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ANNALS OF MATHEMATICS 
Vol. 54, No. 2, September, 1951 

AN ITERATIVE METHOD OF SOLVING A GAME 

BY JULIA ROBINSON 

(July 28, 1950) 

A two-person game' can be represented by its pay-off matrix A = (aij). The 
first player chooses one of the m rows and the second player simultaneously 
chooses one of the n columns. If the ith row and the jth column are chosen, then 
the second player pays the first player aij. 

If the first player plays the ith row with probability xi and the second player 
plays the jth column with probability yj , where xi _ 0, EZx = 1, yj > 0, and 
Eyj = 1, then the expectation of the first player is Zaijxiyj. Further- 
more, 
(1) mmin Eaixi < max Eaiyj,, 

j i i j 

since 

min Eaij xi < E Eai xi Ayj < max Eaij y,. 
j i i i i j 

The minimax theorem of game theory (see [1] page 153) asserts that for some 
set of probabilities X = (x1 , ***, X,) and Y = (yi , .**, yn) the equality 
holds in (1). Such a pair (X, Y) is called a solution of the game. The value v 
of the game is defined by 

v = min Eai xi = max Eaijyj, 
i i i j 

where (X, Y) is a solution of the game. 
In this paper, we shall show the validity of an iterative procedure suggested 

by George W. Brown [2]. This method corresponds to each player choosing in 
turn the best pure strategy against the accumulated mixed strategy of his 
opponent up to then. 

Let A = (aij) be an m X n matrix. Ai. will denote the ith row of A and A.j, 
the jth column. Similarly, if V(t) is a vector, then vj(t) is the jth component. 
Let max V(t) = maxj vj(t) and min V(t) = mini vj(t). In this notation, (1) can 
be rewritten as follows: 

(2) min EA .xi < max EA.jyj, 
i .7 

whenever xi_ 0, Exi = 1, y, _ 0, and Zyj = 1. 
DEFINITION 1. A system (U, V) consisting of a sequence of n-dimensional 

vectors U(O), U(1), * * * and a sequence of m-dimensional vectors V(O), V(1), * 
is called a vector system for A provided that 

min U(O) = max V(O), 

1 More technically, a finite two-person zero-sum game. See [1] in the bibliography at the 
end of the paper. 
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and 

U(t + 1) = U(t) + Ai., V(t + 1) = V(t) + A.j, 

where i and j satisfy the conditions 

vi(t) = max V(t), uj(t) = min U(t). 

Thus a vector system for A can be formed recursively from a given U(O) 
and V(O). At each step, the row added to U is determined by a maximum com- 
ponent of V and the column added to V is determined by a minimum com- 
ponent of U. 

An alternate notion of vector system is obtained if the condition on j in 
Definition 1 is replaced by 

uj(t + 1) = min U(t + 1). 

A vector system Qf this new type can also be built up recursively. The only dif- 
ference is that here successive U and V are determined alternately while in the 
other definition U and V could be obtained simultaneously. In all the following 
proofs and theorems, either definition may be used. 

In the special case U(O) = 0 and V(O) = 0, we see that U(t)/t is a weighted 
average of the rows of A and V(t)/t is a weighted average of the columns. Hence 
for every t and t', 

min U(t) < v < max V(t') 
t ti 

If for some t and t', these two bounds are equal, we have a solution of the game. 
Unfortunately, this is not always the case. However George Brown [2] conjec- 
tured that as t and t' tend to co, the two bounds approach v. The main result 
of this paper is to prove this for any vector system. In numerical examples, 
vector systems of the second kind appear to converge more rapidly than the 
first. 

2 
THEOREM. If (U, V) is a vector system for A, then 

lim mm U(t) max V(t) lim ~ lim =V. 
t boo0 t t ?*0 t 

The proof will be divided into four lemmas. 
LEMMA 1. If (U, V) is a vector system for a matrix A, then 

lim inf max V(t) - min U(t) > 0. 
t-boo t 

PROOF. For each t, 

V(t) = V(O) + tEyjA.j where y _ 0, Ey j = 1, 
i 

2 The solution to Problem 5 in the RAND Mathematical Problem Series II is contained 
as a special case of this theorem. 
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and 

U(t) = U(O) + tExjAi. where xi _ O. Exi = 1. 

Hence 

max V(t) > min V(O) + t max jZyA.; > min V(O) + tv, 

and 

min U(t) < max U(O) + t min ExiAj. < max U(O) + tv. 

Therefore, 

lim inf max V(t) - min U(t) > 0. 
t-.oo t 

DEFINITION 2. If (U, V) is a vector system for A, then we say that the ith 

row is eligible in the interval (t, t') provided that there exists ti with 

t < tl < t' 

and 

vi(t1) = max V(t1). 

Similarly, the jth column is eligible in the interval (t, t') if there exists t2 with 

t t2 ? t' 

and 

uj(t2) = min U(t2). 

LEMMA 2. Given a vector system (U, V) for A, then if all the rows and columns 
of A are eligible in the interval (s, s + t), 

max U(s + t) - min U(s + t) < 2at 

and 

max V(s + t) - min V(s + t) < 2at, 

where 
a = maxi,j | aij 

PROOF. Let j be such that 

uj(s + t) = max U(s + t). 

Choose t' with s ? t' < s + t so that 

uj(t') = min U(t'). 

