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Local Conventions

Jeffrey C. Ely

Abstract

It is shown that player mobility has important consequences for the long-run equilibrium
distribution in dynamic evolutionary models of strategy adjustment, when updating is prone to
small probability perturbations, i.e. “mistakes” or “mutations.” Ellison (1993) concluded that the
effect on the matching process of localized “neighborhoods” was to strengthen the stability of
risk-dominant outcomes, originally demonstrated by Kandori, Mailath, and Rob (1993) (KMR)
and Young (1993). I consider a model in which players can choose the neighborhoods to which
they belong. When strategies and locations are updated simultaneously, only efficient strategies
survive. The robustness of this conclusion is emphasized in a general locational model in which
strategy revision opportunities are allowed to arrive at a faster rate than opportunities to change
locations. The efficient strategy persists in all cases in which the locational structure is non-trivial.
Moreover, even as the relative frequency of player mobility approaches zero, the efficient strategy
occurs with boundedly positive relative frequency. This result is in stark contrast to the conclusions
of the previous models.
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1 Introduction

Much literature in evolutionary game theory has focused on equilibrium
selection in coordination games. A great deal of attention has been focused
on the result that the equilibrium satisfying the risk-dominance criterion of
Harsanyi and Selten (1988) is the unique stable outcome in a wide variety
of dynamic models. The models of Kandori, Mailath, and Rob (1993), and
Young (1993) are the best-known versions of this result, and it is supported
in related models by Fudenberg and Harris (1992), Foster and Young (1990),
Ellison (1993), and Blume (1993), among others.

The common feature of each of these models is an evolutionary process
consisting of random matching and stochastic adjustment. Players are ran-
domly paired in each of an infinite sequence of rounds. Following each round
of play, strategies are updated in favor of best replies, but this process is
subject to stochastic “mistakes.”

The original papers assumed uniform matching: each player was equally
likely to be paired with every other. In a subsequent paper, Ellison (1993)
focused on the role of this type of matching rule in the dynamics. He com-
pared models with uniform matching with one in which players were ar-
ranged within a network of small, overlapping “neighborhoods” and were
paired only within their own neighborhood. He found that this type of local
matching accelerates the transition to risk-dominant outcomes and thus can
only strengthen the stability results of previous papers.

Local matching is a natural point of extension to evolutionary models
of equilibrium selection. In most environments, an agent’s set of potential
opponents will be a strict subset of the total population, confined to a specific
location, place of work, social group, etc. As Ellison showed, this feature
plays an important role in the dynamic process. Once we recognize this role,
however, it seems natural to question the assumption that the neighborhood
structure is exogenous to the evolutionary process. In many environments,
agents have some control over the set of individuals with whom they may
interact. People choose where and with whom to live, where to work, and
which bowling leagues to join.

This paper begins with the assumption that through choices such as
these, players have some control over their set of opponents. The results
show that the logic underlying the selection of risk-dominant outcomes no
longer applies in such an environment. Rather, the ability to seek out “good”
outcomes favors the emergence of Pareto-efficient equilibria. Moreover, devi-
ators to “bad” strategies can be avoided, offering efficient outcomes a further
edge in stability.
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An example and a brief review of the literature on evolution and co-
ordination games help to illustrate the idea. Consider the following 2x2
coordination game.

k1 k2

k1 4, 4 −2, 3
k2 3,−2 0, 0

Each strategy is a strict symmetric Nash equilibrium. The outcome
(k2, k2) is risk-dominant but Pareto dominated by (k1, k1). I will refer to k2

as the risk-dominant strategy and k1 as the efficient strategy.
This game has been analyzed by Kandori, Mailath, and Rob (1993), and

Young (1993) using a model of stochastic adjustment. Each period, players
in a population are randomly matched to play the stage game. Following
each round of play, some subset of players are given the opportunity to
revise their behavior. In the version of the model I will use, this opportunity
arises with some positive probability, independent across players. When the
opportunity arises, players update myopically. That is, they choose a best
reply to the current population configuration. This process of updating, in
which decisions are motivated by myopic payoff maximization is called a
Darwinian adjustment process.

In the game above, regardless of the matching rule, the Darwinian ad-
justment process leads with probability one to a configuration in which all
players play the same pure strategy.1 Following Young (1993), such profiles
will be called conventions. Which convention will be reached depends on the
initial conditions, hence the Darwinian adjustment process alone does not
yield a sufficiently strong prediction to be a model of equilibrium selection.

Adding small probability “mistakes” in the updating process yields a
unique prediction in the form of an invariant probability distribution over
states of the system. The limit distribution, i.e. the limit of this frequency
distribution as mistake probabilities go to zero, will assign positive prob-
ability only to those states that are sufficiently robust to these mistakes.
KMR and Young show that when the matching process is uniform, the limit
distribution puts probability 1 on the risk-dominant convention, k2. They
conclude that the risk-dominant equilibrium, by virtue of being less suscep-
tible to deviation, is the more stable outcome.

Ellison (1993) observed that the k1 convention, despite being less sta-
ble than k2, is nevertheless quite stable in absolute terms. Many near-
simultaneous mistakes are required to overturn a convention when every

1The extension of this result to arbitrary local interaction structures is proved in Propo-
sition 3.
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player in the population is a potential opponent. Thus the k1 convention
may persist for a long time before the occurrence of a number of simulta-
neous mistakes sufficient to lead to k2, a fact which raises doubts about the
predictive power of this type of analysis.

With this motivation, Ellison (1993) compared the uniform matching
process to one in which players occupy distinct locations on a circular grid,
with the assumption that each player is paired only with a subset of players
occupying nearby locations (i.e. the “neighborhood”.)2

While this modification does not affect the character of the limit dis-
tribution, Ellison showed that localized matching introduced two features
which accelerate the transition to the risk-dominant convention. First, with
a small set of potential opponents, fewer mistakes are required to establish
k2 as a best-reply, and secondly, any localized outbreak of k2 quickly sweeps
through the population through the fixed network of overlapping neighbor-
hoods.

Furthermore, his analysis demonstrates that this phenomenon relies on
the risk-dominance property of k2. Thus, the same features do not accelerate
the undoing of a k2 convention. The result is that in Ellison’s local matching
model, transition to the risk-dominant outcome takes place much sooner,
and transitions away from it are much less frequent than in the uniform
matching of KMR and Young.

In this paper, I examine these conclusions in a model in which in addi-
tion to being matched within localized neighborhoods, players can choose
the neighborhoods to which they belong. In the simplest version of the
model, when a revision opportunity arises, a player simultaneously chooses
a strategy and location in order to maximize his expected payoff. In such
a model, risk-dominance ceases to play an important role in determining
long-run equilibria. In fact, the limit distribution places probability 1 on
the efficient convention.

Consider Ellison’s circle model starting with a profile in which all players
are playing the efficient strategy k1 and earning the maximal per-period
payoff of 4. Suppose a few neighbors of player i mistakenly switch strategies
to k2. If i’s location were exogenously fixed as in Ellison’s model, i will
switch to k2 in order to play a best-response to his (permanent) neighbors.
If instead, i had the option to move elsewhere on the circle, he would prefer
to avoid the deviators and find a location where he could continue to play
k1 and receive the efficient payoff.

2See also Blume (1993), who considers a related spatial environment, and obtains
similar results.
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But this possibility prevents the type of contagion process which is cen-
tral to the risk-dominance selection. When all of the deviators’ closest neigh-
bors have moved away, their link to the rest of the population is cut. In
fact, as soon as they have the chance, the deviators themselves will move
away and revert to k1 in order to maximize their payoff.

The argument above demonstrates the difficulty of upsetting an efficient
convention when players can choose their location. Equally importantly, en-
dogenous location facilitates the emergence of efficient conventions. Suppose
all players are playing k2. If a single player mistakenly moves to an unoccu-
pied location and begins playing k1, all players will quickly follow in order
to play k1 against him and receive the efficient payoff. This type of event
can be triggered by a single mistake under any (non-degenerate) locational
structure.

