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Abstract

This paper presents a micro-model of knowledge creation and transfer for a

couple. Our model incorporates two key aspects of the cooperative process of

knowledge creation: (i) heterogeneity of people in their state of knowledge is essential

for successful cooperation in the joint creation of new ideas, while (ii) the very process

of cooperative knowledge creation a¤ects the heterogeneity of people through the

accumulation of knowledge in common. The model features myopic agents in a

pure externality model of interaction. In the two person case, we show that the

equilibrium process tends to result in the accumulation of too much knowledge

in common compared to the most productive state. Equilibrium paths are found

analytically, and they are a discontinuous function of initial heterogeneity. JEL
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1 Introduction

1.1 The Research Agenda

In this paper we examine the microdynamics of knowledge creation and transfer

by using a simple model. With a focus on the two person case, the basic

principles of this complex process can be uncovered. Although the two person

model admittedly has its limitations, particularly in the dynamic choice of

partners for knowledge creation and transfer, it has its advantages in analytical

tractability because we can solve the equilibrium dynamics explicitly.1

Our major research questions are as follows. How do knowledge creation

and transfer occur? How do they perpetuate themselves? How do agents

change during this process? Are the equilibrium dynamics e¢ cient?

As people create and transfer knowledge, they change. Thus, the history

of meetings and their content is important. If two people meet for a long

time, then their base of knowledge in common increases, and their partnership

eventually becomes less productive. Similarly, if two persons have very di¤erent

knowledge bases, they have little common ground for communication, so their

partnership will not be very productive.

For these reasons, we attempt to model endogenous agent heterogeneity, or

horizontal agent di¤erentiation, to look at the permanent e¤ects of knowledge

creation and growth. Thus, we are examining how social capital is accumu-

lated at a micro level. Our model is analytically tractable, so we do not have

to resort to simulations; we �nd each equilibrium path explicitly. The model is

also at an intermediate level of aggregation. That is, although it is at a more

micro level than large aggregate models such as those found in the endogenous

growth literature, we do not work out completely its microfoundations. That

is left to future research.

The analogy between partner dancing and working jointly to create and

exchange knowledge is useful, so we will use terms from these activities in-

terchangeably. Knowledge creation, exchange, and individual production all

occur simultaneously at each point in time. The dancers can work alone or

with their partner. They work together if and only if they both agree that it is

useful. Production always occurs at a rate proportional to the agent�s current

stock of knowledge, as does knowledge creation when an agent dances alone.

1Elsewhere, in Berliant and Fujita (2006), we provide extensions of the model and results

to the context of the general case of any number of potential partners, but to maintain

analytical tractability, we do not consider asymmetric states or knowledge transfer.
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The suitability of their dance partner depends on the stock of knowledge they

have in common and their respective stocks of exclusive knowledge. The

fastest rate of knowledge creation occurs when these factors are in balance.

Our results are summarized as follows. First, in a two person model where

myopic agents can decide whether or not to work with each other, there exist

many sink points in the interaction game, depending discontinuously on initial

heterogeneity. The most interesting of these features too much homogeneity

relative to the most productive state.

For simplicity, we employ a deterministic framework. It seems possible to

add stochastic elements to the model, but at the cost of complexity. It should

also be possible to employ the law of large numbers to a more basic stochastic

framework to obtain equivalent results.

Next we compare our work to the balance of the literature. Section 2 gives

the model and notation, Section 3 analyzes equilibrium in the case of two

participants or dancers, Section 4 examines welfare in the two person model,

whereas Section 5 provides our conclusions and suggestions for future dancing.

Two appendices provide the proofs of key results.

The basic framework that employs knowledge creation as a black box

driving economic growth is usually called the endogenous growth model. Here

we make a modest attempt to open that black box. The literature using this

black box includes Shell (1966), Romer (1986, 1990), Lucas (1988), Jones and

Manuelli (1990), and many papers building on these contributions. There are

two key features of our model in relation to the endogenous growth literature.

First, our agents are heterogeneous, and that heterogeneity is endogenous to

the model. Second, the e¤ectiveness of the externality between agents working

together can change over time, and this change is endogenous.

Fujita and Weber (2003) consider a model where heterogeneity between

agents is exogenous and discrete. They examine the e¤ects of immigration

policy on the productivity and welfare of workers. They note that progress

in technology in a country where workers are highly trained is in small steps

involving intensive interactions between workers and a relatively homogeneous

work force, whereas countries that specialize in production of new knowledge

have a relatively heterogeneous work force. This motivates our examination of

how endogenous worker heterogeneity a¤ects industrial structure, the speed of

innovation, and the pattern of worker interaction.

Di¤erentiation of agents in terms of quality (or vertical characteristics) of

knowledge is studied in Jovanovic and Rob (1989) in the context of a search
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model. In contrast, our model examines (endogenous) horizontal heterogene-

ity of agents and its e¤ect on knowledge creation, knowledge transfer, and

consumption.

2 The Model - Ideas and Knowledge

In this section, we introduce the basic concepts of our model of ideas and

knowledge.

An idea is represented by a box. It has a label on it that everyone can

read (the label is common knowledge in the game we shall describe). This

label describes the contents. Each box contains an idea that is described by

its label. Learning the actual contents of the box, as opposed to its label,

takes time, so although anyone can read the label on the box, they cannot

understand its contents without investing time. This time is used to open the

box and to understand fully its contents. An example is a recipe for making

�udon noodles as in Takamatsu.� It is labelled as such, but would take time

to learn. Another example is reading a paper in a journal. Its label or title

can be understood quickly, but learning the contents of the paper requires an

investment of time. Production of a new paper, which is like opening a new

box, either jointly or individually, also takes time.

Suppose we have an in�nite number of boxes, each containing a di¤erent

piece of knowledge, which is what we call an idea. We put them in a row in

an arbitrary order.

There are 2 persons, i and j, in the economy. We assume that each person

has a replica of the in�nite row of boxes introduced above, and that each

copy of the row has the same order. Our model features continuous time.

Fix time t 2 R+ and consider person i. A box is indexed by k = 1; 2; :::

Take any box k. If person i knows the idea inside that box, we put a sticker

on it that says 1; otherwise, we put a sticker on it that says 0. That is,

let xki (t) 2 f0; 1g be the sticker on box k for person i at time t. The state
of knowledge, or just knowledge, of person i at time t is thus de�ned to be

Ki(t) = (x1i (t); x
2
i (t); :::) 2 f0; 1g1. The reason we use an in�nite vector of

possible ideas is that we are using an in�nite time horizon, and there are always

new ideas that might be discovered, even in the preparation of udon noodles.

Given Ki(t) with only �nitely many non-zero components, there is an in�nite

number of ideas that could be created in the next step.

In this paper, we will treat ideas symmetrically. All that will matter is the
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number an agent knows at a particular time. Extensions to idea hierarchies

and knowledge structures will be discussed in the conclusions.

Given Ki(t) = (x
1
i (t); x

2
i (t); :::),

ni(t) =

1X
k=1

xki (t) (1)

represents the number of ideas known by person i at time t. Next, we will

de�ne the number of ideas that two persons, i and j, both know. Assume that

j 6= i. De�ne Kj(t) = (x
1
j(t); x

2
j(t); :::) and

ncij(t) =

1X
k=1

xki (t) � xkj (t) (2)

So ncij(t) represents the number of ideas known by both persons i and j at

time t. Notice that i and j are symmetric in this de�nition, so ncij(t) = n
c
ji(t).

