In a backwards induction solution, beliefs are not updated as the play
proceeds from the beginning and this implies that the hypothetical play of 1; cannot
have any repercussion upon further decisions. The relevant information to decide how
to play is not what has been played, but what it is expected to be played. The
exception is the last node where the decision depends upon the comparison of payoffs
that the player can obtain with certainty. Once some behavioral assumption is
introduced, the action to be played at the last node will be determined, given that there
are no ties in this game, and this backtracking reasoning will yield a sequence of
choices independent to deviations.

The centipede game is a game of perfect information. This implies that, as the
game is played, players' expectations about future play could either be confirmed or
deceived yet, this has no role in the backwards argument. Such is the nature of
backwards as opposed to forwards solutions. Backwards tracking arguments do not
allow beliefs to be updated because every future contingency has been already
evaluated and discounted all the way up to the root. Forwards tracking solutions, on
the other hand, bear the time-inconsistency problem very well known in the literature.
For instance, the case of a bubble: assume that players start building the expectation

that as they go along the centipede the money will be left on the table in the next
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round. It is clearly inconsistent to do so at the previous to last node unless the player
who moves there believes that the last player is irrational in a very rudimentary way’.
The previous perspective seems to leave us with a trade off between both
equilibrium concepts. However, what the backwards induction solution needs to be
complete is a theory which specifies how to reason at counterfactual scenarios. In the
past years some agreement concerning the role of counterfactual scenarios has emerged
within the literature ( see Binmore [7], Bicchieri [5], Samet [18]). Even Aumann [1]
who proves that common knowledge of rationality implies backwards induction asserts
that "Substantive conditionals are not part of the formal apparatus, but they are
important in interpreting four key concepts"...":strategy, conditional payoff, rationality
at a vertex, and rationality" (op.cit page 17). He asserts that the "if ...then" clauses
involved in equilibrium are not material conditionals (as in mathematics) but

substantive conditionals.8

2.2 Definitions and notation

Our version of the centipede game can be represented by:

(1) A finite set of players' labels I, I ={i, i=1,2}.

(2) A finite tree with an order of moves. The set of nodes' labels for players 1

and 2 is denoted respectively by N; and N, and defined as N; = {1,3}; N, = {2}; The

7 That is, he is incapable of choosing between two different certain
payoffs.

8 He acknowledges that the term "substantive" has been coined by
economists only. A substantive conditional is a non material

conditional and within his terminology a counterfactual 1is a

substantive conditional with a false antecedent.
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labels represent the order in which players move. The set of all nodes' labels is N ={n,
n=1,2,3}=N;UN, . NcN (set of natural numbers)

Let Z be the set of terminal nodes' labels. Z={z,,2,,25,2,}. For each z € Z there
is a unique path leading to it from the initial node. The path leading to the terminal
node z is indicated by P(z). Therefore we have:

P(z))=(t1);P(z20)=(11t5),P(z3)=(1;1,t3),P(z4)=(1; 1,13).

(3) A finite set of actions for each player available at each node:

Ap={am, ap =ty I} =13

Agn = {2y, 4=ty Iy} n=2;

A,={a,, a,=t, 1, } setofactions available at node n (n=1,2,3).

(4) A public story (h") of the game at node n. It consists in the sequence of
actions leading to node n from the initial node.? In addition let h™"! include the action
taken at node n:

hl={a;,..a, } a,€A,; n=1,2,3.

Given that this is a game with perfect information, h" represents players'
knowledge about the past play which lead to node n. Moreover, the set that represents
the players' knowledge about the node at which they have to move is a singleton. By
definition (h'=0).

Let H be the set of all terminal histories. Therefore H={P(z,);P(z,),P(z3),P(z4)}

Let us define P(z;) = h?',P(z,) = h?*;P(z3) = h#*;P(z,) = h*.

9 This sequence 1is unigque in extensive form games with perfect

information.
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(5) A strategy for player i, (i=1,2) is defined as a set of maps. Given some
previous history of play each map assigns to every possible node at which player i
might find himself an action from the set of feasible actions at that node.

;tN; =>4, 5 A,cA nelN;, r=L2;

The sets of strategies for players 1 and 2 respectively are:

Si=is1 s1=tits, iy, ity il §

Sy=isy =t b}

A strategy profile 's' is a list of strategies one for each player: s=(s;);_

(6) Players' payoffs functions assign to each possible terminal history of the
game a real number. U; :-H > R i=1,2.

(7) An information structure for each player (also called the player's state of
mind) describing the player's knowledge, beliefs and hypotheses.

In order to define these epistemic operators we need to specify the language
within which the framework is defined. This language is constructed upon two types of
primitive propositions, or formulas: the ones denoting the play of an action by some
player at some node and the ones reflecting the fact that some node has been reached.

These primitive propositions or formulas will be denoted by:

"n", which should be read as "node n is reached" (n=1,2,3)

" "

a;," , which should be read as "action 'a' is played by player 'I' at node 'n' "

"s;" , which should be read as " strategy 's' is played by player ' ".

Propositions will be generically denoted by P and Q.

The set of primitive formulas is enlarged in the following way:

(/) Atomic formulas or primitive predicates (as they have been defined

above) are formulas;
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(ii) if p is a formula, then so is "~p";

(i) if p and g are formulas, then so are "(p&q)" "(pvq)" and "(p O—
q)";+°

In addition, the set of primitive formulas is enlarged by the introduction of the
following epistemic and doxastic operators:

"K;" :"1knows that"

"B;" :"ibelieves that"

"P;" :"it is possible, for all that i knows, that"

"C;" :"it is compatible with everything 1 knows, that"

"~p" does not refer to the mere result of prefixing "not" to p. It refers
rather to the corresponding negative sentence, often referred to as the contradictory of
p.

i 1s a free individual symbol, that is, it denotes the agent named '1' and p
is an arbitrary sentence or predicate.

The last condition to complete the description of our language is:

(iv) if p 1s a formula and i a free individual symbol (which can take only
names of persons as their substitution-values), then "K;", "P;", "B;", and "C;" are

formulas. In each case, p is said to be the scope of the epistemic operator in question.

10 Notice that within this framework material implications can be

expressed in terms of "~" and "&". This is not the case for the
counterfactual connective because its truth does not depend on the

truth value of its components.
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2.3 Knowledge and Belief

The study of the concepts of knowledge and belief together with their uses
requires the consideration of a broad set of disciplines due to the complexity that the
corresponding phenomena displays. There is on the one hand the obvious semantic and
syntactic facets and on the other the psychoanalytical one.

In the present essay, we are going to adopt a extremely narrow view of these
phenomena. A player knows something iff he is actively aware of such a state and has
the conviction that there is no need to collect further evidence to support his claim of
knowledge. Under this assumption if it is consistent to utter that "for all I know it is
possible that p is the case", then it must be possible for p to turn out to be true without
invalidating the knowledge 1 claim to have. Needless to say that if somebody claims to
know that a certain proposition is true then the corresponding proposition is true. We
rule out the possibility of somebody forgetting something he knew and restrict the
environment within which claims of knowledge are considered to situations in which
information does not change. When a new piece of information is acquired, a new
instance starts from the epistemological point of view. Moreover, agent's knowledge is
supposed to contain not only the primitive notions they are capable to assert they know
but also all the logical implications of those sentences.

Although we may show the arrival of an inference we don't model the reasoning
process behind it. Agents are already assumed to know all these possible chains of
reasoning (concerning not only the knowledge about themselves but also those of their
opponents); it is only the game theorist who performs or discovers the underlying

reasoning.
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Beliefs, on the other hand, are supposed to have a different nature in the sense
that beliefs can be contradicted by evidence that is not available to the agent.
Notwithstanding, beliefs will be assumed to fulfill consistency requirements in the sense
that if something is compatible with our beliefs it must be possible for this statement to
turn up to be true without forcing us to give up any of our beliefs.

Unless otherwise stated, the analysis followed in the present work is the logic
of knowledge and belief presented in Hintikka [13].

For the reader who is willing to skip the technical aspects explained in the

remainder of section 2.3 there is a summary at the end of the section.

2.3.1 Knowledge and the rules of consistency

We assert that a statement is defensible if it is immune to certain kinds of
criticisms. Knowing p and not knowing ¢ when ¢ logically follows from p will be
defined as indefensible. Indefensibility alludes to a failure (past present or future) to
follow the implications of what he knows far enough and this is the notion that will be
used from here onward. In other words, if somebody claims that he does not know a
logical consequence of something he knows he can be dissuaded by means of internal
evidence forcing him to give up that previous claim about his knowledge. Therefore,
within the present system of axioms, /ogic has epistemic consequences and this entails
that the subjects of the epistemic operators possess logical omniscience. Hintikka
doubts that the incapability of having logical omniscience should be defined as
inconsistency. He proposes the term indefensibility to substitute it because in his
opinion not knowing a logical implication of something we know should not be defined

as inconsistency.
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In order to define the notion of defensibility we need to introduce the concept
of a model set.

Definition: A set of sentences W is a model set iff satisfies the following
conditions:

(C.~) Ifp e p, thennot "~p" € .

That is, a model set can not have as members a proposition together with its
negation.

(C.&) If"p&kqg" € u,thenp € u and g € p.

The elements of a conjunction that belongs to a model set should belong as
well.

(C.v) If"pvg" € p, thenp € p or g € p (or both).

The elements of a disjunction that belongs to a model set should belong as well.

(Co~~) If "~~p" € u, thenp € .

If the double negation of a proposition belongs to a model set, then the
proposition should also belong to the model set. To complete the description the De
Morgan's rules for negation of conjunction and disjunction need to be introduced:

(C~&) If "~(p&kq)" € n, then "~p” € p or "~q" € u (or both).

(C.~v) If "~(pvg)" € p, then "~p” € n and "~q" € p.

This set of conditions will be named as the "C-rules".

Definition: A set A of sentences can be shown to be indefensible iff it cannot be
embedded in a model set.
In other words, for A to be defensible there should exist a possible state of

affairs in which all the members of A are true and this in turn occurs iff there is a
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consistent description of a possible state of affairs that includes all the members of \.

Our goal is to find a framework to characterize a defensible (generally called
consistent) state of mind in terms knowledge and belief of an agent. For instance, when
the notion of a model set is applied to an agent's knowledge we will see that if an agent
"' knows that proposition 'p' is true, a defensible state of mind of this agent can not
include the contradictory of 'p'. By the same token if ' knows that 'p' and 'q' are true
then '1' should also know that 'p' is true and that 'q' is true. The C-rules serve the

purpose of defining the consistency of players' states of minds.

2.3.2 Possible or Alternative worlds

We have so far spoken about knowledge and belief and briefly defined the
operator "P;". Assume that we have some description of a state of affairs p and that
for all i knows in that state it is possible that p. That is, "P; p” e p. The substance of
the statement "P; p” can not be given a proper meaning unless there exist a possible
state of affairs, call it u*, in which p would be true. However pu* need not be the actual
state of affairs p. A description of such state of affairs u* will be called an alternative
to pu with respect to i. Therefore, in order to define the defensibility of a set of
sentences and give meaning to the notion of alternative worlds we need to consider a
set of models. Hintikka calls this set of model sets a model system. Within this
framework the previous condition regarding the existence of alternative worlds can be
formulated as follows:

(C.P*) If "P; p" € p and if p belongs to a model system €, then there is in Q

at least one alternative pu* to p with respect to a such that p € p*.
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This condition guarantees that p is possible. In other words, if an agent thinks
that for all he knows it is possible that 'p' is true then there has to be an alternative state
of mind consistent with the agent's actual state of mind in which 'p' is true. That is,
without incurring in a contradiction, the agent should be able to conceive a
hypothetical scenario in which 'p' is true.

Hintikka also imposes the condition that everything i knows in some state of
affairs p should be known in its alternative states of affairs:

(C.KK*) If "K; p" € p and if p* is an alternative to p with respect to i in

n

some model system Q then "K; p" e p*.

This means that alternative worlds should be epistemologically compatible with
respect to the individual whose knowledge we are denoting. Alternative worlds do not
lead the agent to contradict or discard knowledge.

Additionally the following conditions needs to be imposed:

(CK) If"K;p" ep,thenp e pn.

This says that knowledge cannot be wrong. In other words, if i knows that p
then p is true.

(C~K) If "~K; p" € p, then "P; ~p" € p.

This means that it is indefensible for 7 to utter that "he does not know whether
p'" unless it is really possible for all he knows that p fails to be the case.

(C~P) If "~P; p" € p, then "K; ~p" € p.

When i does not consider p possible then, i knows that p is not true.

Definition: a model system is a set of sets that satisfies the following conditions:

1) each member behaves according the C-rules, (C.K), (C.~K) and (C.~P).
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11) there exists a binary relation of alternativeness defined over its members that

satisfies (C.KK*) and (C.P*).

2.3.3 The relation of alternativeness

I can be shown that (C.KK*) and (C.K) together imply:

(C.K*) If "K; p" € p and if p* is an alternative to p with respect to 7 in some
model system Q then p € p*.

In other words if i knows that p in his actual state of mind, then p must be true
not only in that world but also in gny alternative world with respect to i.

Under (C.K*), condition (C.K) can be replaced by:

(C.refl) The relation of alternativeness is reflexive.

That is every world is an alternative to itself. From this it follows that:

(C.min) In every model system each model set has at least one alternative.

Moreover (C.min) together with (C.K*) imply:

(C.k*) If "K; p” € p and if p belongs to a model system €, then there is in Q
at least one alternative pu* to pu with respect to i such that p € p*.

The condition of transitiveness also holds for this binary relation and it is
implied by the other conditions (for the proof see Hintikka [13] page 46).

The alternativeness relation is reflexive, transitive but not symmetric. To see
why the symmetry does not hold consider:

w={ "Kip".p,"Pju"}

W= {Kip"p, K D)

w* is an alternative to p with respect to the individual i because the state of

affairs in p* is compatible with what i knows in p. Assume that u entails ~4. The
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additional knowledge in pu* is not incompatible with the knowledge in p but with what
i considers possible in p. However given that 4 entails ~u, then p is not an alternative
to u* (see Hintikka [13] page 42).

To conclude we say that a member of a model system is accessible from
another member if and only if we can reach the former from the latter in a finite number
of steps each of which takes us from a model set to one of its alternatives.

The different sets of rules that are equivalent to each other and that completely
define the notion of knowledge are as follows:

(C.P*) & (C.~K) & (C.~P) & (C.K)&(C.KK*)

(C.P*) & (C.~K) & (C.~P) & (C.K)&(C.K*) &(C.trans)

(C.P*) & (C.~K) & (C.~P) & (C.refl) & (C.K*) & (C.trans)

(C.P*) & (C.~K) & (C.~P) & (C.refl) & (C.K*) & (C.KK*)

2.3.4 Belief and the rules of consistency

We can replace all the previous conditions with the exception of (C.K) by
replacing the operators "K" and "P" for "B" and "C" respectively. The condition (C.K)
does not have a doxastic'! alternative because it expresses that whatever somebody
knows has to be true, which by definition obviously does not hold in the case of beliefs.
We already stated that (C.refl) is a consequence of (C.K*) and (C.K). Therefore the
reflexiveness does not hold in the case of beliefs. The condition that is valid for beliefs

and that will be used here is the following (C.b*) which is the counterpart of (C.k*):

11 A doxastic alternative is an alternative in terms of opinion not

in terms of knowledge.
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(C.b*) If "B; p" € p and if p belongs to a model system €, then there is in Q
at least one  alternative u* to p with respect to i such that p € p*.