The reader is cautioned in interpreting these results that while there are
many natural ways of extending a model of local interaction to account for
mobility, I have taken a specific approach. Among the modeling choices to
be made is the specification of payoffs. I have chosen to calculate the payoff
to a player by averaging over the payoffs to the interactions with each of his
neighbors. Alternatively, one could consider the sum of payoffs. Note that
with a fixed interaction structure, the number of neighbors is fixed and these
measures are equivalent. On the other hand, when a player can control the
number of neighbors by relocating, the specification clearly matters. A more
general model would allow a more general specification of payoffs, allowing
for trade-offs between average payoffs and the number of interactions. The
effects of such an extension are discussed at the end of Section 3.

These strategic features are closely related to the conclusions in the lit-
erature on evolution and pre-game communication. For example, Kim and
Sobel (1995) and Matsui (1991) found that when players are able to make
costless announcements prior to each round of play, evolutionary pressures
select efficient outcomes. In these models, efficient strategies are protected
from bad outcomes through the use of a “secret handshake.” The efficient
strategy would be used only upon receiving a special signal identifying the
opponent’s intention to do the same. In the models of this paper, loca-
tions play a role analogous to messages. Players of the efficient identify one
another through their choice of location.

In the communication literature, the main obstacle to proving that ef-
ficient outcomes emerge is to ensure there is at least one message unused
by the current population which can become a secret handshake. The ana-
logue to this difficulty in the context of location choice is to guarantee an
empty neighborhood. In this paper, no assumption is made to guarantee
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that there will be an empty neighborhood in every state. Rather, mobility
itself ensures this eventuality: by a sequence of isolated mistakes, players
will drift among locations until a neighborhood is emptied, paving the way
for the emergence of the efficient strategy.

These arguments are used to show that when location and strategy de-
cisions are made simultaneously, efficient conventions survive. This is first
established in Section 3 in the context of a simple interaction structure in
which neighborhoods consist of mutually exclusive locations within each of
which matching is uniform. In Section 4, this result is shown to hold under
a general class of interaction structures (part 2 of Theorem 2).

Section 4 further generalizes the simple model by allowing location and
strategy decision opportunities to arise independently. This provides a
framework for a type of robustness test for models without mobility. When
strategy revision opportunities arise infinitely more frequently than the op-
portunities to change locations, the model approximates one in which mi-
gration is impossible. Yet, as is shown in part 3 of Theorem 2, efficient
conventions occur with a frequency bounded away from zero. Thus, adding
a little migration to the model results in a discontinuity in the limit distri-
bution.

2 Related Literature

Some previous authors have studied mobility and its implications for equilib-
rium selection in random matching models. Most closely related to the this
paper is Oechssler (1999), who considers the simple interaction structure an-
alyzed in Section 1. He assumes that in the initial state of the system, each
equilibrium is represented as a convention in some location. While in gen-
eral the limit point of his dynamic process depends on the initial conditions,
he demonstrates that under his assumption, the system will converge to the
efficient outcome. Section 1 builds on this analysis by showing how these
initial conditions can arise via a sequence of single mistakes, and that over-
turing efficient conventions requires events of infinitely smaller probability.
Section 2 extends these results to general interaction structures.

Mailath, Samuelson, and Shaked (2001) study endogenous matching
with general interaction structures. In a model with simultaneous strat-
egy/location revision, and an interaction structure similar to the types con-
sidered here, they also obtain an efficiency result. They also provide exam-
ples of alternative interaction structures in which efficiency needn’t obtain.
For example, if players are unable to segregate themselves from those playing
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the inefficient strategy, then the presence of a few may not provide enough
incentive for others to switch. These examples illustrate that an important
assumption about interaction structures in this paper is that they always
provide players with the ability to isolate themselves from others.

Robson (1993) analyzes a model motivated by biological evolution. The
population is partitioned into a finite set of subpopulations which grow in-
dependently at rates which reflect the payoffs earned by the players within
them. Populations in which the efficient strategy is played therefore grow
faster than others. At exogenously fixed intervals, all populations become
extinct and are re-populated by small groups randomly drawn from the pre-
ceding generation. When the time between extinction events is sufficiently
long, the populations in which the efficient strategy is played grow arbitrarily
large relative to other populations.

3 A Simple Model

This section presents a simple model intended to highlight the effect of
mobility in a standard random matching model. A finite population I of
players, and a finite set of neighborhoods J , are specified. I assume |J | ≥ 2.
Each period, players are matched within neighborhoods to play a symmetric
2x2 coordination game G, with strategy set K = {k1, k2} and payoff function
u : K ×K → R represented by the following matrix.

k1 k2

k1 a,a e,f
k2 f,e b,b

I assume the generic case that the two pure strategy equilibria are strict
and Pareto rank-able. Assume a > b, and call k1 the efficient strategy. Let
τ be the probability assigned to k1 by the (symmetric) mixed equilibrium
strategy. That is, τ solves τa+(1−τ)e = τf +(1−τ)b. Only if the opponent
plays k1 with at least probability τ is k1 a best-reply. I shall assume the
interesting case that τ > 1/2 so that k2 is a best reply to an equal mixing,
and hence risk-dominant.

A demographic is an assignment d : I → J ×K of a strategy and location
to each player. The set of all demographics is D. A demographic is called
a convention if for some k ∈ K, dK(i) = k for every player i, where dK(i)
represents the strategy component of d(i). The set of demographics which
are kn-conventions, and for which there are no loners will be denoted Zn,
for n = 1, 2.
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A location is an exclusive environment within which matching can take
place. Given a demographic d, let Nd(i) be the set of i’s neighbors: Nd(i) =
{̂i �= i : dJ (i) = dJ (̂i)}. This is the set of potential opponents player i
faces in demographic d. This type of locational structure allows the cleanest
illustration of the role of player mobility in that it provides a simple way for
players to avoid groups in which inferior equilibria are played. In the next
section I show that this assumption is not necessary for the result. In fact
the basic conclusion holds under any non-trivial neighborhood structure.

Each player assumes he is equally likely to be matched with each of his
neighbors. Therefore, when d is the demographic, we can write the expected
payoff to player i as follows.

πi(d) =
1

|Nd(i)|
∑

î∈Nd(i)

u(dK(i), dK (̂i)) if Nd(i) �= ∅

When Nd(i) = ∅, we need some way to evaluate the payoff to player
i. The choice of assumption is potentially important as it will determine
whether singleton neighborhoods can persist, or whether a loner will return
to an occupied neighborhood when given the chance. I assume that a player
with no opponent receives a fixed reservation utility ur which is smaller than
either equilibrium payoff (i.e. ur < b). This ensures that both conventions
are preferred to non-participation.

I adapt the stochastic adjustment process used by Samuelson (1994)
and Nöldeke and Samuelson (1993) to the context of endogenous location.
Following each round of random matching, some subset of the population
is given the opportunity to adjust their behavior. This opportunity arises
with independent probability β for each player.

When a revision opportunity occurs, a player chooses a strategy/location
pair to maximize his per-period payoff given the current demographic. I
assume that a player does not adjust to an alternative which is not a strict
improvement over his current payoff. Formally, define the best response
correspondence for player i as bi(d) = argmaxj,kπi(d−i, (j, k)), where the
notation (d−i, (j, k)) represents the demographic obtained from d by setting
the location and strategy of player i to (j, k). When a player is selected
for revision, he selects an element at random from the strict-improvement
correspondence b∗i (d), defined as follows:

b∗i (d) =

{
{d(i)} when d(i) ∈ bi(d)
bi(d) otherwise

This rule characterizes the Darwinian component of the stochastic ad-
justment process, i.e. those adjustments that occur as the result of payoff-
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driven decision making. The first result is that with probability 1, these
adjustments lead to a stationary demographic. A stationary demographic
must have the property that each player plays a best reply to the strategy
profile of his current set of neighbors. Thus we have a version of the stan-
dard “stability implies Nash” result of evolutionary equilibrium selection.
The proof of this and later results are in the appendix.

Proposition 1 The Darwinian adjustment process converges with probabil-
ity 1 to a convention.