De�ne

ndij(t) = ni(t)� ncij(t) (3)

to be the number of ideas known by person i but not known by person j at

time t.

Knowledge is a set of ideas that are possessed by a person at a particular

time. However, knowledge is not a static concept. New knowledge can be

produced either individually or jointly, and ideas can be shared with others.

But all of this activity takes time.

Next we describe the components of the rest of the model. Consider �rst a

model with just two agents, i and j. At each time, each faces a decision about

whether or not to meet with the other. If both want to meet at a particular

time, a meeting will occur. If either does not want to meet, then they do not

meet. If the agents do not meet at a given time, then they produce separately

and also create new knowledge separately. If the two persons do decide to

meet at a given time, then they share older knowledge together and create

new knowledge together.

So consider a given time t. In order to explain how knowledge creation,

knowledge exchange, and commodity production work, it is useful for intuition

(but not technically necessary) to view this time period of �xed length as

consisting of subperiods of �xed length. Each individual is endowed with a

�xed amount of labor that is supplied inelastically during the period. In the

�rst subperiod, individual production takes place. We shall assume constant

returns to scale in physical production, so it is not bene�cial for individuals
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to collaborate in production. Each individual uses their labor during the �rst

subperiod to produce consumption good on their own, whether or not they are

meeting. We shall assume below that although there are no increasing returns

to scale in production, the productivity of a person�s labor depends on their

stock of knowledge. Activity in the second subperiod depends on whether or

not there is a meeting. If there is no meeting, then each person spends the

second subperiod creating new knowledge on their own. Evidently, the new

knowledge created during this subperiod can di¤er between the two persons,

because they are not communicating. They open di¤erent boxes. Since there

is an in�nity of di¤erent boxes, the probability that the two agents will open

the same box (even at di¤erent points in time), either working by themselves

or in distinct meetings, is assumed to be zero. If there is a meeting, then

the second subperiod is divided into two parts. In the �rst part, the two

persons who are meeting spend their time (and labor) sharing old knowledge,

boxes they have opened in previous time periods that the other person has

not opened. In the second part, they create new knowledge together, so they

open boxes together. We wish to emphasize that the division of a time period

into subperiods is purely an expositional device. Rigorously, whether or not

a meeting occurs determines how much attention is devoted to the various

activities at a given time.

What do the agents know when they face the decision about whether or not

to meet at time t? Each person knows both Ki(t) and Kj(t). In other words,

each person is aware of their own knowledge and is also aware of the other�s

knowledge. Thus, they also know ni(t), nj(t), ncij(t) = n
c
ji(t), n

d
ij(t), and n

d
ji(t)

when they decide whether or not to meet at time t. The notation for whether

or not a meeting actually occurs at time t is: �ij(t) � �ji(t) = 1 if a meeting
occurs and �ij(t) � �ji(t) = 0 if no meeting occurs at time t. Meetings only

occur if both persons agree that a meeting should take place.

Next, we must specify the dynamics of the knowledge system and the ob-

jectives of the people in the model in order to determine whether or not they

decide to meet at a particular time. In order to accomplish this, it is easi-

est to abstract away from the notation for speci�c boxes, Ki(t), and to focus

on the dynamics of the quantity statistics related to knowledge, ni(t), nj(t),

ncij(t) = n
c
ji(t), n

d
ij(t), and n

d
ji(t). Since we are treating ideas symmetrically, in

a sense these quantities are su¢ cient statistics for our analysis.

The simplest piece of the model to specify is what happens if there is no

meeting and the two people thus work in isolation. Let ai(t) be the rate of
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creation of new ideas created by person i and let aj(t) be the rate of creation

of new ideas created by j, both at time t. Let bij(t) and bji(t) be the rate of

transfer of ideas from i to j and from j to i, respectively, at time t.2 Then

we assume that the creation of new knowledge during isolation (�ij(t) = 0) is

governed by the following equations:

ai(t) = � � ni(t) and aj(t) = � � nj(t) when �ij(t) = 0. (4)

bij(t) = 0 and bji(t) = 0 when �ij(t) = 0.

So we assume that if there is no meeting at time t, individual knowledge grows

at a rate proportional to the knowledge already acquired by an individual.

Meanwhile, knowledge held commonly by the two persons does not grow. In

particular, ideas are not shared.

If a meeting does occur at time t (�ij(t) = 1), then both knowledge exchange

between the two persons and joint knowledge creation occur. When a meeting

takes place, joint knowledge creation is governed by the following dynamics :3

aij(t) = � � [ncij(t) � ndij(t) � ndji(t)]
1
3 (5)

So when the two people meet, joint knowledge creation occurs at a rate propor-

tional to the normalized product of their knowledge in common, the individual

knowledge of i, and the individual knowledge of j. The rate of creation of new

knowledge is highest when the proportions of ideas in common, ideas exclusive

to person i, and ideas exclusive to person j are split evenly. Ideas in common

are necessary for communication, while ideas exclusive to one person or the

other imply more heterogeneity or originality in the collaboration. If one per-

son in the collaboration does not have exclusive ideas, there is no reason for

the other person to meet and collaborate. The multiplicative nature of the

function in equation (5) drives the relationship between knowledge creation

and the relative proportions of ideas in common and ideas exclusive to one or

the other agent.
2In principle, all of these time-dependent quantities are positive integers. However, for

simplicity we take them to be continuous (in R+) throughout the paper. One interpretation
is that the creation or sharing of an idea occurs at a stochastic time, and the real numbers

are taken to be the probability of a jump in a Poisson process. The justi�cation of the use

of a real number instead of an integer seems to add little but complication to the analysis.
3We may generalize equation (5) as follows:

aij(t) = max
n
(�� ")ni(t); (�� ")nj(t); �

�
ncij(t) � ndij(t) � ndji(t)

� 1
3

o
where " > 0 represents the costs from the lack of concentration. This generalization, however,

does not change the results presented in this paper in any essential way.
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Under these circumstances, no knowledge creation in isolation occurs. Dur-

ing meetings at time t, knowledge transfer occurs in addition to the creation

of new knowledge. Knowledge transfer is governed by the following dynamics:

bij(t) =  � [ndij(t) � ncij(t)]
1
2 (6)

bji(t) =  � [ndji(t) � ncij(t)]
1
2

So when a meeting occurs, knowledge transfer from i to j happens at a rate

proportional to the normalized product of the number of ideas that person i

has but that person j does not have, and the ideas common to both persons.

The explanation is that communication is necessary for knowledge transfer, so

the two persons must have some ideas in common (ncij(t)). But in addition,

person i must have some ideas that are not already possessed by person j

(ndij(t)). The same intuition applies to knowledge transfer in the opposite

direction from j to i, represented by the second equation in (6). The change

in the number of ideas that both persons have in common ( _ncij(t)) is the sum

of knowledge transfers in both directions and the new ideas jointly created.

From person i�s perspective, the number of ideas that i has but j doesn�t have

(ndij(t)) decreases with knowledge transfers from i to j. Finally, the change

in the number of ideas possessed by person i is the sum of the ideas that are

jointly created and the number of ideas transferred from j to i. The analogous

statements hold for the variables associated with j.