If i believes that p then there is a possible world alternative to the actual with
respect to i in which p is true.

The different sets of rules that are equivalent to each other and that completely
define the notion of belief are as follows:

(C.b*)&(C.B*)&(C.BB*)

(C.b*)&(C.B*)&(C.trans)

In the remaining sub-sections we characterize the interaction of knowledge and
belief. This is necessary because the players' states of minds will combine these two
different operators. We will for instance assume that players have knowledge about the
rules and structure of the game but we will only assume that they possess beliefs
concerning out-of-equilibrium play. The extent to which rationality can be known will

be addressed in section 3.

2.3.5 The interaction of the knowledge and belief operators

The alternatives to which the knowledge operator applies will be called

epistemic_alternatives whereas the ones to which the belief operator applies will be

called doxastic alternatives. To be more precise, these denominations should

correspondingly replace the previous notions of "alternative".

Definition: an epistemic (doxastic) alternative to an actual state of affairs is a

description of a state of affairs that is knowledge(belief)-consistent.
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Once this difference between alternatives in terms of knowledge and belief has
been acknowledged it is easy to see that some conditions that hold for epistemic
alternatives do not hold for doxastic alternatives. We already saw that (C.refl) failed to
hold for the belief operator what means that it does not hold for doxastic alternatives.

In addition, consider the following condition:

(C.KK* dox) If "K; p” € pand if p* is a doxastic alternative to p with respect

”

to i in some model system Q then "K;p" e p*.

In other words every world which is an alternative in terms of i's opinion should
be compatible within i's knowledge.

This condition can be shown to be equivalent to:

(C.KB) If "K; p" then "B;K;p" € p.

That is, whenever one knows something one believes that one knows it.
Moreover within the present system whenever one knows something one knows that
one knows it. That i1s "K;K; q" is equivalent to "K; g". Therefore, all the rule (C.KB)
establishes is that whatever one knows one believes it. In other words, if "K; ¢” then
"Biq" € .

Moreover, (C.KB) also carries the logical omniscience assumption in the sense
that whatever follows logically from our knowledge should be believed: it would be
indefensible not to believe something that logically follows from our knowledge.
Therefore, (C.KB) and (C.KK* dox) will be accepted as conditions.

An interesting feature is that the following rule can not be accepted because it
would imply that beliefs can not be given up:

(C.BK) If"B;p" e then "K;B;p" € p.
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This condition is equivalent to (C.BB*epistemic) and requires that whenever
one believes something one knows that one believes it. We assume that by gathering

more information one can give up beliefs but not knowledge.

2.3.6 Self-sustenance

So far, we have defined the concept of defensibility as a feature of a set of
propositions. The notion of self-sustenance alludes to the validity of statements.

definition: A statement p is self-sustaining iff the set {"~p"} is indefensible.
Therefore, "p o gq" is self-sustaining iff the set {p, "~g"} is indefensible.

If "p o q" is self-sustaining we say that p virtually implies q. When p virtually

implies g and viceversa then p and g are virtually equivalent. In this case, note that "K;

p D K; q." is self-sustaining what means that if a knows that p and pursues the
consequences of this item of knowledge far enough he will also come to know that g.
In addition, it can be proved that under the proposed set of rules "K; p & K; q"

virtually implies "K; (p & q)".

Moreover, within this framework it can be proved that "K; K; p” and "K; p" are

virtually equivalent whereas "B; p" virtually implies "B;B; p" but not viceversa

(Hintikka [13] page 124).

2.3.7 Common Knowledge and Belief
The previous knowledge operators can be replaced by higher degrees of
knowledge operators without invalidating any of the accepted rules. This is due to the

fact that "K; K;" p" and "K;' p" are virtually equivalent for all i and i". The common
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knowledge operator will be denoted by "ck" and "ck p"” will be read as: "there is
common knowledge that p."

The common knowledge operator can also be defined as the limit of a mutual
knowledge operator of level k where k goes to infinity. In the case of two individuals
the mutual knowledge operator can be defined as: MK ¥ ;= (K; K;...K; p)&(K; K,...K;,
p) where each parenthesis has 'k' knowledge operators.

Common belief (cb) is equally defined in spirit but it does not result
from the mere substitution of the knowledge operator by the belief operator on the
previous formula. This is because within this framework to believe that one believes
does not imply that one believes it. Therefore common belief should be defined in terms
of the conjunction of all the degrees of mutual belief and can not be reduced to an

expression like MK K, ;).

Summary of section 2.3:

In section 2.3, we have defined the conditions under which an agent's state of
mind is defensible. A defensible state of mind for an player 'i' can be briefly defined as a
set of propositions that represent i's knowledge and beliefs such that 'i' does not
contradict himself. For instance a player's state of mind is indefensible when he asserts
he does not know a logical consequence of some proposition he claims to know
(remember that players are supposed to have logical omniscience). Other examples of

indefensible states of minds are: 1) the ones that include 'p' and '~p', ii) the ones that
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contain 'p&q' but do not include either 'p' or 'q' or both, iii) the ones that contain 'p or

q' but neither 'p' nor 'q', etc.12

As we already stated, the main difference between knowledge and belief is that
only the former can not be contradicted by observation. What a player claims to know
needs to be true. In addition, it also follows from Hintikka's logic that when a player
knows something then he believes it. However the contrapositive is not true: a player
may believe something without knowing that he believes it (otherwise beliefs could not
be given up).

We have also introduced the notion of alternative worlds to represent players'

conjectures regarding hypothetical scenarios given their actual state of knowledge and
belief. The conditions that these alternative worlds need to satisfy are the following:
existency: 1) if some proposition is considered possible for all an agent knows then
there should exist at least one alternative world compatible with the actual state of
mind of this agent where this proposition is true, ii) if an agent beliefs that a
proposition is true then there is at least one alternative world compatible with the
knowledge he possess in his actual state of mind in which the proposition is true.

Preservation of knowledge: iii) whatever is known in the actual state of mind should be

known in every alternative world.

To conclude the common knowledge operator has been defined as usual. The

sets of rules of consistency or defensibility are naturally extended to higher degrees of

knowledge given that within the present language formulas can always be extended by

12 Remember that 'p' and 'q' are formulas within our language L. For

instance these are constructions of the following form: "player 1
takes the money at node 1", "player 2 knows that player 1 knows that

player 2 would have taken the money had node 2 been reached" etc.
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the application of additional knowledge operators. Consider for instance the
proposition "player i knows that p" which is true in player i's state of mind. Within the
present framework every alternative world with respect to '1' should be such that this
proposition is true in it. The same would occur to the proposition "player i knows that
player j knows that p" if this proposition also belonged to 1' actual state of mind.

The notion of mutual belief has also been introduced in the same spirit as the
mutual knowledge operator. That is, mutual belief of degree 'n' is defined as: everybody
believes that everybody believes that everybody... and so on, repeating the operator

"o

"everybody believes" 'n' times. It is worth to note that within this framework to believe
that one believes something does not imply that one believes it. However if the mutual
belief operator is defined as the conjunction of the different degrees of knowledge then

we can obtain implications of the following form: if everybody believes that everybody

believes then, everybody believes.

2.4 The backwards induction solution

Before stating the definition of the backwards induction equilibrium we need to
introduce the following concepts:

1) Let G(h) denote the game that given the public history of the game begins
at node n. The payoff functions in this game will be u;(P(z,;;)) for n > n' n=1,2,3.
P(z,,) is the final story of the game that finishes at the terminal node z, ;. A strategy
profile s of the whole game induces a strategy profile s/h” on any G(h") in the
following way: for each player i, s;/h" is simply the restriction of s; to the histories

consistent with h'.
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2) A Nash equilibrium is a strategy profile that satisfies the following
requirement:

u; (s5,8) 2y (s'),s;) for all s',.

The centipede game under consideration has two Nash equilibria: (t;t5,t;) and
(t15,t).

Now, a backwards induction equilibrium can be defined in the following way:

Definition: a strategy profile s of a finite extensive form game with perfect
information is a backwards induction equilibrium if for every h”, the restriction s/h” to
G(h") is a Nash equilibrium of G(h™) (Fudenberg and Tirole [10]).

One of these two Nash equilibria satisfies this requirement and therefore
constitutes the backwards induction solution:(t;ts,t,).

The standard argument for the backwards induction solution in this game can
be represented as follows:

Under the assumption of common knowledge of subgame rationality we can
assert that

{"3" O— "t3"} is true.

This implies that,

{"2" & {"3" O— "t;"} O— "t,"} is also true,

and therefore,

""= (" & ")

Let us denote the two previous counterfactuals by C5 and C, respectively.

In general the justification goes as follows: Under the assumption of common
knowledge of rationality the truth of C; implies the truth of C, and therefore the play of

"t," by the root player. We start at the last node by solving C;. In the next step we
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consider C,, the counterfactual at the predecessor node. The link between these steps
is that C; should be part of the set of true propositions or statements that conjoined
with "2" determine the truth of C,. In other words, player 2 would have taken the
money at the second node only if he thought that the money would have been taken at
the third node. As we can see, the crucial issue we have to address is whether C5 and
C, are simultaneously true.

With this purpose, we construct a test for the backwards induction equilibrium
by considering strategies as contingent events and then introducing a theory to solve
these counterfactuals. Within each of the theories considered in the next section, the
equilibrium strategies will result as the outcome of the solutions to these subjunctive
conditionals. This result will depend upon the payoft structure and the beliefs that

players commonly hold at all possible nodes.

3. The backwards induction solution and the theories of counterfactuals

In this section two different theories of counterfactuals are applied to analyze
the backwards induction outcome.!3 Before doing so, a few preliminary issues should
be addressed.

Under equilibrium, the factual or actual world will be defined as the world in
which the equilibrium strategies are contingently chosen. That is, a world in which
counterfactuals C; and C, are true. However, as it was already stated, even within the

actual world, some equilibrium strategies might not be actually played. For instance,

13 For a detailed presentation see Lewis [13] (alternatively Lewis

[7] (pages 57-85)) and Bennett [2].
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player 2 does not have the chance to play under any of the two Nash equilibria of the
centipede game. Therefore, two issues need to be solved concerning this matter: 1) the
epistemological status of this contingent play and ii) the truth condition of the its
hypothetical occurrence. That is, we have to answer the following questions: can there
be any mutual knowledge concerning player 2's strategy? and, is it true that "had she
had the chance to play, she would have played t,"?

Within the present framework, players can have no knowledge regarding their
opponents' off-the-equilibrium-path play because no observation takes place at those
nodes. Therefore, players can only have conjectures or beliefs regarding the truth of
these events. For instance, a player might know his own decisions off-the-equilibrium
path, but he cannot know his opponents' play at nodes that are not reached under
equilibrium. 4

Regarding the second question, there is a crucial concept whose
epistemological status must be defined in order to assert the truth of the mutual
conjectures concerning off-the-equilibrium path play. More specifically, the question
we need to consider is whether players can know that their opponents are rational or
have any other type of behavior. Before addressing this matter, a few definitions need

to be mtroduced.

3.1 The concept of rationality
The task of making compatible the assumption of rationality with the

occurrence of deviations, so that these do not in itself imply a contradiction, requires a

14 This is a non cooperative game where no communication takes

place.
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definition of rationality capable of capturing contingent play. With this aim, we
consider the existence of three levels of rationality. Rationality as a capability of
reasoning will be understood as maximizing behaviour subject to exogenous beliefs.
This will be defined as rationality ex ante to stress the idea that beliefs need not be
correct. On the other hand, rationality ex post will be considered to incorporate in
addition a process for belief formation or updating that is rational, in the sense of
being free of contradictions. Finally, the third level of rationality alludes to the
capability of acting upon decisions. To be rational in this last sense simply entails the

absence of mistakes.

Definition: a player is rational ex ante if he plays a best response given his

beliefs, or hypotheses about his opponent's play, whatever those beliefs are.

Definition: a player is rational ex post if he plays a best response given
rationally formed beliefs or hypotheses about his opponent's play. "Rationally formed
beliefs" means that the players have the capacity of correctly hypothesize about their
opponent's contingent play given their own knowledge, a behavioral assumption and
background theory which is commonly held. This means that the set that represents
each players' state of mind should be a defensible set.

There is another important concept that is necessary to consider in extensive
form games. This is the concept of node rationality. The aim is to separate rationality
at different nodes because a player who observes a deviation needs to conjecture about

the rationality of his opponents at future nodes. The information he receives after a
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deviation may have some implications about further node rationality. This will depend

on the theory of counterfactuals that the player is using.

Definition: player 'I' is rational at node neN; if he plays a best response given

the history of previous play h" and his hypotheses or conjectures about future play.!>
This is a type of ex ante rationality in the sense that a player may deviate and still be

node-rational at that node.

Definition: player '1' is_subgame rational if he is rational at node n, V neN; .

Definition: player '1' is fully rational iff he is ex-post subgame rational and does

not make mistakes.

3.1.1 Knowledge and Rationality

The relationship between rationality and observation is a difficult matter to
establish. We think on the one hand that there can not be knowledge concerning actions
that are not actually played in equilibrium and therefore, there cannot be mutual
knowledge of full rationality. In other words, if knowledge of rationality is conferred
by observation then there can not be knowledge of rationality at all nodes if some of
them are not reached under equilibrium. However on the other hand, a player may play

in a way in which his opponent defines as "rational" by pure error and therefore,

15 "hypotheses" here stands for: how the player evaluates

counterfactuals about future nodes based upon the play that has led
to his/her node and some a priori or primitive assumptions about the

rationality of the opponent.
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observation would not necessarily provide enough information to establish this type of
knowledge even under full observability. It is clear at this point that either a bayesian
view is adopted so that every possible explanation of an observation is given a positive
probability or an assumption is introduced so as to narrow down the indeterminacy of
this relationship. We will not allow for mistakes as a behavioral assumption within the
equilibrium world. Mistakes might only happen in non-equilibrium words.

Moreover, players need knowledge or beliefs a priori regarding the rationality
of their opponents and their opponents' conjectures because this can not be obtained
from experience within the game that is about to be played. The concept of ex ante
rationality was introduced to provide a notion weak enough so that knowledge might
be justified. One could think that players might know that their opponents maximize
given belief whatever they are. The goal at this respect, is to resemble the typical
assumption of common knowledge in order to match our results with those in the
literature.® Ex ante rationality alludes basically to a capacity and to have knowledge
concerning the ex ante rationality of a player, means to know that he is a maximizer,
that is, that he has the capacity of choosing the action that optimizes his payoff given
his beliefs. This assumption can be only justified in very special cases and for this
reason we will also deal with the case of common belief in node rationality. Notice that
this capacity to decide does not mean that the player will actually perform what he

chooses. This is what we defined as fu/l rationality.

16 Belief in any of these types of rationality can be easily
justified 1in the sense that players might believe that their
opponents are rational as long as they do not confront a piece of

observation that assures them that this is impossible.
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In addition we need to consider that information might updated as the game
evolves and that this might involve a "change in knowledge" within the game, even
within the introspective framework we are dealing with in the present work. Clearly
when a deviation occurs players acquire a new piece of "unexpected" information. The
concept of or ex post rationality is relevant at this respect because it involves the
complete chain of reasoning. A player that deviates might be es ante rational. However,
if there are no consistent set of beliefs that support the deviation he or she will be
considered ex post irrational.