Then 

uj(s + t) < uj(t') + at = min U(t') + at, 
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since the change in the ith component in t steps is not more than at. But 

min U(s + t) > min U(t') - at, 
so that 

max U(s + t) - min U(s + t) < 2at. 
Similarly, 

max V(s + t) - min V(s + t) < 2at. 

LEMMA 3. If all the rows and columns of A are eligible in (s, s + t) for a given 
vector system (U, V), then 

max V(s + t) - min U(s + t) _ 4at. 

PROOF. By Lemma 2, 

max V(s + t) - min U(s + t) < 4at + min V(s + t) - max U(s + t). 

Hence it is sufficient to show that min V(s + t) < max U(s + t). Now applying 
(2) to the transpose of A, we have 

min IA.,yj < max A i.xi, 
i i 

whenever xi _ 0, E xi = 1, yj > 0, and E yj = 1. In particular, choose xi 
and yj satisfying 

U(s + t) = U(O) + (s + t) ZAi.xi, 
V(s + t) = V(O) + (s + t)Z A.yj,. 

Then 

min V(s + t) < max V(O) + (s + t) min A.jyj 
? min U(O) + (s + t) max A i.xi 

< max U(s + t). 
LEMMA 4. To every matrix A and e > 0, there exists to such that for any vector 

system (U, V), 
max V(t) - min U(t) < et for t _ to. 

PROOF. The theorem holds for matrices of order 1 since U(t) = V(t) for all 
t. Assume the theorem holds for all submatrices of A, then we will show by 
induction that it holds for A. Choose t* so that for any vector system (U', V') 
corresponding to a submatrix A' of A, we have 

max V'(t) - min U'(t) < 'et whenever t > t*. 

We shall prove that if in the given vector system (U, V) for A, some row 
or column is not eligible in the interval (s, s + t*), then 

(3) max V(s + t*) - min U(s + t*) < max V(s) - min U(s) + 2Ft*. 



300 JULIA ROBINSON 

Suppose, for example, that the kth row is not eligible in the interval (s, s + t*). 
Then we can construct a vector system (U', V') for the matrix A' obtained 
by deleting the kth row of A, in the following way: 

U'(t) = U(s + t) + C, 

V'(t) = ProjkV(s + t) for t = 0,1, ** , 

where C is the n-dimensional vector all of whose components are equal to 
max V(s) - min U(s) and ProjkV is the vector obtained from V by omitting 
the kth component. The rows of A' will be numbered 1, 2, * , k - 1, k + 1. 

m. Notice first that min U'(0) = max V'(0). Furthermore, if 

U(s+t+ 1)= U(s+t)+AA., V(s+t+ 1) = V(s+t)+A.;, 

then 

P (t + 1) = U(t) + Ai. V'(t + 1) =V'(t) + A.j. 
Also vM(s + t) = max V(s + t) if and only if v'(t) = max V'(t) and uj(s + t) = 
min U(s + t) if and only if u'(t) min U'(t) for 0 < t < t* . Hence we see 
that U' and V' must satisfy the recursive restrictions of the definition of a 
vector system for 0 < t < t*, since U and V do. Naturally, we may continue 
U' and V' indefinitely to form a vector system for A'. 

Now by the choice of t* , we know that 

max V'(t*) - min U'(t*) < 1et* . 

Hence 

max V(s + t*) - min U(s + t*) 

= max V'(t*) - min U'(t*) + max V(s) - min U(s) 

<max V(s) - min U(s) + let*. 

We can now show that given any vector system (U, V) for A, 

max V(t) - min U(t) < et for t _ 8at*/e. 

Consider t > t* . Let 0 with 0 ? 0 < 1 and q a positive integer be so chosen 
that t = (0 + q)t* . 

CASE 1. Suppose there is a positive integer s ? q so that all rows and columns 
of A are eligible in the interval ((0 + s - 1)t* , (O + s)t*). Take the largest 
such s, then 

(4) max V(t) - min U(t) 

- max V((0 + s)t*) -min U((0 + s)t*) + le(q - s)t*. 

We obtain this inequality by repeated application of (3), since in each of the 
intervals 

((0 + r- 1)t*, (0 + r)t*) for r = s + 1, * * q, 
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some row or column of A is not eligible. From Lemma 3 and the choice of s, we 
have 

(5) max V((O + s)t*) - min U((O + s)t*) ? 4at*. 

From (4) and (5), we obtain 

max V(t) - min U(t) < 4at* + 1e(q - s)t* < (4a + 2eq)t*. 

CASE 2. If there is no such s, then in each interval ((0 + r - 1)t* , (O + r)t*) 
some row or column of A is not eligible. Hence 

max V(t) - min U(t) < max V(Ot*) - min U(Ot*) + leqt* < 2aOt* + leqt*. 
Therefore, in either case, 

max V(t) - min U(t) < (4a + 'eq)t* < 4at* + let < et for t _ 8at*/e. 

From Lemmas 1 and 4, we see that 

lim max V(t) - min U(t) 
t- oo t 

But from (1), 

lim sp min U(t) < 
t- oo t 

lim inf max V(t) > v. 
tf-oo t 

Hence 

lm nin V (t) =lmmax V(t) 
t b oo t t bCoo t 

which completes the proof of the theorem. 

THE RAND CORPORATION, 
SANTA MONICA, CALIFORNIA 
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