Let us focus on agent i (the equations for agent j are analogous). With

a meeting, we have the following dynamics incorporating both knowledge cre-

ation and transfer:

_ni(t) = aij(t) + bji(t)

_ncij(t) = aij(t) + bij(t) + bji(t)

_ndij(t) = �bij(t)

Given this structure, we can de�ne the rates of idea innovation and knowl-

edge transfer at time t, depending on whether or not a meeting occurs.

_ni(t) = [1� �ij(t)] � � � ni(t) +
�ij(t) � (� � [ncij(t) � ndij(t) � ndji(t)]

1
3 +  � [ndji(t) � ncij(t)]

1
2 )

_ncij(t) = �ij(t) � (� � [ncij(t) � ndij(t) � ndji(t)]
1
3 +  � [ndji(t) � ncij(t)]

1
2

+ � [ndij(t) � ncji(t)]
1
2 )

_ndij(t) = [1� �ij(t)] � � � ni(t)� �ij(t) �  � [ndij(t) � ncji(t)]
1
2

8



Whether a meeting occurs or not, there is production in each period for

both persons. Felicity in that time period is de�ned to be the quantity of

output.4 De�ne yi(t) to be production output (or felicity) for person i at time

t, and de�ne yj(t) to be production output (or felicity) of person j at time t.

Normalizing the coe¢ cient of production to be 1, we take

yi(t) = ni(t) (7)

so

_yi(t) = _ni(t)

By de�nition,
_yi(t)

yi(t)
=
_ni(t)

ni(t)
(8)

which represents the rate of growth of income.

Finally, we must de�ne the rule used by each person to decide whether they

want a meeting at time t or not. Formally,

�ij(t) = 1 () (9)

� � [ncij(t) � ndij(t) � ndji(t)]
1
3 +  � [ndji(t) � ncij(t)]

1
2 > � � ni(t) and

� � [ncji(t) � ndji(t) � ndij(t)]
1
3 +  � [ndij(t) � ncji(t)]

1
2 > � � nj(t)

To keep the model tractable in this �rst analysis, we assume a myopic rule. So

a person would like a meeting if and only if the increase in their rate of output

with a meeting is higher than the increase in their rate of output without a

meeting.5 Note that we use the increase in the rate of output rather than the

rate of output since in a continuous time model, the rate of output at time t

is una¤ected by the decision about whether to meet made at time t.

This completes the statement of the model. Dropping the time dependence

of variables to analyze dynamics, we obtain the following equations of motion.

_yi = _ni = [1� �ij] � � � ni + (10)

�ij � (� � [ncij � ndij � ndji]
1
3 +  � [ndji � ncij]

1
2 )

_ncij = �ij � (� � [ncij � ndij � ndji]
1
3 +  � [ndji � ncij]

1
2 +  � [ndij � ncji]

1
2 )

_ndij = [1� �ij] � � � ni � �ij �  � [ndij � ncji]
1
2

This system, with analogous equations for agent j, represents a partner dance.

4Given that the focus of this paper is on knowledge creation and transfer rather than

production, we use the simplest possible form for the production function.
5We will see that the rule used in the case of ties is not important.
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3 Equilibrium Dynamics

In order to analyze our system, we �rst divide all of our equations by the total

number of ideas possessed by i and j:

nij = ndij + n
d
ji + n

c
ij (11)

and de�ne new variables

mc
ij � mc

ji =
ncij
nij

=
ncji
nij

md
ij =

ndij
nij
, md

ji =
ndji
nij

From (11), we obtain

1 = md
ij +m

d
ji +m

c
ij (12)

After some detailed calculations (see Appendix a of the technical appendix

for all of the steps), we obtain _md
ij and _md

ji as functions of m
d
ij and m

d
ji only,

as follows.

_md
ij = [1� �ij] � � � f(1�md

ij)(1�md
ij �md

ji)g (13)

��ij � f � [md
ij � (1�md

ij �md
ji)]

1
2 +md

ij � � � [(1�md
ij �md

ji) �md
ij �md

ji]
1
3g

_md
ji = [1� �ij] � � � f(1�md

ji)(1�md
ij �md

ji)g
��ij � f � [md

ji � (1�md
ij �md

ji)]
1
2 +md

ji � � � [(1�md
ij �md

ji) �md
ji �md

ij]
1
3g

To study this more, we must study (9) further. Deleting time indices and

dividing by nij,

�ij = 1 ()
� � [mc

ij �md
ij �md

ji]
1
3 +  � [md

ji �mc
ij]

1
2 > � � (1�md

ji)

and � � [mc
ij �md

ji �md
ij]

1
3 +  � [md

ij �mc
ij]

1
2 > � � (1�md

ij)

Substituting further,

�ij = 1 ()
� � [(1�md

ji �md
ij) �md

ij �md
ji]

1
3 +  � [md

ji � (1�md
ji �md

ij)]
1
2 > � � (1�md

ji)

and � � [(1�md
ji�md

ij) �md
ji �md

ij]
1
3 + � [md

ij � (1�md
ji�md

ij)]
1
2 > � � (1�md

ij)
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In other words, meetings occur when the rate of growth of income or utility of

each person is higher with a meeting than without a meeting.

De�ne

Fi(m
d
ij;m

d
ji) = � � [(1�md

ji �md
ij) �md

ij �md
ji]

1
3 + (14)

 � [md
ji � (1�md

ji �md
ij)]

1
2 � � � (1�md

ji)

Fj(m
d
ij;m

d
ji) = � � [(1�md

ji �md
ij) �md

ji �md
ij]

1
3 +

 � [md
ij � (1�md

ji �md
ij)]

1
2 � � � (1�md

ij)

and

Mi = f(md
ij;m

d
ji) 2 R2+ j md

ij +m
d
ji � 1, Fi(md

ij;m
d
ji) > 0g (15)

Mj = f(md
ij;m

d
ji) 2 R2+ j md

ij +m
d
ji � 1, Fj(md

ij;m
d
ji) > 0g (16)

whereas

M =Mi \Mj

The function Fi(md
ij;m

d
ji) represents the net bene�t for i of meeting instead

of isolation. Likewise for Fj(md
ij;m

d
ji). The set Mi represents those pairs

(md
ij;m

d
ji) such that i wants to meet with j, since for these pairs, the rate of

growth of i�s utility or income with a meeting is higher than the rate of growth

of i�s utility or income without a meeting. The set Mj represents those pairs

(md
ij;m

d
ji) such that j wants to meet with i. Of course, the set M represents

those pairs (md
ij;m

d
ji) such that both persons want to meet with each other.

Thus, meetings will occur at time t for pairs in M .

We represent our model in our Figures as a function of md
ij and m

d
ji; since

md
ij + m

d
ji + m

c
ij = 1, we know that 1 � mc

ij = md
ij +m

d
ji � 1, where this

inequality is represented by half of the unit square (a triangle) in R2. We put
md
ij on the horizontal axis and m

d
ji on the vertical axis, omitting m

c.