Regarding the truth condition of the contingent reasoning involved in
equilibrium, players might hold beliefs about these conditionals based upon their mutual
knowledge or belief of a primitive behavioral assumption plus some theory of how to
infer conclusions regarding the observation of non expected phenomena. The
counterfactual occurrence of a deviation will provide in itself an information to which
the corresponding theory of counterfactual should attach some value.

We will assume that there is common knowledge of the framework or theory
that players use to analyze hypothetical scenarios as a necessary condition to justify an
equilibrium outcome. Whichever theory of counterfactuals is used to analyze an
equilibrium notion, it needs to be at least mutually believed or held amongst the
players. This implies that to have a well founded equilibrium concept in games with
perfect information, there should be some mutual agreement regarding the principle by
which beliefs at all nodes are updated (whatever this principle is).

In the following two sections we present an exposition of the results obtained
under two theories of counterfactuals. Afterwards a formalization of these results

within Hintikka's semantical system will be presented.
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3.2 Lewis's theory of counterfactuals

Lewis's theory is based on two fundamental concepts: i) the asymmetric
openness of time and ii) the notion of possible worlds.*”

The first notion can be summarized by the idea that the future is
counterfactually dependent on the present, whereas the past is counterfactually
independent of it. Although the past as well as the future are unique under Lewis's
assumption of determinism, the past of the factual world provides an information that
the future does not contain and that the present should relax so as to produce the
occurrence of the counterfactual antecedent.

The second notion is that of the possible world. This is an epistemological
entity; an scenario that despite his actual possibility can be conceived within our mind's
framework. In terms of the semantical system presented in section 2, a world is defined
as a defensible set of sentences that state what the player knows, believes and thinks it
is possible (compatible) given his knowledge (beliefs). An alternative world to the
actual world with respect to '' given a proposition 'p' is a possible world which is
knowledge compatible with the actual world with respect to '1' and one in which 'p' is
true (see section 2).

Lewis assumes that there exist a primitive relation of comparative similarity
amongst possible worlds. Despite the fact that the principle that defines this ordering is

constructed upon our experiences and therefore context dependent, Lewis assumes that

17 For more detailed exposition see [6], [7] or the appendix.
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whatever this principle is, it is sufficiently well developed to allow communication
between people. The impreciseness of the closeness relationship is due to the intrinsic
nature of counterfactuals and possible worlds theories are subject to this criticism.

Lewis describes four types of worlds or counterfactual scenarios:

The first world, call it, w, is in matters of facts similar to the actual world, call
it, wy, until shortly before the deviation is supposed to obtained. At the antecedent time
(call it tp) "the deterministic laws of wy, are violated at w; in some simple, localized,
inconspicuous way. A tiny miracle takes place." (Lewis [15] page 44). At w,, a mistake
produces the corresponding miraculous deviation (the occurrence of the deviation does
not necessarily imply that the player chose to deviate. It only implies that he did it). No
further "miracles" occur and after tp, w, and w; diverge in matters of facts.

The second world, w,, contains no miracles. The deterministic laws of w, hold
throughout the whole domain. Given that these two worlds differ at least in the
occurrence of the deviation and have the same 'laws' then it must be the case that they
do not agree in matters of particular facts neither before nor after the occurrence of the
antecedent. In this case no miracle produces the deviation. In terms of game theory, off
the equilibrium play must arise as the consequence of an intended action. However, if
players are still rational, which is the assumption we want to consider, it ought to be
that their beliefs justified that deviation. To reconcile "rationality" with "deviations" we
introduced the definition of node-rationality and ex-ante rationality. Otherwise, a
deviation would in itself be a contradictory or impossible event and this would render

all the counterfactuals vacuously true providing an inappropriate foundation.
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The third world, wj, has perfect match in terms of facts with w, until the
deviation. At that time a miracle causes the corresponding off the equilibrium play.
Immediately after, a small miracle takes place so as to make the consequent of the
counterfactual false.

The fourth world, wy, is alike w, until the deviation obtains. After tp a
widespread second miracle occurs that erases the effects of the deviation in such a way
that the consequent is false and no traces of the antecedent deviating play are found.

Lewis's theory: P [1—Q is true iff either (1) there are no possible P-worlds (in
which case P [0—Q is vacuously true) (2) The closest P-world to the actual world,
W, 15 @ Q-world or (3) when there is no unique closest P-world, some P.Q-world is
closer to w(, than any P.~Q-world.

To apply this criteria we need to define or impose some ordering amongst the
worlds.

Lewis defines the closeness relationship in accordance with his requirement of
the asymmetry of counterfactual dependence by offering a ranking of miracles. As it
can be seen, there is a trade off between facts and miracles and the closeness or
similarity criteria. The longer the region of perfect match the bigger the miracle we
need to produce the antecedent and vice versa. On the other hand the farther away in
the past the factual discrepancy occurs the smallest the required miracle. In the limit a
complete divergence of facts until minus infinity can bring a counterfactual world
without the need of a miracle. Compare for example w; with w,. No miracles are
allowed in w, what means that under determinism these worlds have never coincided in

the past. The deviation lawfully occurs due to some different belief.
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In Lewis's opinion a world like the previous w; will be the typical candidate for
the closest world because "a lot of perfect match of particular fact is worth a little
miracle" (op.cit page 45). In Lewis's theory worlds would be ranked from the closest to
the farthest in the following: w{,w,,w3,w,. We'll come back to this discussion because
Bennett's theory does not allow for miraculous worlds, so that only type-w,-worlds are
considered.

The asymmetry of counterfactual dependence also brings the result that the
miracle at w, that produces the reconvergence to w, is bigger than the one that
produced the divergence. Given that the past is fixed we need a broader miracle to
erase every consequence of the divergent miracle. Therefore, w,, that contains one
small divergent miracle and one big reconvergent miracle, ought to be less close to wy
than w for this last world contains two small miracles. On the other hand, w; is ranked
closer to w,, than w; because it contains only one small miracle. In matters of facts, w,
is the farthest from w(,. The complete absence of miracles can only be gained by a total
divergence of the past. However, w, is ranked farther from w, than w; due to the
assumed independence of counterfactuals with respect to the past.

The asymmetric openness of time together with Lewis's bias towards the
importance of facts previous to tp allows to fix the facts or parameters that we want to
keep constant to analyze the counterfactual hypothesis. Within wy, the exogenous
variables will be the players' intentions concerning their rational play. Therefore
deviations will not imply a revision to the belief that players are node rational at future
nodes. Within this world players do not intend to deviate, the occurrence of a deviation
is miraculous in the sense that it constitutes a thought experiment that captures all the

features of the actual world with the exception of the deviation; it only affects the map
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from decisions to actions in the hypothetical case of a deviation but not in the actual
world.

Let us start by examining C; under the assumption of common belief of node
rationality. 18We first need to search for the closest hypothetical world where a
deviation occurs. Within Lewis's paradigm, the smallest miracle that can produce a "3"-
world, without bringing an inconsistency between rationality and deviations, is one in
which some tremble caused the previous players to leave the money. No further

miracles are allowed so as to resemble behaviour in the actual world as close as

possible. Under any definition of rationality!® this possible "3"-world is a "t;"-world
given that new miracles are ruled out (this means that the player at the last node can
not make a mistake). Furthermore, this world, call it wg, is under Lewis's metric the
closest to the equilibrium world w, what allows to assert the truth of C;. Note that
there could be other worlds different from wg in which "3" is true. Clearly the case in
which players 1 and 2 are both irrational (name it wy), that is, they make mistakes

intentionally. In this case player 1 would play l; so that the counterfactual C; is false.?°

18 Within our interpretation of this theory, common knowledge of

node rationality yields the same results. Moreover, we could have as
well assumed common belief in the theory to analyze counterfactual
scenarios instead of common knowledge.

19 TIrrationality it is not defined here as a particular case of
rationality. Rationality and irrationality are meant to be two
disjoint categories. Given some beliefs at a node, the rational
behaviour is to choose the action that yields the highest payoff what
is a trivial problem at the last node since there are no ties in this
game.

20 (p O->Q) is false iff (P O—~Q) is true. See [7].
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However, under the assumption of rationality, wi should be closer to the equilibrium

world than w; what brings C; true. The world of trembles is another type
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of world where C; may be false. However, is in the interest of the present work to
discuss whether in the absence of trembles as they are defined in the literature, the
typically assumed "common knowledge of rationality" is sufficient for the backwards
mduction outcome. The deviation does not occur in the actual world. However, under
this framework a possible let us say, I;-world is a world where no trembles are further
expected.??

Under our interpretation of Lewis's theory, deviations are not incompatible with
players' ex post rationality because there is no update of rationality after a deviation.
Deviations are incompatible with fu// rationality. There is, nevertheless, a difference
between the counterfactuals C; and C, in terms of the informational structure needed
to support them and their connection to rationality. At the end of the game,
expectations about the opponent's rationality do not count??2. However, this does not
hold at any of the other nodes. At node 2 the task of making compatible the
assumption of rationality with the occurrence of the necessary previous deviations (so
that it does not in itself imply either a contradiction or the expectation that C; is false)
requires a definition of rationality capable of capturing contingent play. With that aim

the concept of node rationality above stated is to be assumed at this stage.?3 Under this

21 Within the trembling hand refinement the probability of trembles

goes to zero within the actual or equilibrium world. Outside this
world, trembles at every node are possible.

22 Tt is assumed here that players have no uncertainty regarding all
the payoffs in the game.

23

At node 3 any assumption of rationality without miracles or

mistakes would bring "ty" true.
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definition a player may deviate and still be node-rational. This feature will be crucial

within the next framework where intentional play is assumed.

It has been already asserted that at the second node the truth of C5 can not be
known to player 2 (remember that we are assuming common belief); however, the truth
of C; together with the truth condition of any other counterfactual can be hypothesized
on the basis of the common hypothesis of node-rationality, that is all that will be
required in the present analysis. As a consequence of this assumption the truth of C; is
commonly believed.2*

Consider now C,. We have to establish whether "t," is true in the closest
["2"&C5]-world. In this world a miracle produces the play of I; by player 1 so that
player 2 gets the chance to play. The decision at that node will depend on what he
expects player 1 to play at the third node. To begin with, we have to find a world in
which the conjunction ["2"&C5] is not false. Consider first the following candidates for
possible "2"-worlds:

wg: where a miracle consisting of a tremble causes the previous deviation but
contains no further breaches of laws,

wg a world where player 1 is node rational at node 1 but has the wrong beliefs
about player 2's rationality,

wpre: Where player 1's beliefs are right about the irrationality of player 2 and

wy : where player 1 is the only irrational player.

24 Common belief of node rationality is sufficient for the truth of

Cy ; so 1is common belief of subgame rationality that is an stronger

assumption.
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Notice that in the last three worlds deviations are intentional that is, they do not
contain miracles while the first does. The crucial question is: in which of these worlds
would C; be true?

Let us for expositional purposes represent these worlds in terms of the
rationality of the players and the events that hold true in them:

World Player 1 Player 2 Type of world

wg  subgame rational & mistakes subgame rational  t,,t3-world

wg'  subgame rational with wrong beliefs subgame rational  t,,t;-world
wgr  subgame rational with right beliefs ~ subgame irrational  1,,t;-world

Wy subgame irrational subgame rational b,,1;-world

The first three candidates are worlds at which player 1 is node-rational at all
nodes, so in any of them C; is true. In this way we rule out w; as a possible world.
Now we have to find the closest deviation-world and see whether "t," is true in it.?5

The world wg» can be eliminated because player 2's irrationality ranks it further
from the others in terms of features that should be preserved. So, we reduce the set of
possible worlds to wi and wpg, . Although these two worlds are It t;-worlds it is
interesting to see which one is the closest in order to compare it with Bennett's theory
of counterfactuals which will be introduced in the next section. First note that wy is a
w, type of world. There are no miracles, given that player 1's play is intentionally

guided by some beliefs. However, these beliefs are not compatible with the assumption

25 In case of a tie regarding the closeness of the worlds with

respect to wy , Cy, is true iff a [wj

&~"t,"] world, where j denotes the equally distant worlds.

&"t,"] world is closer to wy than

a [Wj
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of common belief of players' subgame rationality. To go from w, to wgr we need to
change a feature of the actual world, that is the belief of player 1 about player 2's
rationality which was supposed to have a parametrical role under our assumption of
rationality. Lewis does not allow for this change in crucial parameters.2¢ Therefore, we
are left with wy where player 2 is supposed to play t, given the assumption of node
rationality. 27 In this case we obtain the backwards induction solution.

There are some relevant issues at this point. It is claimed that the size of the
required miracle that produces a deviation up to the last node of the game increases
with the number of nodes in this game when the players are rational and that this may
disturb the previous ranking.2¢ However even if we considered that correlated mistakes
would produce a smaller departure from the actual world capable of bringing all the
deviations that are needed this will not alter the truth of the counterfactual at the last
node when no further miracles are allowed and when the last player is node-rational.
This is due to the fact that every "3"- world is a t;-world under our assumptions of
rationality. If the truth of C5 is commonly believed then the previous argument should
unravel by backwards induction. The key element in this argument is that beliefs are

"revised" in such a way that common hypothesis of node rationality is still possible

after a deviation.

26 The purpose is to avoid back tracking arguments. See the appendix

and Jackson [12].

27 Tt could be said as it is implied in Binmore [2] that given player
1's deviation now player 2 may expect the play of 13 at the last
node, Jjustifying in this way the play of 1,. However this is still
incompatible with the truth of C3 under the assumption of common
knowledge of rationality without trembles.

28 This is one of Binmore's remarks. See [2]
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Given our definitions, ex ante rationality can be mutually known amongst the
players if it is possible for them to know this as a feature or capacity of their
opponents. That is, if rationality is considered to be a disposition. In this case, we can
keep the assumption that actions are not necessarily known to the players. All players
might know is their opponent's capacity to optimize given his beliefs. The previous
argument also holds if this alternative view of rationality is accepted and knowledge is

postulated instead of belief.

3.3 Bennett's theory of counterfactuals

Under Bennett's theory of counterfactuals the past can counterfactually depend
on the future because no miracles are allowed to keep the closeness in facts to the
antecedent time. In this case, if something contrary to fact is observed this implies that
some previous conditions must have been different for this predicate to have occurred.

As it was asserted, under the assumption of node rationality a player may
deviate and still be node and subgame rational depending on the beliefs he holds at the
corresponding nodes about future hypothetical play.

Under our interpretation of Bennett's theory, beliefs are the endogenous
variables that support hypothetical play. In Lewis's approach players are rational but
miraculously off-the-equilibrium nodes are reached. Under Bennett's theory, on the
other hand, deviations from a certain equilibrium must be explained by beliefs that
make this behaviour a rational choice.

Definition: It is said that (P [J— Q) is true a la Bennett if Q is true at all the
antecedent time-closest-causally possible P-worlds. That is, we start at tp, the moment

in which the deviation occurs, then we lawfully unfold the facts in both forwards and
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backwards directions. If Q is true in each of these worlds then the counterfactual is
true. In other words, once the deviation occurred, we reason backwards by finding the
corresponding beliefs that the players ought to have had in order to have played node
rationally. With these beliefs we unfold forwards the sequence of facts to see if in this
world the counterfactual consequent is true. This treatment endogenizes beliefs and
hence rationality because the mean by which the deviation occurred is derived as a
residual instead of being assumed. Therefore, there is no need to assume a theory of
mistakes to justify the occurrence of the counterfactual antecedent.