The Darwinian dynamics alone cannot select among the set of conven-
tions. The rest point of best-response adjustment processes depends on ini-
tial conditions. Equilibrium selection is accomplished by introducing “noise”
into the Darwinian process. That is, I assume that on occasion players will
make mistakes, experiment, or for some other reason make their decision
without regard to stage game payoff. Specifically, when a player is selected
for revision, with some small probability ε, the player selects his location
and strategy at random, each alternative being equally likely.

Under this assumption, the process can be analyzed using the techniques
employed by KMR and Young. For any ε > 0, the system can be described
by a regular Markov chain, i.e. one with a unique invariant distribution
µε. We can then analyze the behavior of the stationary distribution as the
likelihood of mistakes vanishes. The advantage of this technique, as shown
by KMR and Young, is that the support limiting distribution is a subset
of the recurrent classes of the Darwinian dynamics, i.e. conventions. When
the support is a proper subset, the perturbations have selected from the
“equilibria” of the unperturbed process.

Definition 1 Write µ∗ := limε→0 µε. When it exists, µ∗ is called the limit
distribution. A demographic d is stochastically stable iff µ∗(d) > 0.

Stochastically stable demographics are those which are visited with non-
vanishing relative frequency when mistakes are possible but decreasingly
likely. Although ergodicity implies every demographic is visited infinitely
often, those that are not stochastically stable arise infinitely less often than
those that are. Naturally, we conclude that these demographics are not
“robust” to the perturbation.

In the simple model of this section, a demographic is stochastically stable
only if it is an efficient convention.3

3The condition on the population size is mild. There must be enough players so that
if all players occupied the same location and played the same strategy, a single player’s
deviation would not change the incentives of any other player.
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Theorem 1 In the simple model, µ∗(Z1) = 1 for sufficiently large |I|.

The proof is in the appendix, here I present the basic intuition. The
support of the limit distribution µ∗ can be characterized using the follow-
ing techniques from Nöldeke and Samuelson (1993) and Samuelson (1994)
(hereafter NS). A single mutation path between conventions d0, dn is a
set of conventions {dk}n

k=0 and a sequence of single mutation transitions
{(dk, d̃k+1)}n−1

k=0 such that d̃k+1 is in the Darwinian basin of attraction of
dk+1. For any set of conventions Z, let M(Z) denote the set of conventions
that are reachable from within Z by single mutation paths. A connected
component is a minimal set of conventions Z such that Z = M(Z). showed
that the support of µ∗ is a union of some collection of connected components.

In the simple model, no connected component can include elements of
Z2. To see this, consider any inefficient convention d ∈ Z2 in which there
is an unoccupied neighborhood. Consider the single mutation transition
in which a player mistakenly moves to an unoccupied neighborhood and
adopts the efficient strategy. By a sequence of Darwinian best-replies to the
resulting demographic, all other players will follow and also play the efficient
strategy, since the efficient strategy is a best-reply to itself and achieves the
maximum possible payoff. This is therefore a single mutation path to Z1.

Now suppose there is no unoccupied neighborhood in d. By a sequence
of single mutation transitions, players can move from some location j to
j′ until eventually j is empty. From the resulting demographic, a single
mutation path to Z1 can be constructed as above. Thus, if Z∗ is the subset
of Z1 in which all players are in a single location, we have Z∗ ⊂ M(Z) for
any Z such that Z ∩Z2 �= ∅. If we can show that Z∗ = M(Z∗), it will follow
that no such Z can be a connected component.

Consider a single mutation in a demographic d ∈ Z∗. There are two
cases to consider: either the mutant moved to an unoccupied location or
the mutant stayed in the original location but switched to k2. In the first
instance, the only player with any incentive to change behavior is the newly-
created loner, who will want to return to the original location and play k1.
In the second situation, provided there are enough players in the original
location, this change in the strategy of a single player cannot change the
incentives of the others. The mutant of course would like to switch back
to k1. Thus, in either case, the only basin of attraction the post-mutation
demographic can belong to is d. Thus d = M(d) for all d ∈ Z∗, and the
result follows.

This simple model is built on a number of assumptions which provide
the cleanest illustration of this theme. However, these assumptions are not
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necessary for the result. The next section shows that under very general
assumptions about the adjustment process and the locational structure, ef-
ficient conventions persist in the limit.

On the other hand, as discussed in the introduction, the assumption
that players maximize expected payoff without regard to the number of
interactions is necessary to obtain the results at the level of generality of
Theorems 1 and 2. Here I shall discuss briefly a more general specification
of payoffs and the effects this modification would have on the results. Define

π̂i(d) = w(|Nd(i)|)πi(d)

where w(·) is some strictly increasing concave function. These payoffs would
capture a situation in which players are able to interact with more than one
neighbor in a given period, with a declining marginal value of each additional
interaction. If w(n) ≡ w̄, for some constant w̄, then we have a model that
is equivalent to the text. On the other hand, if w(n) ≡ n, then players are
maximizing the sum of their payoffs.

In the latter case, we can see that the stochastic stability of the efficient
convention depends on the payoffs in the game. In fact, we can identify
necessary and sufficient conditions in this case for the efficient convention
to be selected. Define λ by the equation (1− λ)a− λb = 0. A player will be
indifferent between a location in which a fraction λ of the total population
is playing k2 and another location in which the remaining fraction is playing
k1. We can extend the previous mutation counting arguments to the present
model to show that the efficient convention is selected if and only if4 λ > τ .
To move from the efficient to the risk-dominant convention, 1− τ fraction of
the population should switch actions by mutation, and the remainder will
switch by best-reply. On the other hand, to move from the risk-dominant
to the efficient convention, a fraction 1−λ should, by mutation, move to an
empty location and play the efficient action and the remainder will follow
by best-reply.

In the general case, the more concave is w(·) the more favorable are the
conditions for efficiency. In particular, I conjecture that if w is bounded
above by w∗, then for sufficiently large populations, the efficient convention
will be selected. This is because as the population size grows, the total
number of mutations (1 − τ)|I| within a given location necessary to make
k2 a best-reply grows without bound. On the other hand, to move from
the risk-dominant to the efficient convention, it is enough to have n∗ players
move to an empty location and play k1 where n∗ is defined by w(n∗)a = w∗b.

4This statement is correct up to integer-sized population issues.
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This condition is independent of the population size. To establish this result
formally one would have to check whether there are quicker routes to the
risk-dominant convention involving mutations which change the location as
well as the action of some players.

A full exploration of these issues is an interesting direction for further
research.

4 A More General Model

In this section I explore the robustness of the efficient convention in a general
model of which the basic model in the previous section is a special case.
The model is extended in two directions. First, I weaken considerably the
assumptions about the structure of neighborhoods. In the previous section,
each individual location was identical to the traditional uniform matching
environment found in KMR. In this section, I consider a generalization of
the type of neighborhood structure considered in Ellison (1993). I show that
this generalization does not affect the results of the previous section.

Players again select from a finite set of locations J . Now however, we
associate with each location a set of neighboring locations. Each player in a
given location can be matched with any other player in any other neighboring
location.

Definition 2 A neighborhood network is a symmetric and reflexive bi-
nary relation ↔on J . Location j is said to neighbor location j′ iff j ↔ j′.
A neighborhood network ↔ is non-degenerate if there exists j, j′ ∈ J such
that j �↔ j′.

Given a neighborhood network, each demographic determines a neigh-
borhood relation on the set of players. Write i ↔d i′ whenever dJ (i) ↔
dJ (i′). Player i’s set of potential opponents is then Nd(i) := {̂i �= i : i ↔d î}.
I make the assumption that each player believes that in any given period he
is equally likely to be paired with each of his neighbors, and maximizes his
associated expected payoff. 5 This gives the following payoff function

πi(d) =
1

|Nd(i)|
∑

î∈Nd(i)

u(dK(i), dK (̂i))

I continue to assume Nd(i) = ∅ ⇒ πi(d) = ur < b.
5In general there may be no matching distribution in which each player is equally likely

to be matched with each of his neighbors. This is assumption is made for convenience.
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The second modification is motivated by the following potential objec-
tion. The model of Ellison should be interpreted as a model in which while
mobility may be possible, strategy revision occurs with far greater frequency
than opportunities to move. This justifies assuming locations fixed while an-
alyzing the process governed solely by strategy adjustment.