Figure 1, panels (a) and (b) illustrate the sets Mi and Mj, respectively,

for � =  = 1 and for various values of �. Of course, panels (a) and (b) are

mirror images of each other across the 45� line. Figure 2 illustrates M , the

set of pairs where both persons want to meet, and its complement, where no

meetings occur, for the same parameter values. When (md
ij;m

d
ji) is close to the

boundary of the triangle, meetings do not occur. The reason is that the two

persons have too little in common to interact e¤ectively (near the downward

sloping diagonal) or someone has too little exclusive knowledge (near the axes)

to interact e¤ectively. Meetings only take place in the interior where the three

components of knowledge are relatively balanced.

FIGURES 1 AND 2 GO HERE
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In fact we can describe the properties of the set M in general. The set M

has the shape depicted in Figure 2; see Appendix b of the technical appendix

for proof. In particular,M is roughly the shape of an apple core aligned on the

45� line. As � increases, the productivity of creating ideas alone increases, so

people are less likely to want to meet to create, implying that eachMi andMj

shrinks as � increases, as does M . If � is a little more than 1, M disappears.

To be precise, let M(�) be the set M under the parameter value �. Then,

whenever �1 < �2, the set M(�2) is entirely contained in M(�1). Thus, as

shown in Figure 2, there is a unique point B contained in everyM(�), provided

M(�) is nonempty. We call B the bliss point, for the point B in Figure 2 is

the point where the rate of increase in income or utility is maximized for each

person, as we will explain in the next section (see also Lemma A6 in Appendix

c of the technical appendix).

Next we discuss the dynamics of the system. Consider �rst the case where

there is no meeting, so �ij = 0 is �xed exogenously. Then from equations (13),

the dynamics are given by the following equations:

_md
ij = � � (1�md

ij)(1�md
ij �md

ji)

_md
ji = � � (1�md

ji)(1�md
ij �md

ji)

FIGURE 3 GOES HERE

Figure 3, panel (a) illustrates the gradient �eld assuming that �ij = 0.

Several facts follow quickly from these derivations. First, if there is no meeting

(�ij = 0), then both _md
ij and _m

d
ji are non-negative, and positive on the interior

of the triangle. So if there is no meeting, the vector �eld points to the northeast.

Furthermore, in the lower half of the triangle where md
ij � md

ji (the other part

is symmetric), we have
_md
ji

_md
ij

=
1�md

ji

1�md
ij

� 1

where the inequality is strict o¤ of the diagonal. Thus, when �ij = 0, the

vector �eld points northeast but toward the diagonal. Under the assumption

of no meeting, the system tends to sink points along the diagonal line where

md
ij +m

d
ji = 1, illustrated in Figure 3, panel (a) by a line between (0; 1) and

(1; 0).

Figure 3, panel (b) illustrates the gradient �eld assuming that �ij = 1.

Then (13) implies:

12



_md
ij = � � [md

ij � (1�md
ij �md

ji)]
1
2 +md

ij � � � [(1�md
ij �md

ji) �md
ij �md

ji]
1
3

_md
ji = � � [md

ji � (1�md
ij �md

ji)]
1
2 +md

ji � � � [(1�md
ij �md

ji) �md
ji �md

ij]
1
3

(17)

Both of these expressions are negative on the interior of the triangle and the

vector �eld points southwest. Consider, for convenience, the lower half of the

triangle where md
ij � md

ji; the other part is symmetric. Then

_md
ji

_md
ij

=
 � [md

ji � (1�md
ij �md

ji)]
1
2 +md

ji � � � [(1�md
ij �md

ji) �md
ji �md

ij]
1
3

 � [md
ij � (1�md

ij �md
ji)]

1
2 +md

ij � � � [(1�md
ij �md

ji) �md
ij �md

ji]
1
3

� 1

where the inequality is strict o¤ of the diagonal. Thus, the vector �eld points

southwest but toward the diagonal, as illustrated in Figure 3, panel (b). The

only sink is at (0; 0), so the system eventually moves there under the assump-

tion of a meeting.

Next, we combine the case where there is no meeting (�ij = 0) with the

case where there is a meeting (�ij = 1), and let the agents choose whether or

not to meet. This is illustrated in Figure 4.

FIGURE 4 GOES HERE

The model follows the dynamics for meetings (�ij = 1) on M and the

dynamics for no meetings (�ij = 0) on the complement of M .

In general, there is a continuum of stable points of the system, correspond-

ing to the points where md
ij +m

d
ji = 1. For these points, eventually the myopic

return to no meeting dominates the returns to meetings, since eventually the

two persons have almost nothing in common. These stable points, however,

are not very interesting.

We have not completely speci�ed the dynamics. This is especially impor-

tant on the boundary of M , where at least one person is indi¤erent between

meeting and not meeting. We take an arbitrarily small unit of time, �t, and

assume that if at least one person becomes indi¤erent between meeting and

not meeting, but the two persons are currently meeting, then the meeting must

continue for at least �t units of time. Similarly, if the two persons are not

meeting when one person becomes indi¤erent between meeting and not meet-

ing while the other wants to meet or is indi¤erent, then they cannot meet for

at least �t units of time. So if a person becomes indi¤erent between meeting

13



or not meeting at time t, the function �ij(t) cannot change its value until time

t+�t. Finally, when at least one person initially happens to be on the bound-

ary of M (that is, at least one person is indi¤erent between meeting and not

meeting), then they cannot meet for at least �t units of time. Under this set

of rules, we can be more speci�c about the dynamic process near the boundary

of M .

In terms of dynamics, if the system does not evolve toward the uninteresting

stable points where there are no meetings (and the two people have nothing in

common), eventually the system reaches the southwest boundary of the setM .

From there, the assumption that �ij is constant over time intervals of at least

length�t at the boundary ofM will drive the system in a zigzag process toward

the place furthest to the southwest and on the diagonal that is a member of

M . In other words, this is the point J = (md;md) 2 M with lowest norm. It

is the remaining stable point of our model. Small movements around J will

continue due to our assumption about the dynamics at the boundary of M ,

namely that meetings or isolation are sticky. As �t! 0, the process converges

to the point J . The point J features symmetry between the two agents with a

large degree of homogeneity relative to the remainder of the points in M and

the other points in the triangle generally.

So given various initial compositions of knowledge (md
ij;m

d
ji), where will the

system end up? If the initial composition of knowledge is relatively unbalanced,

in other words near the boundary of the triangle, the sink will be a point on

the diagonal where md
ij +m

d
ji = 1. If the initial composition of knowledge is

relatively balanced, then the sink will be the point J .

Using the facts about the shape of M , the point J exists and is unique as

long as M 6= ;.
At the point J = (mJ ;mJ), mJ � 2

5
, for reasons explained in the next

section.

Without loss of generality, we can allow �ij to take values in [0; 1] rather

than f0; 1g. The interpretation of a fractional �ij is that at each instant of
time, a person divides their time between a meeting �ij proportion of that

instant and isolation (1 � �ij) proportion of that instant. All of our results
concerning the model when �ij is restricted to f0; 1g carry over to the case
where �ij 2 [0; 1]. The reason is that except on the boundary of M , persons
strictly prefer �ij 2 f0; 1g to fractional values of �ij, as each person�s objective
function is linear in �ij. On the boundary of M , our rule concerning dynamics

prevents �ij from taking on fractional values, as it must retain its value from

14



the previous iteration of the process for at least time �t > 0. So if the process

pierces the boundary from inside M , it must retain �ij = 1 for an additional

time of at least �t. If it pierces the boundary from outside M , it must retain

�ij = 0 for an additional time of at least �t. It may seem trivial to allow

fractional �ij when discussing equilibrium behavior, but allowing fractional �ij
is crucial to the next section, where we consider e¢ ciency.