Let us start at a world in which, without any violations to the assumption of
rationality, the second node is reached for we have already seen why C; is true under
any theory of counterfactuals and any definition of rationality. Starting at a world
where the second node is reached we have to unfold the consequences in both
directions of time and see whether "t," obtains. At this node player 2 has to decide
whether to play the equilibrium action or not. This choice should be guided by the
expected play at the third node that would have resulted had that node been reached.
Bennett's worlds are w,-type of worlds; in terms of the previously defined worlds, they
are worlds like wg: or wp. Following Lewis, in the previous section we ranked wy as
closer to w,, than wg, or wg.. Bennett's theory does not allow for a world like wy so
this case is ruled out. Moreover, we discard worlds like w; for being farther from the
actual world in which players are rational by assumption.

Bennett's theory under the assumption of rationality without trembles leads to
the conclusion that had node 2 been reached then the play of 1; by player 1 ought to
have been motivated by the belief that player 2 would play I, at that node. However,

both players expect that player 1 would have played t; had node 3 been reached based
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on the common belief of node rationality. Within Bennett's worlds deviations are
intentional, that is, players are supposed to be aware that they are deviating.

Consider first a world like wg. If, due to the commonality of the belief about
the play at node 3 and the node rationality of player 2 it is implied that player 2 would
have played t, had node 2 been reached, then this implies that either player 1 is node-
rational at node I and the commonality in the belief of "t," can not be held or that
player 1 is node irrational at node 1.2° Therefore, if player 1 is supposed to be es post
rational at all nodes (as the standard argument goes) then the truth of C, can not be
commonly held. On the other hand, if we keep the common belief on C,, we have to
rule out common belief in subgame rationality.

Consider a world like wg». Player 1 is not mistaken about his beliefs regarding
player 2's play and he is node rational at all nodes; however, player 2 is not node
rational. In this world player 2 plays or 1, so that C, is not true. But this type of world
should be farther than wy because in wy, both players are subgame rational. 3°

None of these worlds under consideration are compatible with the common
belief in the truth of C, and in ex post rationality. If C, is commonly believed to be true,
in the hypothetical occurrence of "2", it would be known to the players that either
player one made a mistake, what is ruled out by assumption, or that he is not ex post
rational at that node. That is there is no consistent set of beliefs that can support this

deviation. Therefore, both counterfactuals can not hold true under this theory if

29 Miraculous mistakes as well as standard trembles are ruled out by
assumption. Moreover node-rationality is compatible with wrong
beliefs.

30 In the presence of only one node for a player node and subgame

rational are equivalent concepts.
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common belief of ex post rationality is to be assumed at all nodes. The truth of C, is
not consistent with the play of I; and the assumption of common belief of subgame ex

post rationality. Under the assumption of common belief of subgame rationality and the
theory under consideration, players will not only face an inconsistency. This
inconsistency will be commonly believed. The key feature that brings this result is the

combination of the assumption that previous necessary play carries knowledgeable

consequences and the supposition that players have common belief in subgame

rationality.

3.4 The formalization of the results.

This section analyzes the conditions under which the backwards induction
outcome obtains in the presence of different levels of mutual knowledge and belief
within the semantical system presented in section 2. Therefore, this section enlarges the
results already presented not only by explicitly modeling them but also by offering a
richer range of outcomes.

The following definitions establish within our language the concept of node
rationality ex ante under fully intentional play. The axioms, on the other hand, state

structure of the game and the players' rules of inference.

Definitions and axioms:

(A1) Structure of the game: payoffs, available actions and order in which

players move.3!

31 This was presented in section 2.
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Subgame rationality: player i is subgame rational (R,) iff he is node rational at

every node at which he might have the chance to play (R,, neN,).
(A2)R;=R;; &R/,
(A3)R,=R,,

Node rationality will be defined in terms of contingent play as follows:

(A Ry, ="1," O [B,t;&1,) v (B, ;&1,)]

In other words, player 2 is node rational at node 2 iff it is true that had node 2
been reached, he would have either taken the money if he believed that player 1 would
take it in the next round if given the chance or left it otherwise.

(AR ="t"= (B, t;&t,) v (B, ,&1,)

Player 1 is node rational at node 1 iff it is true that he takes the money when he
believes that player 2 would have taken it in the next round or leaves it otherwise.

(A6)R,;="1," O— "t,"

Player 1 is node rational at the third node iff C; is true. Remember that:

(A7) "L,"O->"t;"="C,"

(A8)"/,"O->"t,"="C,"

Rules of inference:

(A9) Conditions (C.P*),(C.~K),(C.~P),(C.K),(C.KK*dox)&(C.KB)

Knowledge of the game and rules:

(A10) Common knowledge of definitions and axioms (1)-(9)
Observe that according to (A6) if R, ; is true then (A7) is true. That is, given the

definition of rationality under consideration we assume that counterfactual three is true

under any theory of counterfactuals under the assumption that the first player is rational
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at that node. We define R,; in this way because expectations do not matter at the last
node and we do not assume mistakes to resemble the highest similarity with the actual
world. However, note that, from this set of axioms, we can not assert the truth of the
second counterfactual. In order to do this we need to introduce a theory to analyze it.

Notice also that (A4) and (AS5) exhaust all the possible causes of a
deviation and define strategies as contingent constructions. Mistakes or any alternative
explanation (for instance imperfect information about the payofts) could have been
allowed here as another proposition in the disjunction. After presenting the results
under full intentionality we will introduce this option. 32

We need to introduce another axiom stating how deviations might be
interpreted:

(A11) Bennett's theory: Under this theory, the play of /, would provide a new

piece of information to player 2 and would make him consider as possible an alternative
world where one of the following three alternatives need to be included.: 3>

hi= {"K, [," ,"B, ~R,,"} ; hi < p, (Player 2 believes that player 1 is node
irrational at node 1 only)

hi= {"K,," ,"B, (R;,& B, B,l; & B, R, )"} ; hii  p,ii (Player 2 believes that
player 1 is rational, that player 1 believes that 2 is rational and that player 1 believes

that player 2 believes that player 1 is irrational at the third node)3*

32 Recall that wunder our interpretation of Lewis's theory the
hypothesis of a deviation does not lead to the deletion of any
feature that can have causal connection with the occurrence of the
counterfactual consequent.

33

This means that the following sets are not a full description of

the alternative worlds, just a subset of it.
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hii= {"K,1," ,"B,(R,;& B, B,t; & B, 1, )"} ; hili c p,ii (Player 2 believes that

player 1 is rational and that player 1 believes that player 2 is irrational)

The theory can be expressed in the following way:

Definition: "K,(A 00— B)" iff in the closest alternative state of affairs to player
1's actual state of affairs such that KA is true, KB is also true. Note that by (C.K) if
"K(A O— B)"e y, then (A 00— B)e ;. Notice that A and B need only be possible
sentences, not necessarily true within the player's actual state of mind; they only need

to be true in the closest alternative world. In his actual world, player i only needs

knowledge of the counterfactual connection between A and B. What is necessary is
that there exists a possible world in which A and B can be known to be simultaneously
true. The previous definition could have been stated with the operator B, replacing K.
In this case player i would believe that the counterfactual connection is true instead of
knowing it.

Trivially at the last node beliefs do not matter and hence any definition
of rationality suffices to attach the truth of the corresponding counterfactual. An
alternative or possible world where the last node is reached would need to include the
following state of affairs:

wv={"K,," ,"B, [(R,,& B,~R,;) v ~R, ]"} However player one would play ¢,

in every possible world in which he is node rational at this last node. These worlds are

34 Further levels of knowledge could have been assumed without loss

of generality. These are the minimum conditions that explain a

deviation.
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considered closer to the actual where he is rational. Hence any theory of

counterfactuals would render this counterfactual true.

Primitive epistemic and doxastic structures

The idea is to start with a primitive information structure (E, and E,)
and then complete the set that is defensible for each player given the axioms and their
knowledge of it. The final or complete defensible set for each player that will reflect his
corresponding state of mind will be denoted by A, (i=1,2). The aim is to see whether
there exist a defensible set that represents the player's states of mind that is compatible
with the truth of the corresponding counterfactuals so that the backwards induction
outcome is chosen. In other words we need to test whether there exists i, such that A,
cp; (=1,2) where p, and p, are model sets as defined in section 2. As it was
explained, players' decisions have already been "taken" within their given states of
minds. It is the game theorist who searches in the players' minds for consistency or

defensibility.

Case 1:

Assume that there is common knowledge of subgame rationality.

E,={"K, (410),"K, [ck(R,&R)]","K, ck(A11)"}; E,c X,

E,={"K, (410),"K, [ck(R,&R,)]","K, ck(A11)"}; E,c A,

Players are assumed to have common knowledge of the structure of the game

the rules for belief revision and the logical framework. Moreover they are supposed to
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have common knowledge of ex-ante node rationality. Conditions (A4) and (AS5) fully
describe the options opened to rational players and this common knowledge.

First notice that given the assumption of common knowledge both players
should share the same information structure, that is A, =A,= A. Therefore from now on
we use A indistinctively. By the same argument we only need to consider one model set
W, such that A < p can be proved to be defensible.

According to E, and E,, "[K, (All) &K, [ck(R,&R,)]] D K, [ck (t;)]"
for =1,2 is self-sustaining with respect to the model set p. Therefore "K, [ck (t;)]" € A
, =1,2 by condition (C.K). In other words given common knowledge of the definition
of rationality, the assumption that players are rational the counterfactual at the third
node becomes true and it is common knowledge that had node three been reached
player one would have played t,.3°

What about the counterfactual at the second node? Here we need to
introduce the assumption that there is common knowledge of axiom (A11).

The fact that "K [ck (t;)]" € A for i=1,2 entails by (C.KB) that "K; [ck (B,t;)]"
€ A for i=1,2 that is that "K [ck (B,t;)]" is self-sustaining for i=1,2.

Following the reasoning and given the knowledge assumptions, we obtain that
"K,[ck(B, t; & t,)]" € A fori=1,2 and by (C.K) and (C.&) that "¢," is true. That is the
second counterfactual should be true for A to be defensible (that is to guarantee that A
e n) for i=1,2.

The crucial question is whether this counterfactual is true and whether its truth

maintains the defensibility of A. In other words, the hypothetical world entailed by the

35Recall that strategies are defined as contingent structures.
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counterfactual should be a defensible state of mind that considered an alternative to
the actual world.

Now we explore the alternative counterfactual worlds. First we need to
consider the alternative worlds that are accessible from p with respect to each player.
Recall that an epistemically (doxastically) alternative world need to be knowledge
(beliet) compatible with the actual state of affairs that we denoted by p.

Consider hi= {"K,[," ,"B, ~R,,"} Given that it is common knowledge
that hi is included in a possible state of affairs w, "ck[P; (K, [,&B,~R,;)]" € p ;
i=1,2.

The question 1s (K, [,&B, ~R,,) self sustaining? Assume the answer is
affirmative.

By (C.P*) there exist w such that "K, [,&B,~R,," € W where W is an
alternative to p and W is accessible from p with respect to both players.
By (C.&) "ByR;," € pi

However "K,R,," € p and by (C.KK*dox) "K,R,," € w and therefore
by (C.KB) "B,R,," € wiwhich is a contradiction. Therefore we rule out any alternative
that contains hi as an alternative world where the theory can be sustained and the
second counterfactual be true.

(Note that "K,(B, ~R,,)" does not contradict player 1's knowledge if he does
not know what player 2 knows about player 1.
Consider now hii= {"K,[," ,"B, (R, & B, B,l; & B, R, )"}; hii c pii
Assume that " ck[P; (K,[,&B, (R,;& B, B,l; & B, R,))]" € n ; i=1,2.
By (C.P¥*) there exist pi such that "K, /, &B, (R,;& B, B,l; & B, R, )" € pii

where pi is an alternative to n and pii is accessible from p with respect to both players.
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By (C.&) "B, (B, B,ly)" < pi

However we already saw that "K, [ck (t;)]" € A < p; for i=1,2

In particular "K, t;" € pand "KK,t;" € p i=1,2

By (C.KB) "B, (t;)" € p and given that players share the state of mind p, this
implies that "K.B,t;" e p ;1=1,2.

By the assumption of ck and (C.KB) "B,B, t;" € p and by the same argument,
"K,B,B,t;" e n

By the assumption of ck and (C.KB) "B,B.B,t;" € p; i=1,2.

By (C.K*) "B,B.B,t;" € pii what implies that pii can not be an alternative to p.

In other words, in this world player one believes that player two does
not know that the third counterfactual is true and under the assumption of common
knowledge of rationality this is a contradiction.

Consider now hii= {"K,[," ,"B,(R,;,& B, B,R,;; & B, [, )"} hiii c pii

Assume " ck[P; (K,[,&B, (R;,& B, B,R,;; & B, [,)]" € pn i=1,2.

By (C.P¥*) there exist il such that "K, [, &B,(R,,& B, B,R,; & B, [,)" € pli
where piii is an alternative to p and pii is accessible from p with respect to both
players.

By (C.&) "B, B, 1," € pii

By (C.b*) there exist " belonging to the same model system Q such that pV is
an alternative to piii where "B, [," € piv . Applying again (c.b*) we obtain that there
should exist another alternative to pii, pv, such that "/," € pv.

We assume that "K, R,"e p and therefore by (C.KK*) "K, R," should belong

to any alternative of p. Therefore "K,; R,"e pv.
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In the state of affairs uv player 2 would have played /, and its rationality which
is commonly known would only be compatible with "B, /;"e pv what contradicts (C.~)
because "K, [ ck (t;) ]" € puv. That is, there is no alternative state of affairs such that
the theory of counterfactuals could be valid and consistent with the players' knowledge.
In other words, there is no complete set of sentences where axioms (Al)-(All) can
hold simultaneously so that mentioned set can be embedded in a model set. This result
is similar in spirit to that obtained for the belief operator in section 3.2.

It seems that what makes this theory self-defeating is the combination of
common knowledge of node rationality with full intentionality. Following Bicchieri [3]
we reduce the degree of mutual knowledge to find the amount of knowledge that is
necessary to guarantee backwards induction.

Case2:

B, ="K, (410),"K,(R)"."K; R,"."K\K;, R,","K; ck(A11)"};  E,c ),

B, = {"K; (410),"Kx(R,)","K; R,","K, ck(A11)"}y; B, R,

In this case there is common knowledge about the rules and structure of
the game but not of node rationality of the players. Player 1 knows that 2 is rational
and that player 2 knows that he is rational. It is sensible that this degree of knowledge
should suffice to bring the backwards induction play. In words, player 1 has the
minimum amount of knowledge that would induce him to take the money at the root.
On the other hand player 2 knows that player 1 is node rational at all nodes. This
makes him expect the third counterfactual to be true and therefore hypothesize that he
would take the money as well.

In case 1 there was no defensible alternative world in which both

counterfactuals could be true and where knowledge of node rationality persist after a
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deviation. In this case we can construct alternative worlds for each player that are
epistemically and doxastically defensible:

Player 2 's alternative world: the above type h,li-world. Player 2 can
consistently believe that player 1 believes that he is not node rational. That is there
exist w, such that h)ii = p,i where p,j is an alternative world to p, with respect to
player 2 and p,ic A,.

Player 1 's alternative world: consider hjiv= {"K, [," "B,
(R,,&~K,K,R,,)"}; hiv < p,i. Player 1 can consistently believe that player 2 is node
rational and that player 2 does not know he knows that player 2 is node rational. This

means that is there exist h;iv < p,j where p,i is an alternative world to p, with respect

to player 1 and p,j c A,.