The model of this section addresses this argument by assuming a two-
tiered adjustment process. As with the simple model, each period, and
for each player, there is a probability β > 0 (independent across players)
that the player dies and is replaced by a newborn. The newborn chooses a
strategy and location to maximize his current payoff.

Once chosen, the location is fixed for the duration of the player’s lifetime.
However, opportunities for strategy revision may still arise. When they
do, the player selects a strategy which is a best reply to his current set of
neighbors. This setup is intended to capture the features of an environment
in which location choices are “sticky” relative to strategy decisions.

Formally, the sequence of play is as follows. At the start of each period
t, the players observe the current demographic dt. Matching takes place
and payoffs are received. Next, some players will die and be replaced by
newborns who choose new locations and strategies. Among the players who
survive, some will update strategies. The probability of a death is β and
the probability of a revision opportunity is α, conditional on survival. As
before, these probabilities are independent of history and across players.

A newborn chooses (j, k) ∈ b∗i (dt). A player with a strategy revision
opportunity selects a strategy k ∈ ai := argmaxk̂∈Kπi(d−i, (dJ (i), k̂)) We
assume that a player will only switch strategies to one which is a strict
improvement under πi(·) As before, I assume players’ decisions are subject
to “mistakes.” Having settled on his intended choice, with probability ε,
the player discards it and chooses at random: In the case of a death/birth
this is called a mutation, in the case of strategy revision, a mistake.. Each
alternative is equally likely.

These assumptions characterize the general model.

Theorem 2 Let ↔ be any non-degenerate neighborhood network. For every
α, β ∈ [0, 1), let µ∗

αβ be the limit distribution of the general model when the
revision rate and death rate are α, and β, respectively. Then for sufficiently
large |I|, and for every ᾱ, β̄ ∈ (0, 1)

1. µ∗
αβ(Z1) > 0, µ∗

αβ(Z1 ∪ Z2) = 1

2. limα→0 µ∗
αβ̄

(Z1) = µ∗
0β(Z1) = 1

12

Advances in Theoretical Economics , Vol. 2 [2002], Iss. 1, Art. 1

http://www.bepress.com/bejte/advances/vol2/iss1/art1



3. limβ→0 µ∗
ᾱβ(Z1) > 0

This result shows the robustness of the results in the simple model, as
well as emphasizing the special nature of the models of KMR, Young, and
Ellison. First of all µ∗

0β(Z1) = 1 means that the analysis of the previous
section did not depend on the exclusivity of the neighborhoods. Under
any non-degenerate locational structure, efficient conventions are the only
stochastically stable outcomes whenever strategies and locations are chosen
simultaneously. Furthermore, this conclusion is robust. As long as the
difference between revision rates and mobility rates are not too great, the
simple model is a reasonable approximation.6

The last part of the theorem demonstrates that models without mobility
are not good approximations to an environment in which players have any
control, however limited, over the set of opponents they may face. When β
approaches zero, so that mobility is limited, the probability of the Pareto-
dominated convention approaches 1 only when the neighborhood network is
degenerate.

The proof of this theorem (in the appendix) is lengthy; a sketch of the
approach follows. For all α, β ∈ (0, 1), the limit distribution µ∗

αβ can be
characterized using the NS techniques. In the general model, there is a
unique connected component R ⊂ Z1 ∪Z2. It follows from NS that R is the
support of µ∗

αβ .
I extend the NS result to fully characterize µ∗

αβ using single mutation
transitions. Consider all transitions between elements of R that involve a
single mistake/mutation. For each such d, d′ ∈ R, let P̃ (d, d′) be the co-
efficient on ε in the (polynomial) probability of the transition (d → d′).
Then (after a normalization), (R, P̃ ) forms a regular Markov chain, call it
M(α, β). It is regular because by definition of R, between any two demo-
graphics d, d′ ∈ R there exists a path consisting of single mistake/mutation
events.

I show that the unique invariant distribution of M(α, β) is µ∗
αβ.7. The

probabilities in P̃ are polynomials in α and β. The limits limα→0 µ∗
αβ and

limβ→0 µ∗
αβ can then be analyzed viewing M(α, β) as a perturbation of

M(0, β) (respectively of M(α, 0)) and applying the NS techniques.
6The condition on the population size is in general stronger than in the simple model.

We require [(N − 2)a + e]/N − 1 > b. In the case of the example in the introduction,
any population of at least 8 is sufficient. The stronger condition is only necessary under
certain special types of neighborhood networks. For example, in Ellison’s circle model, we
require only the weaker condition from the previous section.

7I am slightly oversimplifying the argument for the purposes of exposition. See propo-
sition 7 in the appendix for a more careful statement
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Part 2 of the theorem can then be established as a consequence of the
standard result that the support of a limit distribution (here limα→0 µ∗

αβ)
is a subset of the recurrent states of the unperturbed process M(0, β). The
transitions in M(0, β) are those that involve only birth/death events with
a single mutation. Starting from any Z2 demographic, there is a sequence
of such transitions that lead to (the basin of attraction of) Z1: players
one-by-one drift around the neighborhood network until there is an empty
neighborhood, at which point a single player moves into that neighborhood
and plays k1. Now there exist demographics in Z1 from which there is
no such path to Z2; namely those in which every player has sufficiently
many neighbors. In such a demographic, a single mutation cannot induce
any player to choose k1. Thus, the recurrent states of M(0, β) must be
contained in Z1.

The recurrent states of the system M(α, 0), on the other hand include
elements of both Z1 and Z2. Demographics in Z1 can come about only when
a neighborhood becomes empty. Demographics in Z2 come about when
the population becomes vulnerable to contagion effects. The key result is
that the latter relies just as strongly on mobility as the former. In order
for contagion to be effective, the population must be sufficiently dispersed
throughout the network: each player must have relatively few neighbors.
Because there is no mobility in M(α, 0), Z2 conventions with a concentrated
population are recurrent, as well as the Z1 conventions with a dispersed
population.

Part 3 of the theorem is therefore shown by applying the NS techniques
to the recurrent classes of M(α, 0). In particular, it is shown that every
component that is connected by single birth/death events includes elements
of Z1. Again, starting from any convention, by a sequence of single muta-
tions, a neighborhood can be emptied. Subsequently, a single player can
move into the emptied neighborhood and play k1. NS’s result now implies
part 3.

It is worth noting what is required of a neighborhood network for the
purposes of this result. It is clearly necessary, and by the Theorem 2 suffi-
cient, that the network allow demographics in which there are empty neigh-
borhoods as well as demographics in which there is substantial population
density in at least some region of the network. The former is guaranteed
by the assumption of non-degeneracy. The latter was necessary to conclude
that there are Z1 conventions which are immune to contagion effects, hence
recurrent in M(α, 0). This feature is built into the definition of a neighbor-
hood network: there is no limit to the number of players that can occupy a
single location.
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This feature makes the definition and the arguments simpler, but it is
not the only way to ensure the conclusions of Theorem 2. For example, a
natural modification would be to place a limit on the number of players (say,
at most 1) that could occupy a given location. Theorem 2 would continue
to hold in such a model under the additional assumption that there was
at least some region in which locations were tightly networked (i. e. each
location had many neighboring locations).

Finally, notice that Theorem 2 says only that µ∗
αβ(Z1) > 0, whereas

in the simple model we had µ∗
αβ(Z1) = 1. It may be possible to obtain

the stronger conclusion in a wider set of neighborhood networks. In par-
ticular, the proof of Theorem 2 makes it clear that all stochastically stable
demographics would be in Z1 if it were not possible for a single k2-mistake to
infect the entire population. In particular, µ∗

αβ(Z1) = 1 in any neighborhood
network in which it is impossible to arrange the players in such a way that
this kind of infection can occur. In fact, this conclusion could be strength-
ened further. In order for Z2 to be stochastically stable, we it is necessary
that starting from any Z1 demographic, such an infection-vulnerable demo-
graphic can arise by a sequence of single-mutation events. This condition
will not be satisfied if there is at least one isolated region of the neighbor-
hood network which is invulnerable to contagion effects that result from a
single mutation. The k1 convention in which all players are located in this
region in particular would be invulnerable to single-mutation infection.