4 E¢ ciency

To construct an analog of Pareto e¢ ciency in this model, we use a social

planner who can choose whether or not people should meet in each time period.

As noted above, we shall allow the social planner to choose values of �ij in [0; 1],

so that persons can be required to meet for a percentage of the total time in a

period, and not meet for the remainder of the period. To avoid dependence of

our notion of e¢ ciency on a discount rate, we employ the following alternative

concepts. The �rst is stronger than the second. A path of �ij is a piecewise

continuous function of time (on [0;1)) taking values in [0; 1]. For each path
of �ij, there corresponds a unique time path of md

ij determined by equation

(13), respecting the initial condition, and thus a unique time path of income

yi(t; �ij). We say that a path �
0
ij (strictly) dominates a path �ij if

yi(t; �
0
ij) � yi(t; �ij) and yj(t; �0ij) � yj(t; �ij) for all t � 0

with strict inequality for at least one over a positive interval of time. As this

concept is quite strong, and thus di¢ cult to use as an e¢ ciency criterion, it

will sometimes be necessary to employ a weaker concept, which we discuss

next. We say that a path �ij is overtaken by a path �
0
ij if there exists a t

0 such

that

yi(t; �
0
ij) � yi(t; �ij) and yj(t; �0ij) � yj(t; �ij) for all t > t0

with strict inequality for at least one over a positive interval of time.

Two types of sink points were analyzed in the last section. First consider

equilibrium paths that have mJ as the sink point; they reach mJ in �nite time

and stay there. Using Figure 5, we will construct an alternative path �0ij that

dominates the equilibrium path �ij.

FIGURE 5 GOES HERE
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In constructing this path, we will make use of income changes along the

upward sloping diagonal in Figure 4. Setting

md
ij = md

ji = m (18)

yi = yj = y

we use (10) and (11) to obtain

_y(t)

y(t)
=

_y(t)

ni(t)
=

_y(t)

n(t)[1�m(t)] (19)

= [1� �ij(t)] � �+ �ij(t) � f� � [(1�
m(t)

1�m(t)) � (
m(t)

1�m(t))
2]

1
3

+ � [(1� m(t)

1�m(t)) � (
m(t)

1�m(t))]
1
2 )g

To simplify notation, we de�ne the growth rate when the two persons meet,

�ij = 1, as

g(m) = � � [(1� m

1�m) � (
m

1�m)
2]

1
3 (20)

+ � [(1� m

1�m) � (
m

1�m)]
1
2 )

Thus
_y(t)

y(t)
= [1� �ij] � �+ �ij � g(m) (21)

Figure 5 illustrates the graph of the function g(m) as a bold line for � =

 = 1. We can show6 that g(m) is strictly quasi-concave on [0; 1
2
], achieving

its maximal value at mB 2 [1
3
; 2
5
]. We can also show (see Lemma A6 of the

technical appendix) that m = mB corresponds to the bliss point B in Figure

2. In other words, whenever M 6= ;, B = (mB;mB) 2 M , so the point

J = (mJ ;mJ) de�ned in Figure 4 and in the previous section has the property

that mJ � 2=5, as it is de�ned to be the point in M on the diagonal and

closest to the origin. We de�ne the point I = (mI ;mI) in Figure 4 to be the

point in M on the diagonal and farthest from the origin.

Let t0 be the time at which the equilibrium path reaches (mJ ;mJ). Let the

planner set �0ij(t) = �ij(t) for t � t0, taking the same path as the equilibrium
path until t0. From this time on, the planner uses only symmetric points,

namely those on the upward sloping diagonal in Figure 4; these points comprise

the horizontal axis in Figure 5. At time t0, the planner takes �0ij(t) = 0 until

6See Lemma A6 of the technical appendix.
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(mI ;mI) is attained, prohibiting meetings so that the dancers can pro�t from

ideas created in isolation. Then the planner sets �0ij(t) = 1 until (mJ ;mJ)

is attained, permitting meetings and the development of more knowledge in

common. The last two phases are repeated as necessary.

From Figure 5, the income paths yi(t; �
0
ij) and yj(t; �

0
ij) generated by the

path �0ij clearly dominate the income paths yi(t; �ij) and yj(t; �ij)generated by

the equilibrium path �ij. Thus, the equilibrium is far from the most productive

path.

Next consider equilibrium paths �ij(t) that end in sink points on the down-

ward sloping diagonal in Figure 4. Our dominance criterion cannot be used in

this situation, since in potentially dominating plans, the planner will need to

force the couple to meet outside of regionM in Figure 4 in early time periods.

During this time interval, the dancers could do better by not meeting, and thus

a comparison of the income derived from the paths would rely on the discount

rate, something we are trying to avoid. So we will use our weaker criterion

here, that of overtaking.

Given an equilibrium path �ij(t) with sink point on the diagonal, the plan-

ner can construct an overtaking path �0ij(t) as follows. The �rst phase is to

construct a path �0ij(t) that reaches a point in region M in �nite time. Such a

path can readily be constructed using Figures 3 and 4.7 After reaching region

M , the second and third phases are the same as described above for the con-

struction of a path that dominates one ending with mJ . Since the paths with

sinks on the downward sloping diagonal have income growth � at every time,

whereas the new path �0ij(t) features income growth that exceeds � whenever

the couple is meeting, �0ij(t) overtakes �ij(t).

The most productive state mB is characterized by less homogeneity than

the stable point mJ . Of course, attaining mB requires the social planner to

force the two persons not to meet some of the time. Otherwise, the system

evolves toward more homogeneity.

7Such a path can be constructed as follows. In Figure 2 or Figure 4, take the union of

all closed, one dimensional intervals parallel to the 45� line with one endpoint on an axis

and the other endpoint a member of M . Call this set M 0. From time 0, take � = 1. Using

Figure 3(b), the path hits M 0 in �nite time. From this time on, take � = 0. Using Figure

3(a), the path hits M in �nite time.

17



5 Conjectures and Conclusions

We have considered a model of knowledge creation and exchange that is based

on individual behavior, allowing myopic agents to decide whether joint or

individual production is best for them at any given time. This is a pure

externality model of knowledge creation, with no markets.

In the present context of two people, there are a continuum of sink points

(equilibria) for the knowledge accumulation process. Every state where the

two agents have a negligible proportion of ideas in common is attainable as

an equilibrium for some initial condition. There is one additional and more

interesting sink, involving a large degree of homogeneity as well as symmetry

of the two agents, and this is attainable from a non-negligible set of initial

conditions. Relative to the e¢ cient state, the �rst set of sink points has

agents that are too heterogeneous, while the second sink point has agents that

are too homogeneous.8

Of course, the major limitation of this work is the use of only two people.

In other work, we employ more agents, but at a cost, namely the absence of

knowledge transfer while limiting ourselves to symmetric states.