Case 3:

B, ="K, (410),"K,(R)"."K; R,"."K\K;, R,","K; ck(A11)"};  E,c ),

E,={"K, (410),"K,(R,)"."K, R,","K,K, R,","K, ck(A11)"}; E,c Ak,

The only difference with respect to the previous case is that player 2 has
one extra degree of knowledge: he knows that player 1 knows that he is rational. The
hypothetical scenario in which a deviation occurs would render his theory of the game
inconsistent. This happens because in the hypothetical scenario of a deviation, player 2
cannot give up his knowledge concerning the node rationality of player 1 (this rules out
hypothetical worlds that contain type-hi state of affairs), his knowledge that player 1
should expect him to believe that the third counterfactual is true (due to "K, ck(A11)")
and finally his knowledge that player 1 knows that player 2 is rational (this rules out

hypothetical worlds that contain type-hili state of affairs). This are the possible type of
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sources of deviations and none of them can be consistently accepted by player 2 given
his knowledge as we saw in case 1.

However, player 1 does know this and therefore expects the second
counterfactual to be true due to his knowledge of player 2's rationality and player 2's
knowledge about 1's rationality. By assumption in this case player 1 does not know
whether player 2 knows that he knows that player 2 is rational. So there is a defensible
set representing a world alternative to the actual with respect to player 1 where the

contingent play required for backwards induction does not lead to any inconsistency.

Case 4:

E, = {"K, (410)."K;R)""K; R,"."K\K, R,""K,KK, R,""K,
ck(411)"}; E,c A,

E, ="K, (410),"Ky(R)","K, R,", "KLK Ry, 'K, ck(A1D) "} B, A,

It is obvious following the previous reasoning that in this case player 1
knows that 2 faces an inconsistency and that therefore is left with no criteria to play.
Backwards induction can not be supported in this case and for any higher degree of
knowledge.

Before dropping the assumption of knowledge of rationality it is worth
noticing that had Lewis's theory as we interpreted it been modeled, there would have
been some alternative in the disjunction of axioms (A4) and (AS) such that the
deviation need not be intentional. Moreover (All) should be replaced by the
alternative ranking of scenarios under this theory. In Lewis's theory, worlds in which

some departure from perfect performance explains the deviation are the closest ones. In
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this case players knowledge and beliefs need not be revised and therefore the sources

of inconsistency founded in cases 1,3 and 4 do not arise.

Case 5:

Now we will assume that there is common belief of subgame rationality.

E, = {"K, (A10),"K,(R,)","K, [eb(R,;)]""K, [eb(R,;5)]""K,
[eb(R,)]", "ck(A11)"};

E,c ),

E, = {"K, (A10),"K,(R))","K, [eb(R,;)]","K, [e¢b(R,5)]""K,
[¢b(R,)]", "ck(A11)"};

E,c A,

According to E, and E,, "[K, (A10) &B, [ch(R,&R,)]] D B, [cb (t;)]"
for 1=1,2 1s self-sustaining with respect to the model set p, for i=1,2 that respectively
represents players' actual states of mind. We can not assert as before that the third
counterfactual is known to be true only that it is commonly believed within the players
actual state of mind.

For backwards induction to obtain, the truth of the second
counterfactual should be commonly believed. As before, we consider the alternative
counterfactual worlds.

First we need to consider the alternative worlds that are accessible from
p with respect to each player. Recall that an epistemically (doxastically) alternative
world need to be knowledge (belief) compatible with the actual state of affairs that we

denoted by p. Although there is common knowledge of the rule for belief updating
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players need not share the same state of mind in terms of beliefs. Their states of mind
should be compatible in terms of knowledge given that knowledge can not be wrong.
Consider hi= {"K, [," ,"B, ~R,,"}. Due to "ck(4A11)", it is common
knowledge that hi is included in a possible state of affairs p, i and that "ck[P; (K,
[,&B,~R,))]" € ,; =1,2. The question is whether (K, /,&B, ~R,,) is self sustaining.

Assume the answer is affirmative.

By (C.P*) there exist p,i such that "K, [,&B,~R,," € p,i where p,j and p,/ are
alternatives to p; and they are accessible from p, and p, respectively due to the
common knowledge assumption regarding the update of beliefs in counterfactual
scenarios.

By (C.&) "B,~R,," € p;i ;i=1,2.

However "K,R," € p, and by (C.KK*dox) "K,R,," € puj . By cb(R,)),
"B,B,R,;,"e njyet "By~R,," € n,j. This means that player 1's belief about player 2's
beliefs was wrong. What about "B,B, ~R,;"? Player 1 has no reasons to drop this
belief. Therefore he should play ¢,.

On the other hand "B,~R,," € pn,) and this leads player 2 to abandon the belief
that player 1 is rational at that node. However he still believes that player 1 is rational
at the third node. So he plays 7,. Nonetheless, the assumption of common belief must
be dropped.

Consider now hi= {"K, [," ,"B, (R,;& B, B,l; & B, R,)"}. Due to
"ck(A11)", it is common knowledge that hii is included in a possible state of affairs p, i
and that "ck[P, (K,[,&B, (R, & B, B,l; & B, R, ))]" € n, i=1,2.

By (C.P¥*) there exist p,;ii such that "K, [/, &B, (R, & B,B,l; & B, R,))" € ;i

where p, i and p,1i are alternatives to p, that are accessible from i, and p,.
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By (C.&) "B, (B, B,l))" € wii i=1,2.

Both players need to drop a belief to reach a world where there is some degree
of mutual belief that player 2 believes that the money will be left at the end. In this
world player one believes that player two beliefs that the third counterfactual is not true
and under the assumption of common knowledge of any theory of counterfactuals the
truth of "#;" should be known. Therefore no defensible state of mind can be reached in
this case by any player.

Consider now hii= {"K, [," ,"B, (R;;& B, B,R,;; & B, I, )"}. Due to
"ck(A11)", it is common knowledge that hiii is included in a possible state of affairs p, i
and that "ck[P, (K,[,&B, (R, & B, B,R,; & B, [,)]" € n, i=1,2.

By (C.P*) there exist p, il such that "K,/, &B,(R,;,& B, B,R,;; & B, [,)" € i
where p, it and p, il are alternatives to p, and p, that are accessible from p, and p,.

By (C.&) "B, B, I," € i

However from cb(R,,), (c.b*) and the transitivity property there exists pv
belonging to the same model system Q such that p¥ is an alternative to i where
"B,B, R,," € pi.

In the state of affairs i player 2 would have played /, and his rationality which
is commonly believed would only be compatible with "B, /;"e pY what contradicts
(C.~) because "K,[ck (t;)]" € pvi. This means that player 2 cannot access a world in
which he is not supposed to be node rational. Therefore it must be that "B, B, t," € p.
vi. The question is whether p. it could be reached from p,. Player 2 should give up some
beliefs in order to have access to that world. As before, players may still play the
backwards induction outcome but the assumption of common belief of node rationality

can not hold in alternative or hypothetical scenarios.
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There is no alternative state of affairs such that the theory of counterfactuals
could be valid and consistent with the players' knowledge and the assumption of
common belief in node rationality ex post. However, there are possible states of minds
one for each player reachable from their actual states of minds where their decision is
the backwards induction outcome and where common belief in node rationality can be
assumed>©. Here we need to impose a criteria of closeness to drop hypothesis like hii
above. The other option is to relax ck(Al1) for cb(A11). If the theory can be relaxed
then the inconsistency need not obtain. However this is not a good solution unless we
allow for the coexistence of different theories such that when one is dropped an
alternative is chosen. The purpose of the present analysis is to compare the

performance of these two theories and not to offer a general framework.

4. Concluding remarks

The typical backwards induction argument is free of contradictions in the
following circumstances:

1) Players do not update their assumption regarding rationality when they

observe a deviation and we assume common knowledge (or belief) of rationality. This

result can be obtained under our interpretation of Lewis's theory of counterfactuals.
Within Lewis's theory there are worlds in which players deviate and are still
rational ex ante and ex post. There are also worlds in which this is not the case; that is

where there is node irrationality. However under the assumption of common

36 Actually it is easy to prove that a smaller degree of mutual
belief is necessary and sufficient. In the present game, player one
needs to believe that player 2 is rational and that player 2 believes

that player 1 is rational.
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knowledge of ex ante rationality the former type of worlds are closer to the actual than
the latter. In the counterfactual world where a deviation occurs the a priori belief that
the player was not going to deviate at the node where the deviation occurred need to
be given up. However under the proposed metric this does not lead to reject the belief
or knowledge in further node rationality. The reason lies in the way in which beliefs are
updated. More precisely, deviations need not have causal consequences. A deviation
occurs but no intentionality underlies it. Deviations might be related to the performance
of the action and not with the decision itself. Therefore rationality in the process of
decision is kept. Notice that the wrong performance does not take place in the actual
but in the counterfactual world.

1)) Players update their beliefs about the intentionality of the deviators (no
mistakes are allowed out-of-the equilibrium path and therefore all behavior is

intentional) but their knowledge is limited. For instance, if player 2 does not know that

1 knows that he is rational then observing a deviation does not contradict his former
knowledge and belief. This can be obtained under the present interpretation of
Bennett's theory of counterfactuals. In the version of the centipede game given in the
present work this obtains when player 2 knows that player one is rational, player 1
knows that player 2 is rational and player 1 knows that player 2 knows that he is
rational.

The drawback is to justify why the level of knowledge is exactly the one
required. This would mean that if the players face the game again with one more node
the theory will become inconsistent or self-defeating. Therefore it does not seem to be

a robust result.
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iii) Players update their beliefs as in ii) but instead of knowledge they have
mutual belief in their node rationality. The degree of mutual belief that is necessary has
a lower bound for the root player equal to the number of nodes minus one. The degree
of mutual belief is equal to the degree of mutual knowledge needed in ii) above (see
Bicchieri [4] and Samet [18]).

The truth of the counterfactuals required to support backwards induction
solution leads to a contradiction within the set that represents players' knowledge and
beliefs in the following cases:

iv) There is only intentional play (deviations confer information about the
intentions of the deviator) and players have knowledge that exceeds the level of
knowledge that is necessary for ii) above.

In a three leg centipede game this obtains for any level of information of player

1 in which at least he knows that 2 knows that he knows that 2 is rational. This is the

lower bound. The upper bound is infinity, which is the case of common knowledge.
When player 2 knows that 1 knows that she is rational she knows that there is
something wrong with her theory. Therefore she is left with a contradiction. If player 1
does not know this, then backwards induction obtains.

However if player 1 knows that this inconsistency results he also knows that 2
is facing a contradiction and therefore player 1 himself is left with no theory and
backwards induction fails. For higher levels of knowledge this naturally keeps on
holding (see Bicchieri [4]&[5]).

v) There is only intentional play and players have mutual belief in node
rationality with a degree that exceeds the lower bound defined in ii). The upper bound

is naturally infinity. In this case, common belief in node rationality can be only
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preserved within the players' equilibrium worlds (which means that backwards
induction can be obtained). Any world in which a deviation occurs will not be
consistent with the assumption of common belief in node rationality ex post. In other
words common belief in node rationality needs to be dropped in alternative-out-of-the

equilibrium worlds.

The previous results lead us to the following conclusions:

1) Either we allow for non updating and keep full knowledge or allow for
updating and relax the degree of mutual knowledge. Another option is to substitute
"knowledge" in favor of "belief".

2) For the notion of rationality to be meaningful we have to assume that
irrational choices are open to the players. Players need to have access to these
counterfactual scenarios. The access in itself does not necessarily mean giving up the
notion of rationality or the amount of information that players have. We need to
assume what the occurrence of a deviation means in terms of belief updating. The

theories of counterfactuals above presented reveal that there is no unigue way to solve

the context dependence in which counterfactuals are generally stated.

3) A question may be posed at this stage. Shouldn't there be a way to decide
which of the theories of counterfactuals is more suitable?

Given a game and an environment we assume that players have been already
provided with a theory to form beliefs which is common knowledge or at least common
belief. However on the other hand, we can also assert that rational players will not

follow irrational theories.
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The answer to this matter crucially depends on how we think about rationality.
If rationality is considered a human capacity, we have to admit that players may make
rational choices but for some reason fail to perform them. In this scenario, a miracle is
a metaphor for thinking about the occurrence of an unintended deviation. If rationality
is seen as a set of rules, then Bennett seems to be a more reasonable analysis. However
there is no clear answer or consensus at this respect. The drawback is that Bennett
might yield some un-intuitive results in cases in which the set of parameters is not fully
described in the counterfactual world as in the counterfactual Had John jumped off the
Empire State building he would have killed himself (see page 7 above). Although the
issue of whether there was a net seems to be unspecified, Bennett's theory brings it as a
necessary feature of the counterfactual world whereas Lewis's does not lead to the
same type of revision of the facts holding at the antecedent time.

One could also think of a meta game where players choose a theory of
counterfactuals. For example we can allow mistakes and intentions to coexists.
Nevertheless, players need to have a common criteria to decide upon the metric
concerning the similarity of the possible worlds. It might be suggested that the criteria
for the metric could depend on the stage of the game yet it is worth to notice that this
rule should be commonly held.

4) According to our interpretation of Lewis's theory, deviations do not possess
any meaning in themselves; they can be interpreted as once and for all trembles. The
main reason why this approach provides a proper foundation for the backwards
induction result is that it excludes further mistakes or trembles. It is worth to remember
that Lewis's imposes this condition to guarantee the closest resemblance to the factual

world.
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5) Under our interpretation of Bennett's framework on the other hand,
deviations give some information about the beliefs of the deviating players. In this case
counterfactual worlds are such that if C, is true then either player 1 is node rational
and both players do not commonly believe in the truth of C, or C, is true and
commonly held but it is also commonly held that player 1 is ex post irrational at the
root. This last result in itself does not imply the falsity of C; if we differentiate between
rationality in action at different nodes and rationality in belief. Note that playing 1 is
not node irrational per se; player 1 is node irrational if he plays 1; while believing that
C, is true. On the other hand, to leave the money at the last node is fully irrational
because no beliefs matter and is the play that leads to the worst payoff with certainty.
The important feature of the present analysis is its capability to deal separately with the
different facets of rationality, namely rationality in action and in beliefs. It is worth
noticing that rationality in action is the only one that determines node-rationality before
the players fully follow the consequences of their conjectures. Under Bennett's
approach we conclude that common belief in the truth of C, and common belief of
subgame rationality (node-rationality at all nodes) ex post (when the iterative analysis
that brings consistency amongst players' beliefs has been performed) are not
compatible.

6) There is a second interesting issue concerning the analysis of counterfactual
scenarios in game theory. It seems that the consideration of out of equilibrium
situations that is needed to justify an equilibrium requires the weakening of the full
rationality assumption at least in the hypothetical worlds if we want to avoid a
contradiction. Without any weakening the term "common knowledge of rationality" is

an empty notion in an extensive form game. Either mistakes, or wrong hypotheses
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should be introduced in counterfactual worlds. These mistakes or wrong beliefs are
supposed to occur off the equilibrium path and they constitute epistemological
frameworks within which deviating behavior can be analyzed. Wrong beliefs at off the
equilibrium nodes reflect some lack of successful iteration along that path ex post.
Trembles, on the other hand, consist in another form of irrationality (ex-post-decision)
because players that tremble fail to actually perform the right action which is a
necessary condition for rationality (see Elster [9] page 13).