5 Conclusion

I have shown that incorporating local interaction and mobility in the stan-
dard framework of random matching and stochastic adjustment has impor-
tant consequences for the determination of long-run equilibria.

When compared with the original evolution literature, in which variants
of ESS were applied to the equilibrium selection problem, these results are
not surprising. These solution concepts essentially assumed that the popula-
tion was arbitrarily large and that “mutations” affected an arbitrarily small
component of the population. With such a hypothesis, every strict equilib-
rium is evolutionarily stable. In order to overturn a strict equilibrium, some
discrete-sized deviation is necessary.

Kim and Sobel (1995), and Matsui (1991), however, showed that when
a round of pre-play communication is added, even the very weak test of
stability inherent in ESS and its variants is sufficient to generate strong
predictions. In fact, since in the communication game there are no strict
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equilibria, it was necessary to weaken ESS in order to guarantee existence.
An interpretation of these results is that when players have a mechanism by
which to identify their preferred opponents, catalytic events occur arbitrarily
more frequently than is possible in the unmodified game.

This is the logic underlying the results in this paper. I have shown, in
parallel with the communication literature, that location and mobility give
players a mechanism by which they can identify their preferred opponents.
This creates a force for equilibrium selection based on in-equilibrium payoffs
in contrast to the criterion of risk-dominance which places equal emphasis
on out-of-equilibrium outcomes. For this reason, locational choice tends to
favor efficient equilibria.
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A Proofs

Throughout, let M(ε) denote the Markov chain corresponding to the pro-
cess with mutation/mistake probability ε. In the terminology of Young
(1993), the family of chains {M(ε) : ε > 0} is a regular perturbation of the
unperturbed process M(0). (For M(ε) to be a regular perturbation, it is
sufficient that the transitions be polynomials in ε.) Young has shown that
a regular perturbation has a limit distribution µ∗ = limε→0 µε, and that µ∗

is an invariant distribution of M(0).
All transition probabilities in the models in this paper are polynomials in

ε. For any transition (d, d′), let C(d, d′) be the degree of the associated poly-
nomial transition probability. I will refer to it as the cost of the transition.
Let c(d, d′) be the leading coefficient, i.e. the coefficient on εC(d,d′).

To characterize the limit distribution of a regular perturbation, we use
the graph-theoretic technique introduced by Freidlin and Wentzell (1984).
and further developed by The approach used here borrows most heavily
from the techniques used in Samuelson (1994) and Nöldeke and Samuelson
(1993).

A graph G is a pair (D, E) where D is a finite set, called the vertices of
G, and E is a collection of ordered pairs of D, called the edges of G.

A path is a finite sequence of edges {ei}, i = (1, . . . , n) whose origins are
distinct and such that for every 1 ≤ i < n, the endpoint of ei is the origin
of ei+1. The origin and endpoint of a path are defined in the obvious way.
Write d2 
G d1 to indicate that there is a path in G from d1 to d2. When
S and T are subsets of D, write T 
G S to indicate that for every s ∈ S,
there is a t ∈ T such that t 
G s.

A spanning tree h of a graph G is a subset of edges satisfying the following
conditions for some fixed vertex r (called the root):

• Each d ∈ D \ r is the origin of exactly one edge in h.

• In the graph t = (V, h), r 
t d for every d ∈ D \ r.

For each d ∈ D, let Hd be the set of spanning trees in G whose root is d.
Suppose M is some regular Markov chain on a state space D, with

transition matrix P . The graph derived from M is G = (D, E) where the
edges are taken to be the set of all positive probability transitions in M, i.e.
E = {e = (d1, d2) : P (e) > 0}.

Freidlin and Wentzell (1984) characterized the invariant distribution µ
of a regular Markov chain in terms of its graph. I state below versions of
these results for conditional distributions µ(·|X) for X ⊂ D.
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Theorem 3 (Freidlin and Wentzell, 1984) For every X ⊂ D, d ∈ X,
if µ(X) > 0 then

µ(d|X) =
qd∑

d′∈X qd′

where qd =
∑

h∈Hd

∏
e∈h P (e)

For any spanning tree h, write C(h) =
∑

e∈h C(e). For each X ⊂ D,
d ∈ D define the sets HX

d = {h′ ∈ Hd : C(h′) = min
d∈X

h∈Hd

C(h)}.

Corollary 1 Let M(ε) be a regular perturbed Markov chain on D, and G
its associated graph. Then if d ∈ X,8

µ∗(d|X) =

∑
h∈HX

d

∏
e∈h

c(e)

∑
d̂∈X

∑
h∈HX

d̂

∏
e∈h

c(e)

Remark: When X is a proper subset of D , µ∗(·|X) should be understood
to be the limit of the conditional distributions of the regular perturbation,
as opposed to the conditional of the limit distribution. The latter would be
undefined in the case that µ∗(X) = 0. In all of the models of this paper,
µε has full support for every ε > 0, and hence the limiting conditional
distributions are always well-defined.

Corollary 2 Let d ∈ X. Then µ∗(d|X) > 0 only if HX
d �= ∅.

Let G be any graph. Viewing 
G as a binary relation, we can define
A(G) the collection of 
G-maximal subsets of D, called the absorbing sets
of G. Formally A ∈ A(G) iff for each d ∈ A, d′ 
G v ⇐⇒ d′ ∈ A. For
A ∈ A(G), the set D(A) := {d : A 
 d} is called the domain of A.

Now suppose G is derived from a regular perturbed Markov chain M(ε)
on the state space D. We will derive two graphs from G which will be
used in characterizing the limit distribution of M(ε). Consider the graph
G0 = (D0, E0), where D0 = D and E0 := {e ∈ E : C(e) = 0}. This
graph represents all transitions which occur with positive probability in the
underlying, unperturbed chain M(0). In the models in this paper, these are
all of the Darwinian transitions: those that involve only changes in behavior
motivated by best-response.

We now define a second graph G1, taking the vertex set D1 to be the
collection A0 = A(G0) of absorbing sets of G0. Define the edges E1 as
follows: (A1, A2) ∈ E1 iff ∃d ∈ A1, d

′ ∈ D such that
8Adopt the convention that the sum of the empty set of numbers is zero.
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i . d′ ∈ D0(A2), and

ii . C(d, d′) = 1.

where D0(A2) is the domain of A2 in graph G0. Throughout subscripts will
be used to distinguish objects belonging to G0 from those in G1. I will now
state one of the main results to be used in characterizing the support of the
limit distribution.

Proposition 2 Let d1, d2 ∈ Dl. Suppose X ∩ (d1 ∪ d2) �= ∅. Then

1. If d2 
l d1, then µ∗(d1|X) > 0 ⇒ µ∗(d2|X) > 0.

2. If in addition d1 �
l d2 then µ∗(d1|X) = 0.

The version for unconditional distributions, i.e. the case of X = D is a
straightforward implication of the results in NS. The logic for conditional
distributions is identical and hence the proof is omitted here.

We now turn to the proofs of Theorems 1 and 2.

Proposition 3 A0 = ∪nZn.

Remark: This proposition implies proposition 1.
Proof: In order to subsume the analagous result for the general model, we
will prove this proposition for the case of an arbitrary network neighborhood
on J .

I first show that if d ∈ Zn, then d ∈ A0. For this it is sufficient to show
that b∗i (d) = d(i) for every i. Using the definition of Zn, we have

max
j,k

πi(d−i, (j, k)) = max[ur,max
k

u(k, kn)]

= max[ur, u(kn, kn)]
= u(kn, kn)
= πi(d)

Thus, b∗i (d) = d(i)∀ i implying d ∈ A0. Now to establish the proposition, it
suffices to show that d /∈ Z1 ∪ Z2 implies ∃ n and d̂ ∈ Zn such that d̂ 
0 d.