Here we discuss the many alternate directions for future work and exten-

sions of the framework. Chief among these are the introduction of foresight on

the part of agents, the introduction of stochastic elements into the model, and

the introduction of side payments. Though the two person model is limited,

extensions of the basic framework are much easier. It is apparent from the

analysis in section 3 that limited foresight, in the form of short sightedness

instead of perfect myopia, will not be enough to overturn our results. In or-

der to completely overturn the results of section 2, the agents must have long

range foresight. In this case, they can construct more e¢ cient paths as in

section 3. Moreover, long range foresight in combination with side payments

could produce tutelage when the initial state is asymmetric. When the person

with more knowledge is willing to accept payment for teaching, the equilibrium

paths can look very di¤erent from what we have proposed.

In the international context, where each country is often represented by one

agent, our model might be applicable. Two countries or two regions would

be assigned representative agents. In that context, knowledge creation and

transfer, especially as related to developed and developing countries, would be

of interest. Analogs of the transfer paradox would be quite fascinating.9

8The proximate cause is agent myopia.
9We refer to our companion paper, Berliant and Fujita (2006), for further discussion of
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6 Technical Appendix

6.1 Appendix a

Theorem A1: Knowledge dynamics evolve according to the system:

_md
ij = [1� �ij] � � � f(1�md

ij)(1�md
ij �md

ji)g
��ij � f � [md

ij � (1�md
ij �md

ji)]
1
2 +md

ij � � � [(1�md
ij �md

ji) �md
ij �md

ji]
1
3g

_md
ji = [1� �ji] � � � f(1�md

ji)(1�md
ij �md

ji)g
��ji � f � [md

ji � (1�md
ij �md

ji)]
1
2 +md

ji � � � [(1�md
ij �md

ji) �md
ji �md

ij]
1
3g

Proof of Theorem A1: Recalling (3),

md
ij +m

c = 1�md
ji
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and dividing by nij yields

_yi
nij

=
_ni
nij

= [1� �ij] � � � (1�md
ji) +

�ij � (� � [mc �md
ij �md

ji]
1
3 +  � [md

ji �mc]
1
2 )

_ncij
nij

= �ij � (� � [mc �md
ij �md

ji]
1
3 +  � [md

ji �mc]
1
2

+ � [md
ij �mc]

1
2 )

_ndij
nij

= [1� �ij] � � � (1�md
ji)� �ij �  � [md

ij �mc]
1
2

Substituting (12) for mc,

_yi
nij

=
_ni
nij

= [1� �ij] � � � (1�md
ji) +

�ij � (� � [(1�md
ij �md

ji) �md
ij �md

ji]
1
3 +  � [md

ji � (1�md
ij �md

ji)]
1
2 )

_ncij
nij

= �ij � (� � [(1�md
ij �md

ji) �md
ij �md

ji]
1
3 +  � [md

ji � (1�md
ij �md

ji)]
1
2

+ � [md
ij � (1�md

ij �md
ji)]

1
2 )

_ndij
nij

= [1� �ij] � � � (1�md
ji)� �ij �  � [md

ij � (1�md
ij �md

ji)]
1
2
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Now

_md
ij =

d(ndij=n
ij)

dt

=
_ndij
nij

�
ndij � _nij

(nij)2

=
_ndij
nij

�
ndij
nij

� _n
ij

nij

= [1� �ij] � � � (1�md
ji)� �ij �  � [md

ij � (1�md
ij �md

ji)]
1
2 �md

ij � (
_ndij
n
+
_ndji
n
+
_ncij
n
)

= [1� �ij] � � � (1�md
ji)� �ij �  � [md

ij � (1�md
ij �md

ji)]
1
2

�md
ij � f[1� �ij] � � � (1�md

ji)� �ij �  � [md
ij � (1�md

ij �md
ji)]

1
2 + [1� �ij] � � � (1�md

ij)

��ij �  � [md
ji � (1�md

ij �md
ji)]

1
2 + �ij � (� � [(1�md

ij �md
ji) �md

ij �md
ji]

1
3

+ � [md
ji � (1�md

ij �md
ji)]

1
2 +  � [md

ij � (1�md
ij �md

ji)]
1
2 )g

= [1� �ij] � � � (1�md
ji)� �ij �  � [md

ij � (1�md
ij �md

ji)]
1
2

�md
ij � f[1� �ij] � � � (1�md

ji) + [1� �ij] � � � (1�md
ij)

+�ij � � � [(1�md
ij �md

ji) �md
ij �md

ji]
1
3g

= [1� �ij] � � � f1�md
ji � 2md

ij + (m
d
ij)
2 +md

ij �md
jig

��ij � f � [md
ij � (1�md

ij �md
ji)]

1
2 +md

ij � � � [(1�md
ij �md

ji) �md
ij �md

ji]
1
3g

= [1� �ij] � � � f(1�md
ij)(1�md

ji)�md
ij + (m

d
ij)
2g

��ij � f � [md
ij � (1�md

ij �md
ji)]

1
2 +md

ij � � � [(1�md
ij �md

ji) �md
ij �md

ji]
1
3g

= [1� �ij] � � � f(1�md
ij)(1�md

ji)�md
ij(1�md

ij)g
��ij � f � [md

ij � (1�md
ij �md

ji)]
1
2 +md

ij � � � [(1�md
ij �md

ji) �md
ij �md

ji]
1
3g

= [1� �ij] � � � f(1�md
ij)(1�md

ji �md
ij)g

��ij � f � [md
ij � (1�md

ij �md
ji)]

1
2 +md

ij � � � [(1�md
ij �md

ji) �md
ij �md

ji]
1
3g

The fourth line follows from (11), that implies

_nij

nij
=
_ndij
nij

+
_ndji
nij

+
_ncij
nij

(22)

Symmetric calculations hold for _md
ji. �

6.2 Appendix b

Theorem A2: Suppose that (md
ij;m

d
ji) 2 M . Then (md

ji;m
d
ij) 2 M and

the line segment [(md
ij;m

d
ji); (m

d
ji;m

d
ij)] �M . In particular, if M 6= ;, then it

contains a point on the diagonal segment [(0; 0); (1; 1)]. Moreover, the diagonal

intersected with M is a convex set. In fact, every line parallel to the diagonal
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intersected with M is a convex set. Finally, every point in M \ ((0; 0); (1; 1))
has a neighborhood contained in M .

To prove Theorem A2, we proceed with a sequence of lemmata. First we

need some de�nitions to make notation easier.

De�nitions:

f(m;m0) = � � [(1�m�m0) �m �m0]
1
3

h(m;m0) =  � [(1�m�m0) �m0]
1
2

With these de�nitions, the equations de�ningMi (15) andMj (16) become:

f(md
ij;m

d
ji) + h(m

d
ij;m

d
ji)� � � (1�md

ji) > 0 (23)

f(md
ji;m

d
ij) + h(m

d
ji;m

d
ij)� � � (1�md

ij) > 0 (24)

Lemma A1: (md
ij;m

d
ji) 2 Mi and md

ij � md
ji imply (m

d
ji;m

d
ij) 2 Mi.

(md
ij;m

d
ji) 2Mj and md

ij � md
ji imply (m

d
ji;m

d
ij) 2Mj.