In the original backwards induction argument, deviations do not reveal
meaningful consequences. This is what happens within our view of Lewis's miraculous
worlds. The way the hypothetical scenario of a deviation is brought about is irrelevant
to the assumption about further rationality. Other analyses consider that deviations
provide some meaningful information to the players (see Binmore [4]). Deviations may
lead to further deviations, either in a correlated or uncorrelated way, or they may reveal
something about the beliefs of the player that has deviated. Bennett's framework is an
example of this last type of interpretation.

The outcome of this paper should be interpreted in the following way: thinking
about counterfactual scenarios a la Lewis provides no consistency problems, where to
do it a la Bennett might make the theory inconsistent depending on the amount of
mutual knowledge or belief that players have. These two cases do not exhaust the
possible ways of thinking about counterfactual situations. The contribution of the
present work has been to introduce an alternative interpretation capable of showing
under which kind of assumptions concerning hypothetical thinking and knowledge we

obtain consistent foundations for the backwards induction outcome.
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I1. Belief updating and equilibrium refinements in signaling games

1. Introduction

Many issues modeled in economics are concerned with non-cooperative
scenarios in which there is one agent who is privately informed about the state of
nature and another who is uninformed. The informed agent takes an action which is
observed by the uninformed agent who, after drawing certain inferences, takes an
action in response. The payoffs to both parties depend on the state of nature and the
actions taken. A signaling game is a stylization of this type of scenario: by taking an
action, the informed agent sends a signal or message to the uninformed who, based
upon this observation, constructs beliefs regarding the true state of nature which is
unknown to him. The uninformed player responds by taking an action which is a best
response to these beliefs. The message sent by the informed player maximizes his
expected payoff given his beliefs concerning the response of the uninformed player.

A Nash equilibrium of this type of game is a profile of behavioral strategies
such that each of them constitutes a best reply with respect to the other. This means
that no player can individually gain by deviating from a Nash equilibrium when the
other player plays in accordance with it. However, in order to decide how to play, the
informed party needs to consider the likelihood with which player 2 might respond to
his different messages. The only requirement that Nash equilibrium imposes is that the
equilibrium response by player 2 to unsent messages deters the informed party from
abandoning the strategy prescribed by the equilibrium.

The concept of Nash equilibrium requires that each player chooses a strategy
which maximizes his expected payoff assuming that the other players play in

accordance with the equilibrium. For this reason it may prescribe responses that are
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not optimal in the face of a deviation. When this occurs, a player might profit from
playing a non-equilibrium strategy in response to a deviation (note that this might
trigger further deviations). Van Damme ([22] page 10) characterizes this type of
equilibria as not self-enforcing.

It is accepted that, in order to be self-enforcing in the sense just described, an
equilibrium must recommend maximizing behavior at every possible situation at which
a player might have the chance to play. In the case perfect information games, the
concept of subgame perfection is sufficient to fulfill this requirement. However, this is
not necessarily the case with an imperfect information game; namely when there is at
least one move by a player who does not know which action preceded his turn. Among
the solutions proposed to guarantee maximizing behavior at all nodes while
encompassing scenarios in which a player might not know with certainty which action
was played before, there is the notion of sequential equilibrium.

A Nash equilibrium is sequential if there exists a probability distribution over
the states of nature such that the uninformed agent maximizes his expected payoff in
the face of a deviation. In other words, under the requirements of sequential
equilibrium responses to unsent messages should also be best replies based upon
consistent beliefs. Players use Bayes' rule to compute their beliefs regarding the states
of nature along the equilibrium path. By this rule the uninformed party can calculate the
likelihood of every state of nature conditional on every message that is sent under
equilibrium. In addition it is assumed that off-the-equilibrium messages constitute zero
probability events. Therefore, given that Bayes' rule is not defined for conditioning
events of this sort, beliefs based upon off-the-equilibrium messages are left

undetermined.

79



The notion of sequential equilibrium only imposes an existence requirement
upon the set of beliefs that support players' best responses at nodes which are off the
equilibrium path. These beliefs do not need to satisfy any further requisite neither is
there a rule to compute them. As a consequence, many equilibria might remain even
after requiring optimal responses at every information set.

In terms of signaling games, sequentiality imposes no restriction upon the
interpretation of messages which are sent off-the-equilibrium path. For instance a
player might believe that had his node been reached his opponent would have played a
strictly dominated strategy. This might happen because beliefs formed after deviations
are not constructed upon the assumption that they signal intentions on the part of the
informed player and therefore are considerably unrestricted.

With the purpose of further refining the concept of sequential equilibria several
equilibrium notions have been introduced in the literature. Among them are Cho and
Kreps' Intuitive Criterion [8] and Banks and Sobel's Divinity and Universal Divinity
[2]. The aim of these notions is to restrict possible inferences at information sets which
are off-the-equilibrium path by eliminating those beliefs which do not survive some
stylization of the hypothesis that deviations could be intentional.

In this chapter we explore the consequences that alternative ways of drawing
inferences from deviations have upon the existence of Nash equilibrium and the
mentioned refinements to sequential equilibrium.

Consider an equilibrium under which regardless of the state of nature the
informed party always sends the same message; this called a pooling equilibrium. Given
the distribution from which nature is drawing its states, the uninformed player

calculates by Bayes' rule the probability that he faces each state conditional on the
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equilibrium message that he has received. In this case the conditional posterior of each
state given the equilibrium message is equal to the prior probability of the state.
Therefore, under equilibrium no new information is revealed; the uninformed player
follows the prior distribution over the states of nature. Now assume that a deviation
occurred. This occurrence does not intrinsically confer any information unless we
define some concept of rationality together with a theory of how to interpret
deviations. Assume that players are rational as it is typically argued in the literature.
The question that remains is how to model this deviation. Applying the framework of
possible worlds introduced in the previous chapter we have to find the smallest
departure from the equilibrium under analysis that will bring the counterfactual world
of a deviation. If players are rational at least two possible interpretations seem feasible:
1) deviations are mere hypothetical constructions; that is, they are not intentional and
therefore can not reveal further information and 2) deviations are intentional and
should be analyzed as the outcome of a rational decision process.

Consider the first case. If a deviation does not confer a signal, one option for
player 2, given that he is rational as well, is to adopt the prior distribution which is
assumed to be common knowledge as his beliefs regarding the likelihood of the states
of nature. However, if beliefs at nodes off-the-equilibrium path are computed in this
way existence of Nash equilibrium can not be guaranteed: the receiver's response might
not deter the sender from sending a non equilibrium message.

In the light of this outcome two questions can be posed: i) why should a
deviation be thought of as unintentional? and ii) why should the second player use the

prior distribution as his beliefs off-the-equilibrium path in this case?
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With respect to the first question we consider that a deviation might be
rationally chosen, and therefore intentional, only if it is expected to be profitable.
However, by definition, deviations from equilibrium might be profitable only when they
lead to further deviations. In addition these "further deviations" also need to be
compatible with the assumption of rationality and fully intentional behavior. As it was
already illustrated in the previous chapter not every game can consistently encompass
the compatibility of the assumption of common knowledge of rationality and fully
intentional behavior. Therefore the answer to this question crucially depends on the
structure of the game under consideration.

With respect to the second question, the answer can only be solved within an
empirical context. A player might think that in the face of unreliable inferences he
might trust a more genuine piece of information; namely, the prior distribution over
types. However, there is no unique way to address this issue. Alternatively, one can
also pose the following question: why should a player revise his prior probabilities
which are common knowledge conditional on the occurrence of an event that is not
supposed to confer information?

Consider now the case in which deviations are intentional and players rational.
The goal in this case is to refine the set of posterior beliefs of the player who faces a
deviation under the assumption that the corresponding deviation might provide
additional information about the state of nature. In terms of the literature, both the
Intuitive Criterion and Divinity propose a framework to restrict beliefs regarding the
likelihood of the states of nature in situations in which deviations can be rationally

explained.
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Roughly speaking, Cho and Kreps' Intuitive Criterion proposes that states of
nature which can not lead to a profitable deviation by the informed player be eliminated
from the game or attached zero probability by the uninformed player. In addition,
Banks and Sobel assume that the posterior conditional probabilities of those states of
nature which, relative to others, are less likely to lead to an intentional deviation be
revised downwards with respect to their prior unconditional probabilities. They further
propose an iterative procedure, whose equilibrium outcome they call Divine, based
upon this refinement.

Both the Intuitive Criterion and Divinity analyze the intentionality of deviating
play while taking for granted that equilibrium responses would have occurred in
response to equilibrium play. Although consistent with the features of the equilibrium
world that one might want to preserve, this assumption has been challenged by Van
Damme ([21] page 281) and it is discussed in depth in section 2.

Regarding the [Intuitive Criterion it is not clear why players should be
completely eliminated from the game given that the sequential reasoning starts with a
tentative hypothesis that can lead to further reactions and reconsiderations of the initial
assumption. This issue has been pointed out by Van Damme as a drawback of this
method ([21] page 281-282). On the other hand this test does not impose any
restriction upon the set of sequential equilibria when all the types could to -some
extent- potentially benefit from a deviation.

Regarding Divinity, when the equilibrium payofts for every sender dominate
any alternative payoff in the game anmy conjecture by the receiver supports the
equilibrium. In this case Divinity does not refine the set of sequential equilibria. Banks

and Sobel justify this feature of their proposal by explaining that in this case the
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receiver should be truly surprised. However if this is the case then a deviation should
be considered meaningless and the comment provided in the previous case holds.
Moreover there is another circumstance in which Divinity does not refine the set of
sequential equilibrium outcomes. This occurs when the issue of whether player 1 might
benefit from a deviation depends only upon the reply by player 2 and not upon his type.
However a deviation in this case should also be consider as truly surprising in Banks
and Sobel's terminology. In section 4 we introduce a modification to Divinity based
upon the assumption that whenever the message of the informed player does not
convey a signal, the uninformed player uses the prior distribution over the states of
nature. With this modification the set of sequential equilibria can be further refined
although existency is not longer guaranteed.

This chapter is organized as follows. Section 2.1 presents a formalization of a
signaling game and introduces the concept of Nash and Sequential equilibria. Section
2.2 the beer-quiche game from Cho and Kreps [8] together with their Intuitive
Criterion. Section 2.3 presents Banks and Sobel's concept of Divine equilibria and
Universally divine equilibria together with some examples that illustrate them. Section
2.4. compares the concepts presented in its previous two sections. Section 3 presents
an alternative criterion to restrict beliefs at information sets that are off-the-equilibrium
path based upon the interpretation of Lewis's theory of counterfactuals which is
presented in the previous chapter; namely that deviations do not lead to further
updating of beliefs. We assume that the uninformed player uses as his beliefs the prior
distribution over types given that deviations do not confer new information. In this case
Nash Equilibrium need not exist as the beer-quiche game presented in section 2

illustrates. In this section we characterize the situations in which equilibrium exists.
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Section 4 introduces a variation to Banks and Sobel's Divine equilibria and presents an
alternative iterative procedure to eliminate implausible sequential equilibrium based
upon the interpretation of Bennett's theory of counterfactuals as it was introduced in
the chapter I. There is a final section consisting in concluding remarks which analyzes

the extent to which these refinements are plausible within the paradigm of rationality.

2. Signaling Games

Consider the following two players non-simultaneous move game: the first
player, called the sender (S) chooses, after learning his #ype t, a message or signal m,
from a finite set M(t). This type is drawn from a finite set T according to a probability
distribution 7 which is common knowledge among both players. The sender's type, that
is the particular realization of m, is unknown to the second player, the receiver (R),
whose decision consists in choosing an action, a, from a finite set A(m) after observing
the sender's message, m € M(t). This response finishes the game. The resulting players'
payoffs, u(t,m,a) and v(t,m,a) respectively, are determined by the message, the
responding action and the sender's type.3’

The rules of the game represented by Y=(T,M,A,m,u,v) are common

knowledge among the players. The asymmetry consists in the fact that the receiver, that

37As a simplifying assumption and without loss of generality we shall
assume that M (t), the set of messages available to type t, is the
same for all types. By the same token we shall also assume that A(m),
the set of actions available after message m, is the same for all

messages.
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is player 2, does not know a piece of information that player 1 knows; namely player
I's type.

Let P(T), P(M) and P(A) be the set of probability distributions over T, M and A
respectively. An element T, of P(T) represents a set of beliefs by player 2 concerning
the likelihood of types teT after receiving message m. Let t=(t_ ), denote a system of
beliefs of player 2. The elements of P(M) and P(A) will be denoted by pu and o
respectively.

Let p=(p,), and r=(r,), respectively represent the sender's and receiver's
behavioral strategies with p,eP(M) for all teT and r, eP(A) for all meM. Given the
sender's type t, p( . ;t) is a probability distribution over M(t) and given the sender's
message, r( . ;m) is a probability distribution over A(m).

The expected payoff to type t when he sends the mixed message p and player 2
responds with strategy r is

u(t,pr):=%  , wm)r, (a)u(t,ma).

On the other hand, the expected payoff of a player who faces message m when
he has beliefs T and responds with a mixed action o is

v(t,ma):=X , () a(a) v (t,m,a).

Let p(m) be the probability that message m is chosen under strategy p:

P(m):=Z ¢ ¢ 1(m) T(t) p(m).

The beliefs of player who responds to message m calculated according to
Bayes' rule are as follows:

TP (1) = n(t)p(m) / p(m) if p(m) >0.

Let the best response by type t against r be,

BR; (r):= argmax u(t,p,r),
0
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and let the best response by player 2 to message m against beliefs T be

BR,, (1):= argmax v(t,m,a).
(04

A Nash equilibrium for the game under consideration consists of a pair of
behavioral strategies (p,r), such that

p; €BR; (r) forallteT,

and

r,, €BR (t,p) for all meM with p(m)>0.

In other words, under equilibrium the sender maximizes his expected utility
given the receiver's response and, the receiver, after receiving the equilibrium message
m, computes by Bayes' rule the probability that, given m, the sender is type t, for every
t. In a second step, player 2 maximizes his expected utility using these probability

assessments as his beliefs.

2.1 Sequential Equilibrium

There is general agreement upon the need of prescribing rational behavior at
information sets that are off-the-equilibrium path for the equilibrium to be self-
enforcing. The problem that remains, however, is how to model or think about these
zero probability events. The concept of sequential equilibria is one of the notions that
has been proposed to deal with this problem. Under this concept, players are modeled
as expected utility maximizers at all nodes. Furthermore, in the face of uncertainty
players are assumed to behave in the following way:

(1) they calculate conditional probabilities by Bayes' rule along the equilibrium

path. This guarantees the consistency requirement upon beliefs;
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(i) they form beliefs off the equilibrium path by constructing posterior
probability distributions on each information set that is not reached under equilibrium,;

(iii) at each information set players assume that in the remainder of the game
players will play according to the equilibrium under consideration.

A strategy profile (p,r) is a sequential equilibrium if there exist a system of
consistent beliefs 1=(t )  such that each player's strategy maximizes his expected utility
given his probability assessments on and off the equilibrium path.

Formally a triple (p,r,z) is a sequential equilibrium if:

p; €BR; (r) forallteT,

r, €BR (t,) forallmeM,

1, =1, forall m with p(m)>0.