If for every i, there exists j such that (j, k2) ∈ b∗i (d), then we can con-
struct a path to Z2 as follows: Have all players update in one round. They
will all choose strategy k2 in various locations. In the resulting state, move
any newly created loners to a single occupied location. The result is a de-
mographic in Z2.
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Now assume there exists a player i and a location j such that (j, k1) ∈
b∗i (d). Then letting d̂ := (d−i, (j, k1)), we have d̂ 
0 d and

πi(d̂) ≥ πi(d−i, (ĵ, k2)) for all ĵ ∈ J (1)

Now, for every player l and location m, let zlm represent the fraction
of k1 players l would face were he to move to location m starting from
demographic d̂. Since i occupies j in d̂, the value zij represents the actual
fraction of k1 opponents i faces, hence the fact that i chose k1 implies zij ≥ τ .

If it is the case that all players who play k2 in d̂ wish to switch to k1, then
we could construct a path to Z1 by allowing only those players to switch to
k1, and then relocating loners. Thus, the proposition follows if we can show
that if there is any player l who plays k2 in d̂, then there is no location m
such that (m,k2) ∈ b∗l (d̂). This will be proved by contradiction.

If conditional on locating in m, l prefers strategy k2, it must be that
zlm ≤ τ . We can draw an inference from l’s revealed preference of (m,k2)
over (j, k2).

πl(d̂−l, (m,k2)) − πl(d̂−l, (j, k2)) ≥ 0 ⇒
[zlj − zlm] (b − f) ≥ 0 (2)

Were player l to move to location j, he would face a strictly larger fraction
of k1 playing opponents than does i in d̂. (This is because l is playing k2

whereas i is playing k1.) Thus, zlj > zij ≥ τ ≥ zlm. Together with equation
(2), this implies b ≥ f . (A k2 player has a weak preference for neighbors
who play k2.)

We have assumed that a > b and that both equilibria of the under-
lying game are strict. Thus a > b > e. Now (m,k2) ∈ b∗l (d̂) implies
πl(d̂−l, (m,k2)) ≥ πl(d̂−l, (j, k1)). Combining these facts,

πl(d̂−l, (m,k2)) ≥ zlja + (1 − zlj)e
> zija + (1 − zij)e

= πi(d̂) (3)

where the inequality follows from zlj > zij and a > e.
Finally, since in d̂ player l plays k2 and player i plays k1 in d̂, player

l will face no smaller a fraction of k1-playing opponents in m than would
player i, i.e. zlm ≥ zim. Noting that d̂ differs from d only in the behavior of
player i, this yields
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πi(d−i, (m,k2)) = πi(d̂−i, (m,k2))
= zimf + (1 − zim)b
≥ zlmf + (1 − zlm)b
= πl(d̂−l, (m,k2)) (4)

But this last inequality is in contradiction with inequalities (1) and (3).

Proof of Theorem 1: In view of Proposition 1, it suffices by Proposition
2 to show that Z1 
1 Z2 and that Z2 �
1 d for every d ∈ Z1.

Let d ∈ Z2, and suppose there are no empty neighborhoods in d. Then
since |J | > 1, there are at least 2 neighborhoods j1, j2 which are occupied. I
will show that there exists a d′ ∈ Z2 such that j1 is empty in d′ and d′ 
1 d.

A movement of a single player from j1 to j2, holding the player’s strategy
fixed, involves a single mutation. If in the resulting state d1 there remain
at least 2 players in j1, then d1 ∈ Z2 and (d, d1) ∈ E1. We can then repeat
this process, constructing a sequence of edges (dt, dt+1) ∈ E1 resulting in a
state dn in which there is a single player occupying j1. Because this player
is a loner, his best-reply is to move to an occupied location and play k2.
Thus, if d′ is the state that results from the loner’s movement to j2, we have
dn ∈ D0(d′) and hence (dn−1, d

′) ∈ E1.
Now starting from d′, as a result of a single mutation, a player can move

to j1 and begin playing k1. From the resulting state d′′, the remaining
players’ best replies are to move to j1 and play k1. Letting d′′′ be the state
which results when all players do so, we have d′′′ ∈ Z1, d′′ ∈ D0(d′′′) and
hence (d′, d′′′) ∈ E1. Since d was an arbitrary element of Z2, we have shown
Z1 
1 Z2.

To complete the proof I will show that for every d ∈ Z1, if d′ is any state
that results from a single mutation in state d, then d′ is not in the domain
of any state in Z2, and hence there is no edge (d, d̃) ∈ E1 where d̃ ∈ Z2.

Suppose d′ results from a mutation which moves a player to a previously
unoccupied neighborhood. Then regardless of the mutant’s strategy, no
other player has any incentive to change his strategy. The only Darwinian
adjustments that can take place after such a mutation involve loners (the
mutant and any loner he might have left behind) finding new neighborhoods
in which to play k1.

Suppose instead that the mutation involves a player changing strategies
to k2 within an occupied neighborhood j. (Without a change of strategies,
d′ would be another element of Z1.) If there is some other neighborhood j′,
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and there are no loners, then all players in j will wish to move to j′ and
play k1 against a population of k1 players. Thus all Darwinian adjustments
involve players choosing k1 and these can only lead to a new element of Z1.

On the other hand, there may be no other occupied neighborhood, or the
only other occupied neighborhood could contain a loner left behind by the
mutant. In that case a sufficient condition for all players to wish to update
to k1 is that the fraction of k1 players in j be sufficiently large so that the
best reply in j is also k1. Since there are at least |I| − 1 players in j and
only one is playing k2, this requirement is that 1/(|I| − 2) < 1 − τ . This is
satisfied provided the population is sufficiently large.

We now turn to the general model.

Proposition 4 ∪nZn = A0

Proof: The edges in G0 derived from the general model compose a superset
of those derived from the simple model. Thus, since Proposition 1 was
proved for an arbitrary neighborhood network, the result that ∪Zn 
0 [D \
∪Zn] is subsumed. Therefore we need only show that elements of ∪Zn are
singleton maximal sets under 
0 in the general model. Proposition 1 showed
that Darwinian deaths could not alter an element d of ∪Zn. Clearly neither
can a Darwinian revision since all players play the same strategy in d.
Proof of Theorem 2 To show β > 0 ⇒ µ∗

αβ(Z1) > 0 it is sufficient to
show that Z1 
1 Z2 whenever β > 0. Let d ∈ Z2. By non-degeneracy, there
exist two locations j1, j2 such that j1 �↔ j2. Let M(j) represent the set of
locations which neighbor j, and Nd(j) the set of players occupying locations
in M(j). If Nd(j1), Nd(j2) �= ∅, then we will first construct a path in G1

from d to an element of Z2 in which j1 has an empty neighborhood.
By a single mutation in d, a player can move from any j ∈ M(j1) to

j2. Following this move, any loners will be indifferent among all locations
available. With positive probability they choose a location outside of M(j1)
and hence if d1 is any state in which all loners move outside of M(j1), we
have d1 ∈ Z2 and (d, d1) ∈ E1, and there are strictly fewer players occupying
M(j1) in d1 than in d. Continuing in this way we can construct a sequence
of edges (dt, dt+1) ∈ E1 resulting in a state dn in which N(j1) = ∅.

Now starting from dn, following a mutation, a player can move to j1

and play k1, leading to a state d′. Each remaining player wishes to follow
suit, and hence if d′′ is the state that results when all players do so, we have
d′ ∈ D0(d′′) implying (dn, d′′) ∈ E1. The state d′′ is an element of Z1 and
we have thus shown that Z1 
1 Z2.
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We now turn to part 2 of the Theorem. Because the proof that Z1 
1 Z2

holds for any value of α, to prove that µ∗
0β(Z1) = 1 it suffices to show that

if α = 0, then Z2 �
1 d for any d ∈ Z1.
Consider any d′ which occurs as a result of a single mutation starting

at d. Suppose in d′ that for every player there is some location where that
player can move and earn a payoff of a by playing k1. Then in any Darwinian
successor of d′, every player’s best reply involves playing k1. This can only
lead to an element of Z1.