Proof of Lemma A1: f(md
ij;m

d
ji) = f(m

d
ji;m

d
ij).

h(md
ji;m

d
ij)

h(md
ij ;m

d
ji)
= [

md
ij

md
ji
]
1
2 � 1,

since md
ij � md

ji. (m
d
ij;m

d
ji) 2 Mi implies f(md

ij;m
d
ji) + h(m

d
ij;m

d
ji) � �(1 �

md
ji) > 0. Since h(md

ji;m
d
ij) � h(md

ij;m
d
ji) and m

d
ij � md

ji, f(m
d
ji;m

d
ij) +

h(md
ji;m

d
ij)� �(1�md

ij) > 0. Hence, (m
d
ji;m

d
ij) 2Mi. A symmetric argument

works for the second part of the lemma. �
Lemma A2: Suppose that md

ij � md
ji. Then (m

d
ij;m

d
ji) 2M if and only if

(md
ij;m

d
ji) 2Mi.

Proof of Lemma A2: It is obvious that (md
ij;m

d
ji) 2M implies (md

ij;m
d
ji) 2

Mi. So suppose that (md
ij;m

d
ji) 2 Mi. Then by symmetry of the de�ni-

tions of Mi and Mj, (md
ji;m

d
ij) 2 Mj. By Lemma A1, (md

ji;m
d
ij) 2 Mi.

Applying symmetry of the de�nitions again yields (md
ij;m

d
ji) 2 Mj. Hence

(md
ij;m

d
ji) 2Mj \Mi =M . �

Lemma A3: Suppose that (md
ij;m

d
ji) 2 M . Then (md

ji;m
d
ij) 2 M and

the line segment [(md
ij;m

d
ji); (m

d
ji;m

d
ij)] �M . In particular, if M 6= ;, then it

contains a point on the diagonal segment [(0; 0); (1; 1)].

Proof of Lemma A3: First, if (md
ij;m

d
ji) 2 M , then (md

ji;m
d
ij) 2 M

by symmetry of the de�nitions of Mi and Mj. Now consider the line seg-

ment [(md
ij;m

d
ji); (m

d
ji;m

d
ij)]. In particular, consider the case m

d
ij � md

ji and

the line segment between (md
ij;m

d
ji) and the point (m;m) on the diagonal,

[(md
ij;m

d
ji); (m;m)] � [(md

ij;m
d
ji); (m

d
ji;m

d
ij)] (the line segment [(m;m); (m

d
ji;m

d
ij)]

can be covered with a symmetric argument). Since for all (bmd
ij; bmd

ji) 2 [(md
ij;m

d
ji); (m;m)],
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bmd
ij � bmd

ji, by Lemma A2 it su¢ ces to show that (bmd
ij; bmd

ji) 2 Mi. We must

verify the equation stating that (bmd
ij; bmd

ji) 2Mi, namely

f(bmd
ij; bmd

ji) + h(bmd
ij; bmd

ji)� � � (1� bmd
ji) > 0 (25)

Now for all (bmd
ij; bmd

ji) 2 [(md
ij;m

d
ji); (m;m)], there exists an x � 0 with bmd

ij =

md
ij � x � md

ji + x = bmd
ji, since the line segment lies below the diagonal. Now

f(md
ij � x;md

ji + x)� f(md
ij;m

d
ji)

= � � [(1�md
ji �md

ij) � (md
ij � x) � (md

ji + x)]
1
3 � � � [(1�md

ji �md
ij) � (md

ij) � (md
ji)]

1
3

= � � [(1�md
ji �md

ij) � (md
ij) � (md

ji) + (1�md
ji �md

ij) � x � (md
ij �md

ji � x)]
1
3

�� � [(1�md
ji �md

ij) � (md
ij) � (md

ji)]
1
3

� � � [(1�md
ji �md

ij) � (md
ij) � (md

ji) + (1�md
ji �md

ij) � x2]
1
3

�� � [(1�md
ji �md

ij) � (md
ij) � (md

ji)]
1
3

� 0

h(md
ij � x;md

ji + x)� h(md
ij;m

d
ji)

=  � [(md
ji + x) � (1�md

ji �md
ij)]

1
2 �  � [md

ji � (1�md
ji �md

ij)]
1
2 � 0

Finally,

� � (1�md
ji � x) � � � (1�md

ji)

Hence,

f(bmd
ij; bmd

ji) + h(bmd
ij; bmd

ji)� � � (1� bmd
ji)

= f(md
ij � x;md

ji + x) + h(m
d
ij � x;md

ji + x)� � � (1�md
ji � x)

� f(md
ij;m

d
ji) + h(m

d
ij;m

d
ji)� � � (1�md

ji) > 0

The last line follows because (md
ij;m

d
ji) 2M . �

Lemma A4: For any constant a 2 (�1; 1) the intersection of the set M
and the line f(md

ij;m
d
ji) 2 R2+ j md

ij +m
d
ji � 1, md

ji = m
d
ij � ag is a convex set.

Proof of Lemma A4: SinceM is symmetric with respect to the diagonal

md
ij = m

d
ji, let us consider a � 0. Setting md

ji = m
d
ij � a in (14), de�ne

k(md
ij) � Fi(m

d
ij;m

d
ij � a)

= �
�
(1 + a� 2md

ij)m
d
ij(m

d
ij � a)

�1=3
+
�
(1 + a� 2md

ij)(m
d
ij � a)

�1=2 � �(1 + a�md
ij)

Since md
ji = md

ij � a � 0 and 1 � md
ij + m

d
ji = 2md

ij � a, the domain of the
function k is

a � md
ij �

1 + a

2
where 0 � a < 1
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By Lemma A2, the intersection of the set M and the line md
ji = m

d
ij � a is the

set of points satisfying

k(md
ij) > 0:

We show that function k(md
ij) is strictly concave on (a;

1+a
2
), and thus the set

of points satisfying the inequality is convex. Di¤erentiation of the function k

yields

k0(md
ij) = A(m

d
ij) +B(m

d
ij) + �

where

A(md
ij) �

�

3

�
(1 + a� 2md

ij)m
d
ij(m

d
ij � a)

��2=3 ��6(md
ij)
2 + 2md

ij(1 + 3a)� a(1 + a)
�

B(md
ij) �



2

�
(1 + a� 2md

ij)(m
d
ij � a)

��1=2
(1 + 3a� 4md

ij)

The second derivative of k is

k00(md
ij) = A

0(md
ij) +B

0(md
ij)

where

A0(md
ij) = �

2�
�
(md

ij)
2(1 + 3a2)� a(1 + a)(1 + 3a)md

ij + a
2(1 + a)2

	
9
�
(1 + a� 2md

ij)m
d
ij(m

d
ij � a)

�5=3
= �

2�

�h
md
ij(1 + 3a

2)� a(1+a)(1+3a)
2

i2
+ 3a2(1+a)2(1�a)2

4

�
9
�
(1 + a� 2md

ij)m
d
ij(m

d
ij � a)

�5=3
(1 + 3a2)

B0(md
ij) = �

(1� a)2

4
�
(1 + a� 2md

ij)(m
d
ij � a)

�3=2
implying that k00(md

ij) = A0(md
ij) + B

0(md
ij) < 0 on (a; 1+a

2
), so k is strictly

concave on (a; 1+a
2
). Thus, fmd

ij 2 (a; 1+a2 ) j k(m
d
ij) > 0g is convex, and the

proof of the lemma is complete.�
Lemma A5: Every point in M \ ((0; 0); (1; 1)) has a neighborhood con-

tained in M .