It is clear that a sequential equilibrium need not be optimal with respect to all
beliefs. Moreover, the beliefs which support a sequential equilibrium need not be
sensible A response to a deviation by the sender might be based upon the belief that the
sender has played a dominated strategy. The reason is that deviations are implicitly
treated as mistakes and therefore non connected with payoffs. Sequentiality on/y adds

optimality at every node and consistency of beliefs along the equilibrium path.

2.2 The Intuitive Criterion

Consider the following game taken from Cho and Kreps [8]. Nature selects a
type for player 1 who can be either strong (s) or weak (w). That 1s, T={s,w}. The
probability distribution over the types is given by n= {n(s)=0.9, n(w)=0.1}. Without
knowing whether player 1 is strong or weak and regardless of the message, player two

has to decide whether to duel player 1 or not; that is A(m)=A={d, ~d}. If player 2
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duels a strong player 1 he receives a payoff of 0; if he duels a weak player 1 he receives
a payoff of 1. If player 2 decides not to duel his payofts are 0 if the opponent is weak
and 1 if he is strong. In other words player 2 would wish to duel if he believed his
opponent was weak and not duel otherwise. After this response the game ends and the
players receive their payoffs. In any event, player 1, who knows his type, has to choose
between having beer or quiche for breakfast; that is, M(s)=M(w)={b,q}. Other things
equal player 2's response, the weak type prefers a breakfast of quiche whereas the

strong prefers a breakfast of beer. The payoffs to the players are depicted in Figure 1.

beer duel ~duel quiche  duel ~duel

strong 1,0 3,1 strong 0,0 2,1

weak 0,1 2,0 weak 1,1 3,0
Figure 2

This game has two set of Nash equilibria associated with the following
outcomes:

1) player 1 regardless of his type has beer for breakfast; player two avoids the
duel when the message is beer and otherwise duels with a probability of at least 0.5. In
terms of our notation: p(b/s) = p(b/w) =1; r(~d/b)=1; r(d/q) =0.5 . This is indeed a
sequential equilibrium provided that player 2's beliefs are such that 7, ($)20.5 and 7, (s)
< 0.5. The first inequality is guaranteed because along the equilibrium path, player 2's
conditional beliefs are equal to the prior distribution (by Bayes' rule t,» (s) = n(s)=0.9)
and this prevents him from dueling. The second inequality is not constrained because

there is no rule to compute these beliefs.
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Existence of Nash equilibrium requires that player 2 duels if quiche with a
probability of at least 0.5 because this response off the equilibrium path prevents the
deviation by the first player regardless of his type. This Nash equilibrium is also
sequential provided that player 2 believes that had player 1 had a breakfast of quiche he
it would have been more likely that he was weak.

2) player 1 regardless of the type has quiche for breakfast; player two avoids
the duel when the message is quiche and otherwise duels with a probability of at least
0.5. In terms of our notation: p(g/s) = p(q/w) =1; r(~d/q)=1; r(d/b) >0.5 . This is
indeed a sequential equilibrium provided that player 2's beliefs are such that 7 ? (s)20.5
and 1, (s)< 0.5. The first inequality is again guaranteed because by Bayes' rule 1P (s) =
7(s)=0.9 and these beliefs prevent him from dueling. Off the equilibrium path, player 2
duels with a probability of at least 0.5 and this prevents the deviation by the first player
regardless of his type. As before, this equilibrium is also sequential when player 2
believes that had player 1 had beer for breakfast it would have been more likely that he
was weak.

Cho and Kreps argue that the equilibrium outcome in which both types drink
quiche is not sensible. As we saw previously, this outcome is sequential because
dueling if beer is a best response when the second player assigns a probability of at
least 0.5 to the event that is the weak type the one who sent that message. Cho and
Kreps argue that these beliefs are not sensible because the weak type can not profit
from drinking beer relatively to the payoft which he receives under equilibrium if he has
quiche. They assert that if this reasoning is common knowledge among the players, it is

clear that player two should believe that the strong type is the more likely to have
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deviated and therefore he should not duel. In this circumstance, the strong confirms the
profitability of his deviation and this breaks the equilibrium outcome under analysis.
The formalization of this criterion can be described in the following way:
Let T(m) represent the set of types for whom message m is available. For each
message m' sent off the equilibrium path define S(m') to be the set of types t whose
equilibrium payoffs, u*(t), exceed the best payoff which they can possibly obtain if they

deviate. In other words, teS(m') iff:

u*(t) > max u(t,m',a)
a e BR(t(T(m"),m'")

An equilibrium outcome fails the Intuitive Criterion if there exist some type t'e

T such that:

u*(t) < min u(t',m',a)
a e BR(t(T(m)\s(m")),m")

Roughly speaking, an equilibrium outcome fails the Intuitive Criterion when
there is a type who, by deviating can profit relatively to the payoff that he obtains under
equilibrium while facing a best reply to beliefs that exclude types who could never gain
by deviating. In the beer-quiche game the strong type obtains a payoff of 2 under
equilibrium. However he can reach a payoff of 3 if he deviates to beer and player two
does not duel given his revised expectations that player 1 is the strong type.

However, it has been pointed out both by Cho and Kreps [8] and Van Damme
[21] that if this reasoning is taken one step further and still assumed to be common
knowledge among the players one concludes that if beer is a sure sign of a strong type
then quiche is a sure sign of a weak type. By Bayes rule if t(s/b)=1 then p(b/w)=0. In
other words, if beer signals the strong type then the weak type must have quiche for

breakfast. Does this imply that quiche signals the weak type? To reply this question
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with an affirmative answer we need to assume that the strong type does not have
quiche for breakfast which is not equivalent to asserting that beer can only be chosen
by a strong type. To imply that quiche signals the weak type we need to assume that
the strong type apart from being rational believes that if he has beer the chance that he
will face a duel is less than 0.5.

Cho and Kreps disclaim the argument that quiche signals the weak type by
asserting that Nash equilibrium "is meant to be a candidate for a mode of self-enforcing
behavior that is common knowledge among the players." They conclude that to test an
equilibrium outcome one should start with the hypothesis that the corresponding
equilibrium is common knowledge and then look for contradictions. In any case the
conclusion that the weak type is better off by not having quiche leads to conclude that
the quiche equilibrium outcome is not self-enforcing. However, one could also say that
if the reasoning under consideration implies that beer does not signal a strong type then
the initial hypothesis that beer signaled a strong type should be rejected instead of the
equilibrium outcome itself. Van Damme suggests this type reasoning as a counter
argument that beer off-the-equilibrium path signals the strong type. However he does
not offer a way of solving this dilemma.

Cho and Kreps' opinion is valid if one thinks of an equilibrium as a
recommendation to the players that guarantees them a certain payoff. Imagine that the
players are told that if they have quiche for breakfast then it is certainly the case that
the second player will not duel. Now they need to decide whether a deviation can
improve the equilibrium payoff which they will receive with certainty. In this case Cho

and Kreps' analysis results appropriate.
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One can also think of an equilibrium as a set of consistent propositions within a
language based upon a behavioral assumption and a theory of how to analyze
deviations. Under this approach the logical consequences of the propositions that
define the equilibrium should also be taken as part of it. From this point of view an
equilibrium is a set of requirements whose consistency needs to be tested. An
equilibrium can be disregarded as self-enforcing as long as we find an internal
contradiction within this set of requirements. For instance the original quiche outcome
is sequential and becomes inconsistent as soon as we consider the interpretation that
beer signals a strong type. Without this further requirement that introduces constraints
upon off the equilibrium path beliefs the quiche equilibrium outcome is internally
consistent. Assuming that beer signals a strong type while fixing the equilibrium
provides the strong type with incentives to deviate. However, if by assuming that beer
signals the strong type, we accept as a logical consequence that quiche signals the
weak type, then we give incentives to player 2 and the weak type to deviate from the
original equilibrium. Either way, the internal consistency of the equilibrium outcome is
lost.

One can also ask the following question: why should players have their
equilibrium payoffs guaranteed and suppose that if they deviate another deviation will
occur in response? or why should equilibrium responses to deviations be relaxed as an
assumption and not equilibrium responses to equilibrium play? The framework
developed in the first chapter provides the following answer. The factual world is that
in which the equilibrium is played. Worlds in which deviations occur constitute
counterfactual scenarios and one needs to drop at least one feature of the factual world

in order to reach them. The problem is that within the framework of games there is no
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unique way to depart from the equilibrium world in order to reach the counterfactual
world of a deviation; many different departures might typically provide an access to
circumstances in which a deviation takes place.

Finally it is worth noticing that when S(m)=T(m) for every message off the
equilibrium path then there is no type that can be eliminated from the support of the
beliefs of the second player. In this case the Intuitive Criterion results equivalent to the
notion of sequentiality; that is, the criterion fails to refine the set of beliefs at nodes off-

the-equilibrium path.

2.3 Divine equilibria

Consider the following game taken from Banks and Sobel [2]. Player one can
be one of two types, called t; and t, with probabilities of 1/2 each. Each type has the
same set of available messages; namely m; and my. The receiver has the same available
actions after any of the messages: a; and a,. The corresponding payoffs are depicted in

Figure 3:

1y ap ) my ap )

t) 33 -6,0 t;  -55 -6,

t 33 11,5 t, -55 -11,5
Figure 3

This game has two equilibrium outcomes:

{p(my/ty) = p(my/ty)=1; r (a;/my)=r (a;/my)=1} and {p(my/t;) = p(my/ty)=1; r

(a;/my)=1 r (a;/m;)=0}. Both equilibrium outcomes survive the Intuitive Criterion.
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However, Banks and Sobel claim that the equilibrium outcome that has both types
sending message 2 is not sensible. The reason is that in order to support this
equilibrium player 2 should believe that t, is more likely than t; and one can observe
that whenever t| benefits from a response by player 2, t, benefits as well and not
viceversa. We can describe this situation in the following manner: when m; is sent, the
set of behavioral strategies by player 2 that outweighs the equilibrium payoff to t;
contains the set of behavioral strategies by player 2 that outweighs the equilibrium
payoff to t,. Banks and Sobel assert that a sensible restriction to player 2's beliefs is
that the probability of t; relative to that one of t5 should increase when m; is received.

Their test can be summarized in the following manner. Let A be the subset of
P(A(m')) such that type teT obtains a payoft at least as good as the equilibrium payoff
denoted by u*(t) when he sends message m'. Formally,

Ag (m') = {aeP(A(m')): u(t,m',0) > u*(t) for some teT }

This is the set of actions by player 2 that type t prefers to equilibrium actions if
he sends message m'. Banks and Sobel assume that the receiver should believe that the
sender does not expect to lose from a deviation. Therefore the receiver should believe
that type t expects him to take an action from Ag.

For all actions in P(A(m')) let A be defined as:

1 if u(t,m',o0) > u*(t)
A, 00)= [0,1] if u(t,m'o) = u*(t)
0 if u(t,m',o0) < u*(t)

A(t,a) represents the probability that teT would send m' if he believed that m'
would induce action o assuming that he could have obtained the equilibrium payoff

u*(t). Now let I'(m',a) be the set of player 2's beliefs over the set of types T consistent
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with player 2 taking action o in response to m' and type t obtaining u*(t) otherwise.
Formally:

I'(m',a) = {t eP(T): 3 A(t)ei(t,a) and c>0 such that t(t)=cA(t)m(t) VteT}.

Notice that this set is non empty if and only if a.e Ag. Finally let

I'(Am') =co[ U , c o ['(m',0)].

This set is empty only when Ag M A is empty; this is when there is no type who
can strictly benefit from a deviation considering all possible responses by player 2.
When Ag is empty any conjecture supports the equilibrium. Otherwise Banks and Sobel
assert that it is not plausible for player 2 to hold beliefs outside I'(A,m') given the signal
m'. Conjectures in I'(A,m') assign zero probability to types who can never benefit from
a deviation with respect to their equilibrium payoffs. Moreover, when Ag(t,m')
Ag(t',m') for t,t'eT then for all beliefs in I'(A,m') the ratio of the probability of t' given
m' to the probability of t given m' is at least as great as n(t')/m(t).

Finally we can present the iterative procedure introduced by Banks and Sobel:

Let I'y=P(T), Ay =P(A) and for n>0

I, =TA,) if T(A,.)2d and I}, =T, | otherwise.

A,:=BR (I',m), I*=n, I',, and A*=n, A, .

A sequential equilibrium in a signaling game is divine if it is supported by beliefs
in ['*. Returning to the game in Figure 2, the equilibrium outcome in which both types
send my is not divine3?; in this case ['*={teP(T): 1(t;)=n(t;)=1/2} and, as we already
explained, these believes do not support player 2's off the equilibrium response in the

case in which message m; sent.

38 The only equilibrium outcome which is divine is the pooling

equilibrium in which both types send message 1. In this case A*= aj.
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This example also shows that the outcome of this procedure depends on the
prior distribution w over the set of types T. With the purpose of overcoming this
limitation Banks and Sobel redefine the set of beliefs that support the optimal response
by player 2. Let I'** be the intersection of every I'* taken over all non degenerate
priors on Sender types. A sequential equilibrium is universally divine if it is supported
by beliefs in I"**, Naturally this is a more restrictive than divinity. In the game depicted
in Figure 2 the pooling equilibrium in which message 2 is sent is divine only if m(t|)<
2/5; however this equilibrium is not universally divine given that player 2 ought to

believe that regardless of the prior the unexpected message comes from type 1.

2.4 The Intuitive Criterion and Divinity compared

Let us summarize the most important issues that regarding the methods
presented in sections 2 and 3 have been discussed previously:

1) The interpretation of deviations as signals, which is an assumption in both
the intuitive criterion and divinity, builds upon the idea that deviations can only emerge
as a consequence of a rational decision. As it was asserted in the previous section this
is one of the possible ways in which deviations can be interpreted. As it has been
mentioned in the previous chapter, this approach to analyze off-the-equilibrium
scenarios ought to be mutually shared by the players in order to ensure the
convergence of their decisions and could lead to inconsistencies in some games.

2) In the beer-quiche game had a strong player 1 deviated from the quiche
equilibrium he would have been better off in any of these two possible scenarios: either
player 2 does not duel after beer or player 2 duels after quiche. The first case involves a

deviation off the equilibrium path whereas the second a deviation along the equilibrium
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path and therefore a rejection to the assumption that players are playing the equilibrium
under analysis. On the other hand, a deviation by the weak player 1 could be profitable
only if he expects player 2 to deviate from his equilibrium strategy after every possible
message.

This means that the weak type can be justifiably eliminated only when we
assume that player 2 responds to equilibrium play with equilibrium strategies. In other
words, we need to fix the equilibrium under consideration and proceed as if the
reasoning mechanism, which is common knowledge among the players, had no further
consequences upon the decision to play the equilibrium strategies. Both the Intuitive
Criterion and Divinity build upon this assumption. Moreover, once a player is
eliminated, we consider player 2's best reply given the beliefs modified by this
elimination. As it was already asserted, if under the quiche equilibrium beer signals a
strong type and this implies that quiche signals a weak type then player 2 is better off
by responding with a duel along the equilibrium path. This type of iteration is not
possible under the methods described in sections 2 and 3 for the reasons given in the
previous paragraph.