Now suppose in d′ there is some player who cannot achieve a payoff of a in
any location. This can only happen if the mutant is playing k2 and he cannot
be avoided: he is a neighbor of every occupied location. If a player were to
move to the location occupied by the mutant, he would also neighbor every
player. His payoff to playing k1 would then be [(|I| − 2)a + e]/(|I| − 1). For
|I| sufficiently large, this is greater than b, the maximum payoff attainable
by playing k2. Again, we conclude that k2 is never a best-response in any
Darwinian successor to d′. Thus Z2 �
1 d.

To prove the limiting results of the theorem, we make use of some
additional notation and prove some intermediate results. For any edge
e = (d1, d2) of G1, a projection of e onto G is a path in G from d1 to
d2 with total cost equal to 1. Let Ẽ be the set of all edges of G0 together
with all projections of edges of G1. Write A1 = A(G1), and denote by R
the set of states which are stochastically stable when α, β > 0.

Proposition 5 If A1 is a singleton, then for every d ∈ R, h ∈ HD
d iff

h ⊂ Ẽ.

Proof: When A1 is a singleton A, then R = A. We first show that for
every d ∈ R, the set of spanning trees h rooted at d such that h ⊂ Ẽ is
not empty. First of all, since it has a unique absorbing set, the graph G1

contains a spanning tree h̃ rooted at any d̃ ∈ A1. If (d, d′) ∈ h̃, then there
is a (d, d′′) ∈ Ẽ such that d′ 
0 d′′. From this we can construct a “skeleton”
tree of G consisting of the projections of all the edges in h̃. The root is d̃, the
tree is a subset of Ẽ, and it contains a path to d̃ from every element of A0.
For each remaining element, there is a path in G0 to some element of A0,
and so we can complete the spanning tree by adding in these paths. Such
paths consist of edges in E0 ⊂ Ẽ, hence the constructed tree is a subset of
Ẽ.

Now consider the set of all spanning trees h rooted at some element of
R. Since every element of A0 is maximal with respect to 
0, any edge
originating in such an element must have cost at least 1. Thus, |A0| − 1 is
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the minimum total cost of any such tree. If h ⊂ Ẽ each element of A0 is the
origin of a single-cost edge, while all other edges cost zero. Thus h achieves
this minimum. Now suppose h has cost |A0|− 1. Then since the cost of any
path between two elements of A0 is at least 1, the cost must be exactly 1
since there are |A0|− 1 many of them. But this implies that these paths are
projections of edges in E1 and hence that h ⊂ Ẽ.

I have shown that a lower-bound on tree costs is achieved if and only if
the tree is a subset of Ẽ. Since such trees exist, the result is proved.

For every d ∈ R, let H̃d be the nonempty set of spanning trees h rooted
at d such that h ⊂ Ẽ. Proposition 5 states that this set is exactly the set of
cost minimizing spanning trees whenever A1 is a singleton. The following
result implies that in the general model we can assume wlog that A1 is a
singleton and hence by Proposition 2, that R = A1.

Proposition 6 If µ∗
αβ(Z1) �= 1 for some β > 0, then A1 is a singleton.

Suppose there is a unique component of neighborhoods so that for every
j0, jn ∈ J , there is a sequence j1, . . . , jn−1 such that jl ↔ jl+1 for l =
1, . . . , n − 1. Then starting from any d ∈ Zn, by a sequence of mutations in
which, one player at a time, players change locations but not strategies, we
can construct a path to any d′ ∈ Zn.

Since we have already shown that Z1 
1 d′ for every d′ ∈ Z2, it now
follows that any d ∈ Z1 is reachable in G1 from any d′ ∈ Z1 ∪ Z2. The
proposition then follows immediately.

Generalization to the case of more than one locational component is
straightforward but notationally tedious and is omitted here.

Henceforth we will assume A1 = R. Consider the graph G̃ := (D, Ẽ).
Define “transition probabilities” P̃ of edges e ∈ Ẽ as follows

P̃ (e) = ceε
Ce

For ε sufficiently small, P̃ (e) ≤ 1. If we then set P̃ (d, d) = 1−∑
d̂:(d,d̂)∈Ẽ P̃ (d, d̂)

and P̃ (d, d′) = 0 for d �= d′, (d, d′) /∈ Ẽ we obtain a well-defined transition
matrix on D ×D.

For every α, β ∈ (0, 1), denote by M̃αβ the Markov chain with transition
matrix P̃ when the revision rate and death rate are α and β, respectively.

Proposition 7 For every α, β ∈ (0, 1), M̃αβ is regular. Let µ̃αβ be its
invariant distribution.
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• For every d ∈ R, and for every α, β > 0,

µ∗
αβ(d) = µ̃αβ(d|R)

• For fixed α (resp. β), M̃αβ is a regular perturbation of M̃α0 (resp.
M̃0β) with noise parameter β (resp. α).

Proof: First notice that by construction, whenever α, β are greater than
0, the graph of Mαβ is (D, Ẽ). Sufficient for regularity is that there exist
some state d such that the graph (D, Ẽ) contains a spanning tree rooted at
d (irreducibility), and that P̃ (d, d) > 0 (aperiodicity). ( See Romanovsky
(1970, pg 53, Theorem 14.I). These are guaranteed by construction.

By Theorem 3, and the definition of M̃αβ ,

µ̃αβ(d|R) =

∑
h∈H̃d

∏
e∈h ceε

Ce∑
d̂∈R

∑
h∈H̃

d̂

∏
e∈h ceεCe

If t is the minimum cost among spanning trees of G, then by Proposition
5 t is achieved by all h ∈ H̃d̂ for every d̂ ∈ R. Since

∏
e∈h εC

e = C(h), we
can factor the right-hand side to obtain

εt ∑
h∈H̃d

∏
e∈h ce

εt
∑

d̂∈R
∑

h∈H̃
d̂

∏
e∈h ce

and by Corollary 1, this is just µ∗
αβ(d).

The second claim follows from the fact that the transition probabilities
are all polynomials in α and β.

We can thus define cost functions Cα, and Cβ on Ẽ in the same way
as C(·, ·) was defined. These cost functions simply count the number of
revisions and deaths, respectively, involved in transitions in Ẽ. In order to
calculate, say, limα→0 µ∗

αβ , we can evaluate the limit conditional distribution
limα→0 µ̃αβ(·|R). For this we can apply Proposition 2. We take the graph
of M̃αβ which by construction is G̃ and decompose it into graphs G̃0 and
G̃1 analogously to G0 and G1 for G. We use the cost function Cα to define
the edges of these graphs. The successor relations will be denoted, e.g. 
̃0,
when derived from G̃0.

The paths constructed in the proof that Z1 
1 Z2 (which are thus sub-
sets of Ẽ) consisted only of deaths and therefore have Cα-cost zero. Hence,
that argument implies Z1
̃0Z2. Furthermore, the proof that µ∗

0β(Z1) = 1
involved showing that there was no path in Ẽ from Z2 to Z1 involving
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only deaths. Therefore Z2 � 
̃0Z1 and by Proposition 2, the limit distribu-
tion of M̃αβ assigns probability 1 to Z1. By Proposition 7, we conclude
limα→0 µ∗

αβ(Z1) = 1.9

What remains is part 3 of the Theorem. To prove it, we analyze the
graphs G̃0, and G̃1 now together with the cost function Cβ.

We begin by characterizing Ã0 = A(G̃0). Unlike the previous cases, it
is possible that an element of Ã0 be non-singleton, i.e. an absorbing set. A
typical absorbing set will be represented by A. When A is a singleton {d},
we will identify A with its element d.

The edges in G̃0 will consist of all edges in Ẽ which have zero Cβ-cost.
For those originating in states not in Z1 ∪ Z2, these will be transitions
involving Darwinian strategy revision. Therefore, for d /∈ Z1 ∪ Z2, if all
players are playing best-responses against their neighborhoods, i.e. dK(i) ∈
ai(d), then d ∈ Ã0.