Proof of Lemma A5: This follows directly from the de�nition of M ; it

implies that M is an open set.�
Theorem A2 follows directly from the combination of all of the Lemmata

in this section.
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6.3 Appendix c

Lemma A6: The function g(m) de�ned by (20) has the following properties:
(i) g(m) is strictly quasi-concave on

�
0; 1

2

�
.

(ii) g(m) achieves its maximal value at mB 2 [1
3
; 2
5
].

(iii) The point (mB;mB) corresponds to the bliss point B in Figure 2, which

is the unique point contained in every M that is nonempty.

Proof of Lemma A6: (i) and (ii): For m 2
�
0; 1

2

�
, let

x(m) � m

1�m or m(x) =
x

1 + x

and de�ne

G(x) � �
�
(1� x)x2

�1=3
+  [(1� x)x]1=2 for x 2 [0; 1] (26)

Then, using de�nition (20)

g(m) = G(x(m))

Hence,

g0(m) = G0(x(m)) � x0(m)

Notice that

x0(m) = 1 +
m

(1�m)2 > 0

so

g0(m) R 0 exactly as G0(x(m)) R 0.

Now

G0(x) = C(x) +D(x)

where
C(x) � �

3
[(1� x)x2]�2=3 (2� 3x)x

D(x) � 
2
[(1� x)x]�1=2 (1� 2x)

Taking the derivatives of C and D respectively yields

C 0(x) = �2�
9
(1� x)�5=3x�4=3 < 0

D0(x) = �
4
(1� x)�3=2x�3=2 < 0

Therefore, considering that

C(x) R 0 as x Q 2=3
D(x) R 0 as x Q 1=2
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we can conclude that there exists a unique x� 2 [1=2; 2=3] such that

G0(x) R 0 as x Q x�

meaning that G is strictly single peaked and strictly quasi-concave, achieving

its maximum value exactly at x�. Hence, the function g(m) also is strictly

single peaked and strictly quasi-concave, achieving its maximum value at

mB � m(x�) = x�

1 + x�
2 [1=3; 2=5]

(iii) To show that the point (mB;mB) corresponds to the bliss point B in

Figure 2, let us recall how the bliss point has been de�ned. Let M(�) be the

set M under the parameter value � > 0. Then, a point (�md
ij;
�md

ji) 2 R2 is
called a bliss point if it holds that for any � > 0,

M (�) 6= ; =) (�md
ij;
�md

ji) 2M (�) (27)

To show the existence and the uniqueness of such a point, since M(�) is

symmetric to the diagonal, let us focus on the lower half of M(�), and de�ne

ML(�) =
�
(md

ij;m
d
ji) 2M(�) j md

ij � md
ji

	
Then, by Lemma A2, ML(�) coincides with the lower part of Mi associated

with �:

ML(�) =
�
(md

ij;m
d
ji) 2Mi(�) j md

ij � md
ji

	
= f(md

ij;m
d
ji) 2 R2 j md

ij � md
ji � 0;md

ij +m
d
ji � 1;

f(md
ij;m

d
ji) + h(m

d
ij;m

d
ji)� �(1�md

ji) > 0g

When md
ij + m

d
ji = 1 or md

ji = 0, we have f(md
ij;m

d
ji) = h(md

ij;m
d
ji) = 0,

implying that ML(�) does not contain any point (md
ij;m

d
ji) such that m

d
ij +

md
ji = 1 or m

d
ji = 0. Thus, we can rewrite M

L(�) as follows:

ML(�) =
n
(md

ij;m
d
ji) 2 R2 j md

ij � md
ji > 0;m

d
ij +m

d
ji < 1;

f(md
ij ;m

d
ji)

1�md
ji

+
h(md

ij ;m
d
ji)

1�md
ji

> �
o

= f(md
ij;m

d
ji) 2 R2 j md

ij � md
ji > 0;m

d
ij +m

d
ji < 1;

�
h�
1� md

ij

1�md
ji

�
md
ij

1�md
ji

md
ji

1�md
ji

i1=3
+ 

h�
1� md

ij

1�md
ji

�
md
ji

1�md
ji

i1=2
> �g

(28)

Given any (md
ij;m

d
ji) 2ML(�) such that md

ij > m
d
ji, de�ne

m �
md
ij +m

d
ji

2
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Then, md
ij > m > md

ji, and (m;m) 2ML(�) by Lemma A3. Furthermore,�
1� m

1�m

��
m

1�m

�2
�
 
1�

md
ij

1�md
ji

!
md
ij

1�md
ji

md
ji

1�md
ji

=
(1�md

ij �md
ji)m

2

(1�m)3 �
(1�md

ij �md
ji)m

d
ijm

d
ji

(1�md
ji)
3

>
(1�md

ij �md
ji)

(1�md
ji)
3

(m2 �md
ijm

d
ji)

=
(1�md

ij �md
ji)

(1�md
ji)
3

(md
ij �md

ji)
2

4
> 0

Likewise, �
1� m

1�m

�
m

1�m �
 
1�

md
ij

1�md
ji

!
md
ji

1�md
ji

=
(1�md

ij �md
ji)m

(1�m)2 �
(1�md

ij �md
ji)m

d
ji

(1�md
ji)
2

>
(1�md

ij �md
ji)

(1�md
ji)
2

(m�md
ji) > 0

Therefore, using the function g(m) de�ned by (20), we can conclude that when

md
ij > m

d
ji and m � (md

ij +m
d
ji)=2,

g(m) > �

" 
1�

md
ij

1�md
ji

!
md
ij

1�md
ji

md
ji

1�md
ji

#1=3
+

" 
1�

md
ij

1�md
ji

!
md
ji

1�md
ji

#1=2
(29)

Moreover, (i) and (ii) of Lemma A6 mean that

g(mb) > g(m) for any m 6= mb (30)

Combining (28), (29) and (30), we can conclude that given any (md
ij;m

d
ji) such

that md
ij � md

ji

(md
ij;m

d
ji) 2ML(�) =) (mB;mB) 2ML(�).

That is,

ML(�) 6= ; =) (mB;mB) 2ML(�) (31)

Hence, the point (mB;mB) is a bliss point. Finally, to show that the bliss point

is unique, take any � > 0 such that ML(�) 6= ;, and take any (md
ij;m

d
ji) 2

ML(�) such that (md
ij;m

d
ji) 6= (mB;mB). If md

ij > md
ji, then the inequality
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(29) holds when (md
ij;m

d
ji) is replaced with (m

d
ij;m

d
ji). If m

d
ij = md

ji, then

g(mB) > g(md
ij) by (30). Hence, if we de�ne

" � g(mB)�

8<:�
" 
1�

md
ij

1�md
ji

!
md
ij

1�md
ji

md
ji

1�md
ji

#1=3
+ 

" 
1�

md
ij

1�md
ji

!
md
ji

1�md
ji

#1=29=;
then " is positive. Replacing � with g(mB)� "

2
and (md

ij;m
d
ji) with (m

d
ij;m

d
ji)

in (28), we can see that

(md
ij;m

d
ji) =2ML

�
g(mB)� "

2

�
whereas (mB;mB) 2 ML

�
g(mB)� "

2

�
. Thus, the point (md

ij;m
d
ji) is not con-

tained in the nonempty setML
�
g(mB)� "

2

�
, implying that the point (md

ij;m
d
ji) 6=

(mB;mB) is not a bliss point.�
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