3) There are examples in which every type might potentially benefit from a
deviation, even when the equilibrium is fixed. In this case the Intuitive criterion yields
no further refinement upon the set of sequential equilibria. In some of these cases
Divinity 1s capable of further restricting the set of sequential equilibria. To illustrate this

consider the following example taken from Van Damme [21] :

my aj a my aj a

t 22 22 ty  -1L,5 3,0
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t) 22 22 t, 00 41

Figure 4

Banks and Sobel's divinity renders the equilibrium {p(m,)/t;)=p(m,/t,)=1;
r(ay/my)=1} as the only divine equilibrium provided that m(t,) >0.5. The other
equilibrium outcome is {p(m;)/t;)=p(m;/ty)=1; r(a;/m;)=1}which is not divine. In
order to illustrate this result, fix the pooling equilibrium in which player 1 plays m;.
Banks and Sobel's iterative procedure starts by updating beliefs in the following way:
consider the set of possible responses by player 2 which would make each type better
off. In this case t, gains by deviating to m, only if r(a,/my)> 0.5. On the other hand, t,
benefits from a deviation to m, only if r(a,/my)> 0.25. This implies that t, gains by
deviating whenever t; does. Divinity requires that the belief that m; comes from t, be at
least equal to the prior probability of this type. However this would make player 2
deviate to a, which eliminates this pooling equilibrium as a candidate for divinity.

Both equilibrium outcomes of this game pass the test or speech proposed by
Cho and Kreps' whereas only {p,(m,)= p, (m,)=1; r, (a,)=1} is divine.

Finally, it is worth noticing that Divinity depends upon the prior distribution
over types. In the game depicted in figure 4 there is only one divine equilibrium
provided that n(t,) >0.5. However, when n(t,) < 0.5 both equilibrium outcomes are

divine.

3 Priors as off-the-equilibrium beliefs

Equilibria in signaling games of the sort described in section one can be

typically of two different types: either pooling or separating. In the first case each type

99



of player 1 chooses the same message and this implies that player two does not learn
anything about the type of his opponent along the equilibrium path. This is due to the
fact that under this circumstance Bayes' rule renders the conditional posterior of the
types equal to the prior distribution. In the second case, messages perfectly signal
player 1's type and in this way player 2 knows with certainty which type of player 1 he
is facing.

Consider again the beer-quiche game. In order to support the equilibrium in
which both types have beer for breakfast it is necessary that if player 1 has quiche for
breakfast player 2 duels with a probability of at least 0.5. In order to do so, player 2
needs to have beliefs that assign a probability of at least 0.5 to the weak type
conditioned on the observation of quiche. In order to avoid the duel along the
equilibrium path, player 2 needs beliefs that assign a probability of at least 0.5 to the
event that he faces a strong player 1 conditioned on the observation of beer. Given that
under this equilibrium 1P (s):=n(s) = 0.9, player 2 has no incentives to deviate along the
equilibrium path.

However, if player 2 uses the prior distribution over types as his beliefs in case
of a deviation he should not duel either and this clearly breaks the equilibrium under
consideration.

Using this criterion and given the structure of this game, existence of Nash
equilibrium would be guaranteed only if m(s)=mn(w)=0.5. That is, existence is
guaranteed only when the priors equal the threshold probability that makes player 2's
indifferent between the two different responses along and off the equilibrium path.

The equilibrium in which both types have beer for breakfast is supported only

when quiche signals that a weak type is more likely than a strong type. When player 2
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does not update his beliefs in this way, the weak type will have clear incentives to
deviate to a breakfast of quiche. The pooling equilibria of this game requires that the
two sets of player 2's beliefs that respectively support his response on and off the
equilibrium path have only one element in common, which we called the threshold. The
crucial feature that guarantees this is that neither player 2's payoffs nor his available
actions depend on player 1's message. It is clear that in this situation and under the
assumption that on and off the equilibrium path beliefs are equal to the prior
distribution over the types, Nash equilibrium exists only when this prior distribution
equals the threshold beliefs over types that makes player 2 indifferent between his
available actions.

Consider the pooling equilibrium outcome in the game depicted in Figure 3 in
which both types send message 1 and player 2 replies with a;. Regardless of player 2's
beliefs, a; is always a best response (at least as good as a,) if he faces message 2.
Therefore in this case any prior used as beliefs off the equilibrium path will support the
equilibrium. Consider now the pooling equilibrium in which both types send m,. If
player 2 responds with a, off the equilibrium path then no type will wish to deviate.
This implies that player 2 should have beliefs that attach a probability of at least 3/5 to
type ty. If player 2 uses the prior distribution as his beliefs, any prior distribution such
that m(t,)=3/5 supports the equilibrium outcome under consideration.

As it was argued in Chapter I deviations represent counterfactual scenarios that
can not be uniquely interpreted unless a theory of how to attach meaning to deviations
is introduced. Two alternatives were proposed to model deviations motivated by two
different theories of counterfactuals. Under the first interpretation, motivated by

Lewis's theory of counterfactuals, deviations were modeled as thought experiments in
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the sense of being options available to the players that they can scrutinize even though
under equilibrium they constitute irrational choices. In other words, deviations were
not supposed to confer a signal. The crucial question is how should player 2 update his
beliefs concerning the type and rationality of his opponent if deviations are
meaningless. A sensible solution is to have player 2 adopting the piece of information

that seems to be more reliable. Namely the prior distribution of types.

3.1 The role of payoffs and priors in the existence of equilibrium

The drawback of the methodology outlined in the previous subsection is that
existence of equilibrium can not be guaranteed. The restriction imposed upon the set of
beliefs over the types in case of a deviation might be too strong given the payoff
structure of the game to allow for an equilibrium. When the prior distribution over the
types is taken as the beliefs of the second player in a signaling game, existence of a
pooling equilibrium is only guaranteed for a strict subset of priors if we fix the payoff
structure. However, given that players decide upon their play by considering their
expected utility it should also be noted that the payoff structure albeit typically fixed
also plays a role. To analyze this interaction let us consider the basic case of two types

of player 1, two messages and two replies by player 2:

my aj a my aj a
t) u'y, Vi u'1p, V' tp WV WV
1) uy,vihp u'p,Vian ty U,V U,V
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Figure 5

Without loss of generality assume that the pooling Nash equilibrium of this
game is: E ={m,, my, a,, a;}. Player 2 prefers a, to a; after receiving message m; if
and only if:

VI T () + Vi [1-1,,(8)] < Vg 1,(t) + Vg [1-1,,(t)] (3.1.1)

Along the equilibrium path t_ (t,)=n(t;). Therefore we can rewrite (3.1.1) as:

Vi (ty) + vl [1-n(t)] < vl m(ty) + vipp [1-7t(ty)] (3.1.2)

On the other hand, player 2 prefers a; to a, after receiving message m, if and
only if:

VA1 Tp(t) + Vi [1-T,5(8)] S V2p T(t) + vip [1-7,,(8)] (3.1.3)

Assuming that t_,(t,)=n(t;) we rewrite (3.1.3) as:

V2 me(ty) + vy [1-m(t)] < V2o m(ty) + v [1-7e(ty)] (3.1.4)

Equations (3.1.2) and (3.1.4) provide two constraints for the values or n(t;)
such that an equilibrium exists. It is clear that equilibrium exists if only if the actual
value of m(t;) satisfies both equations and this at least requires that the intersection of
these two bounds be non empty.

Although the payoffs in equations (3.1.2) and (3.1.4) do not overlap the
assumption that posterior beliefs equal prior probabilities introduces a link between the

responses to different messages received by the second player. In other words,
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although replies to every message are based upon different payoffs they should be
motivated by compatible beliefs.

In the beer quiche game (Fig 2) equations (3.1.2) and (3.1.4) provide the
following bounds for the equilibrium in which both types drink beer: n(s) < 0.5 and =«
(w) = 0.5 respectively. Therefore equilibrium would exist if and only if 7(t;)=0.5. In the
game depicted in Figure 3, if one considers the pooling equilibrium in which both types
send m,, equations (3.1.2) and (3.1.4) respectively require that n(t;) > 0 and n(t) <

0.4. Thus equilibrium exists for 0<n(t;)<0.4.

4 A variation of Banks and Sobel's Divinity

Consider the game in Figure 6 with n(t;)=0.9 n(t,)=0.1.

my ap o) my ap )

t) 0,0 0,0 t;  -1,0 1,1

t 0,0 0,0 t, -1,1 1,0
Figure 6

This game has two equilibrium outcomes: {p;(m;)= p, (m;) =1; r, (a;)=1} and
{p;(m,y)= p, (m,) =1; r» (ay)=1}. Consider now the pooling equilibrium where both
types send message m;. No type can be eliminated by the Intuitive Criterion. Neither
does divinity refine the set of sequential equilibria because all of them are divine. The
reason is that both types can potentially benefit from a deviation in exactly the same

circumstances; that is, Ag(t;,m')=Ag(t,m'). Therefore I"*=P(T).
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Consider now the following variation to the iterative procedure that defines
divine equilibria:

Mt,o)= 1 ifu(t,m',a) > u*(t) and

Mt,00)= 0 otherwise.

I (m',a) = {t €P(T); such that t(t)=cA(t)n(t) VteT and c>0}.

Moreover when Ag (t,m') is empty for all t in T and therefore I'(A,m')=
assume that

L(m',a) = {t €P(T); such that t(t)=n(t) VteT}.

Calculate the remaining by following the iterative procedure outlined in Section
2.3 replacing I and A by I” and A respectively.

The pooling equilibrium of the game depicted in Figure 6 in which both types
play m; is supported by this variation of the procedure provided that n(t)<0.5. With
the modification presented above player 2 uses the priors as his beliefs when he
observes the off-the-equilibrium message m, and therefore decides to play a;. This

response deters both types from deviating.

4.1 The refinement to Divinity and Divinity compared

In this section we compare the variation to Divinity just outlined with Banks
and Sobel's iterative procedure in order to characterize the former concept of
equilibrium.

Let us consider again a signaling game in which there are two types of player 1,
two available messages for each type and two available responses by player 2. Without

loss of generality consider the following pooling equilibrium: E ={m,, my, aj, a;}. In
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this equilibrium both types send m;; player 2 responds with a, to this message and with
a; to my.

Given the payoffs to the first player, four possible scenarios are feasible
regarding the set of actions by player 2 that each type prefers to equilibrium actions:

1) Ag(t)=Ag(tr)=2.

In this case no type can potentially gain by deviating relative to his equilibrium
payoff and this implies that I" (A,_1)= for all n>0. Moreover I',,=P(T) for all n>0 and
[*=n,I",, =P(T). This means that every sequential equilibrium is Divine.

Regarding the variation presented in the previous subsection, I'(m',o)={t(t)=n
15 T(ty)=m,}. This implies that [* is a singleton consisting of the prior distribution over
the types. An equilibrium satisfies the test presented in section 4 if and only if the prior
distribution over types satisfies the boundaries defined in (3.1.2) and (3.1.4).

i) Ag(t))=3; Ag(ty)=J (alternatively Ag(ty))=; Ag(t))=D).

In this case there is only one type who might benefit from a deviation and this
leads player 2 to believe that the deviation certainly comes from this type: I'*={z(t;)=0;
1(tp)=1}(alternatively I'*={t(t;)=1; 1(t)=0}). In this particular case, the refinement
that Divinity imposes over sequentiality is equivalent to that imposed by the Intuitive
Criterion. The beer-quiche game depicted in Figure 2 illustrates this case.

The variation of Divinity outlined in the previous subsection is equivalent in this
case to Divinity; that is, [*=I"*.

i)Ag(t))=Ag(t))=J.

In this circumstance the set of actions by player 2 that both types prefer to
equilibrium actions coincides. This means that both types could potentially benefit from

a deviation in the exact same situations. As in case 1) I'*=n,I', =P(T) and therefore
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Divinity is equivalent to sequentiality: an equilibrium is Divine if and only if it is
sequential. In the game introduced in Figure 6 the set of equilibrium outcomes such
that both types send m; is an example of this case.

The modified set of beliefs I'* by the second player is a singleton in this
situation consisting of the prior distribution over the types as in case i). As before, an
equilibrium satisfies the test presented in section 4 if and only if the prior distribution
over types satisfies the boundaries defined in (3.1.2) and (3.1.4).

V)Ag(t1)#AG(1); Ag(t))#T; Ag(tr)#D.

Although both types might potentially gain relative to their equilibrium payoffs,
there are responses by player 2 that would induce a deviation by only one of the types.
That is, either Ag(t))cAg(ty) or Ag(tp)cAg(ty). The game depicted in Figure 3
illustrates the case in which Ag(t))cAg(t)). As we already saw not every sequential
equilibrium is Divine in this circumstance although every sequential equilibrium satisfies
the Intuitive Criterion.

The variation of Divinity outlined in section 4 is equivalent in this case to

Divinity; that is, [*=I"*.

5. Concluding remarks
The goal of this chapter has been to analyze different ways of updating oft the
equilibrium path beliefs in relation with the concept of sequential equilibrium in
signaling games.
It follows from the analysis developed in the first chapter that there is no unique
way to model off the equilibrium behavior and that certain approaches are not always

compatible with the basic assumption of common knowledge of rationality. There are
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different ways through which the counterfactual world of a deviation might be reached
and the different alternatives trade off with each other as a possible explanation. All
these alternativess involve the relaxation of at least one of the assumptions that hold in
the equilibrium world where players do not deviate. There are on the one hand the
assumptions concerning the rationality of the players (including the possibility of their
making a mistake) and on the other, the assumptions concerning the amount of
knowledge that players possess about the structure of the game and the rationality of
their opponents.

This is an important issue because the way in which beliefs are updated after a
deviation together with the resulting equilibrium outcome crucially depend on the
explanation that undelies the deviation. A possible solution is to link the interpretation
of deviations to the structure of the game when rationality is the last assumption that
the theorist might want to relax. When deviations might not conceivably lead to a
potential gain, intentionality can not be compatible with rationality. In this case
deviations might be considered meaningless. In this situation it seems reasonable that
players base their responses upon the information which is common knowledge in the
game and proceed as if no further deviations were expected. Alternatively one could
also assume that at least one of the pieces of information concerning the structure of
the game is not common knowledge. For instance it can be supposed that players are
guided by different payoffs from the ones their opponents expect them to have. On the
other hand, when the payoft structure is such that some player might potentially benefit
from not conforming to his equilibrium strategy, it may be assumed that his deviation
signals either the player's future play or reveals some information which was not

common knowledge before the deviation.
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Signaling games constitute a good example to apply these criteria. We have
proposed that signals exist only when they are not incompatible with the assumption of
common knowledge of rationality. Messages by a player who is more informed than his
opponent might signal the unknown piece of information in the face of a deviation only
when the corresponding deviation can be rationally explained. The refinements
considered in this chapter, namely The Intuitive Criterion and Divinity refine the set of
sequential equilibrium in some of these circumstances. The first refinement is effective
when there are players whose deviations can not be rationally explained. The second
refinement is effective not only in this circumstance but also when the players who
might deviate can be separated in terms of the responses that they would prefer after a
deviation. We have propose a variation of this second refinement aimed at determining
the beliefs of the uninformed player when the different types who send messages can
not be discriminated in terms of their propensity to deviate.

We have also proposed that when deviations are not compatible with common
knowledge of rationality they be considered meaningless and therefore assumed to
imply no further updating in the beliefs of the player who responds to the deviation. A
case has been made in the present chapter for the use of prior probabilites as the ex
post beliefs after a deviation. This is justified by the fact that the prior distribution over
types is a piece of information which is common knowledge ex ante and guides players'
responses along the equilibrium path. The drawback is that in this situation equilibrium
might not exist as it has been shown. This illustrates the well known trade off between

existence of equilibrium and the extent to which it can be refined.
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