A transition away from some d in Z1∪Z2 will be in G̃0 only if it consists
of a single mistake by a single player. Consider the set of all demographics
which occur as the result of a single mistake in d. If in each of these, the
only player not playing a best reply to his neighborhood is the player who
made the mistake, then d is the unique successor in G̃0 of each of these, and
collectively they form an absorbing set in Ã0 containing d.

Consider a demographic d in which all players occupy the same location
j and play strategy k1. This demographic is in Z1, and for a sufficiently
large population, no single strategy deviation can alter the incentives of any
player. Thus, there is an A ∈ Ã0 containing d. Let Z∗

1 be the collection of
sets in Ã0 which intersect Z1.

Lemma 1 Suppose A ∈ Ã0 contains some d ∈ Z2 such that there is a
location j with an empty neighborhood. Then Z∗

1 
̃1A.

Proof: A mutation by which a player moves to j and adopts strategy k1

has both C-cost and Cβ-cost equal to 1. Such a transition is in Ẽ because
d ∈ Z2 ⊂ A0. It is therefore also an edge of G̃1. The resulting state is in Ã0

because all players play a best-response to their neighborhoods. Following
such a state we can find a path consisting of single Cβ-cost transitions in
which players move one at a time to j and play k1. In each state along the

9Alternatively we could show that µ∗
0β is the invariant distribution of M̃0β . It is well

known that the limit distribution of a regular perturbation is a subset of the invariant
distributions of the underlying chain. In particular, since M̃0β is regular, its invariant dis-
tribution is unique and hence the limit distribution limα→0 µ∗

αβ of the regular perturbation

M̃αβ must be µ∗
0β .
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way, all players play best responses to their neighborhoods, hence each state
is in Ã0. Therefore, this is a path in G̃1. In the endpoint state, all players
play k1, and each neighbors every other, hence the endpoint is an element
of Z∗

1 .
A demographic d is a star if there is exactly one location j (called the

hub) which is occupied by more than one player, and if the players in j are
the only neighbors of all players not in j.

Lemma 2 Let d be a star in which all players play k1, and d′ the star in
which players occupy the same locations as in d but all play k2. Then either
d ∈ A for some A ∈ Ã0 or d′ ∈ Ã0 and d′
̃0d.

Proof: Let j be the hub. The demographic d′ must be in Ã0 because it is
in Z2 and every player has at least 2 opponents.

If d is not in A for any A ∈ Ã0, then following a single mistaken switch to
k2, there is a sequence of strategy revisions leading to a state d̂ from which
there is no path in G̃0 back to d. Assume wlog that d̂ has the fewest k1 play-
ers among successors of d which have this property. Suppose no occupant
of j plays k2 in d̂. Then every opponent of every player is playing k1, hence
each wishes to play k1 when the opportunity arises. This implies d 
 d̂, a
contradiction. Thus, some player i in j is playing k2. Moreover, i must be
playing k2 as a best-reply, else i would revert to k1 if given the opportunity
leading to a state with fewer k2 players, contradicting the definition of d̂.
All other players in j face at least as many k2-playing opponents as i does
(since i plays k2), hence must also wish to switch to k2. After they do so,
all other player will follow suit as their only opponents are the players in j.
The resulting state is d′.

Define the following subset of demographics.

Z3 := {d ∈ Ã0 : ∃d′ ∈ Z2, d
′ �= d s.t. d
̃0d

′}

Lemma 3 Z∗
1 
̃1Z3

Proof: If d ∈ Z3 then there is a d′ ∈ Z2 such that d
̃0d
′. Let I be the

set of players playing k1 in d. Since paths in G̃0 represent only strategy
revisions, d′ does not differ from d in terms of player locations. Thus, I �= ∅
else d = d′, a contradiction.

The path from d′ to d is in Ẽ and therefore is initiated by a single
mistaken adoption of k1 by some player i. Since k1 is not risk-dominant, all
players who were induced to switch to k1 in response to i’s mistake must
have i as their unique opponent. (More than half of a player’s opponents
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must play a risk-dominated strategy in order to induce that player to adopt
it.) We must also have i ∈ I, else each member of I would face a unique
opponent who plays k2, and thus would switch to k2 when given the chance,
and this would lead back to d′, a contradiction. Finally, there must be no
player i′ /∈ I who has i as a unique opponent, else i′ would eventually switch
to k1, contradicting d ∈ Ã0. Thus, I consists of i together with all players
whose unique opponent is i.

Consider first the case that I = I. Then every player is playing k1,
hence d ∈ Z1 and all except i have i as a unique opponent. In this case,
a mistaken choice of k2 by player i would induce all other players to adopt
k2, returning to demographic d′. This is a single C-cost path leading from
d0 ∈ A0 to d′ ∈ A0, hence it is in Ẽ. Furthermore, it has zero Cβ-cost,
hence it is a path in G̃0. But this is a contradiction since there is no path
in G̃0 from d to d′. Thus I �= I.

Suppose that some player in I is earning a payoff less than a. That
player must be player i, since all other members of I face a unique opponent
who plays k1. Player i must have a neighbor who is playing k2. He would
like to move to any location j occupied by some other member of I, where
he could obtain a payoff of a. Such a transition has Cβ-cost 1.

If, on the other hand, all players in I are earning a payoff of a in d, then
i’s neighborhood is just the set I. This implies that all players not in I can
obtain a payoff of a by moving to the location j occupied by player i.

In either case, we reach a demographic in which a proper subset of the
population earns a payoff of a. Among the players earning a, there is a player
i who is the unique neighbor of all other players earning a. All players not
earning a would like to move to j, the location of i, and play k1.

The path in which each player does so, one at a time, consists of transi-
tions which have zero C-cost and Cβ-cost 1. The endpoint d1 is an element
of Z1 in which the set of opponents of every player not occupying j is just the
set of players occupying j, hence a star. Moreover, it has an empty neigh-
borhood: any neighborhood previously occupied by a player who moved to
j. Finally, by Lemma 2 either d1 ∈ A for some A ∈ Ã0, in which case we
have shown Z∗

1 
1 d1, or the corresponding k2 star is in Ã0, succeeds d1

(and hence d) in G̃1 and has an empty neighborhood. In the latter case,
Lemma 1 implies Z∗

1 
̃1d1.
We can now conclude the proof of part 3 of the theorem by combining

these lemmas.
Let X = Z1∪Z2∪Z3. Since Z1 ⊂ R ⊂ X, it follows that if µ̃αβ(Z1|X) > 0

then limβ→0 µ̃αβ(Z1|R) > 0 which by Proposition 7 is sufficient for the
result. We will show that Z∗

1 
̃1A for all A ∈ Ã0 such that A ∩ X �= ∅. By
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Proposition 2 it will follow that µ̃αβ(Z∗
1 |X) > 0.

In view of Lemma 3, we need only show that Z∗
1 
̃1A for every A that

meets Z2. Consider such an A, and let d ∈ A ∩ Z2.
In proving that µ∗

αβ(Z1) > 0, we constructed a path {d, d1, . . . , dn} from
d through Z2 to a state dn ∈ Z2 in which there was an empty neighborhood.
This path was in G1, each of its edges had C-cost 1, hence each edge is its
own projection, and thus the path is in Ẽ.

Consider any edge (dt, dt+1) of this path for which dt ∈ At for some
At ∈ Ã0. Since the associated transition involved a single mutation, it has
Cβ-cost 1. Therefore if dt+1 ∈ At+1 for some At+1 ∈ Ã0, then the edge
(At, At+1) is part of G̃1.

Suppose this holds for all edges in the path. Then the path to An is
in G̃1, and An contains dn ∈ Z2. Since dn has an empty neighborhood, by
Lemma 1 we are done.

Suppose on the other hand that there is some edge whose endpoint is
not in any A ∈ Ã0, and let dt be the earliest such endpoint.

The demographic dt is in A0. That it is not in any A ∈ Ã0 means that
there is some A′ ∈ Ã0 such that A′
̃0dt and dt /∈ A′. By Proposition 3,
Z∗

1 
̃1A
′ implying Z∗

1 
̃1dt−1.
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