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Abstract

We analyze the extent to which the information structure in an extensive form

game can be inferred from the distribution on action profiles generated by player

strategies. Two games are said to be empirically compatible when the distribution

on action profiles generated by every behavior strategy in one can also be generated

by an appropriately chosen behavior strategy in the other. Our central idea is to

relate a game’s information structure to the conditional independencies in the em-

pirical distributions it generates. We present a new analytical device, the influence

opportunity diagram of a game, and demonstrate that it provides, for a large class

of economically interesting games, a complete summary of the information needed

to test empirical compatibility. A new equilibrium concept, causal Nash equilibrium,

is presented and compared to several other well-known alternatives. Cases in which

causal Nash equilibrium seems especially well-suited are explored.

Keywords: causal inference, information structure, extensive form, empirical com-

patibility, Bayesian network
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1 Introduction

This paper focuses on the question of what can be said about situations in which

the information structure of a finite-length extensive-form game is not known. There

are two cases in which the answer to this question matters. The first is when an

individual outside the game, say a researcher, would like to infer something about

the information structure of the game from the observed behavior of its participants.

The second is when individuals in a game are unsure of the information upon which

their opponents condition their decisions. In this latter case, beliefs about causal

structure — who influences whom — should play an important role in determining

equilibrium behavior.

We explore both cases and, specifically, analyze what can be inferred about a

game’s information structure solely from the probability distribution on action pro-

files induced by actual player strategies (which we refer to as the “empirical distri-

bution of play”). The main idea is to connect a game’s information structure, which

identifies the individual histories upon which players condition their behavior, to the

corresponding set of conditional independencies that must be observed in all of its

empirical distributions. When two games with different information structures imply

different sets of such independencies, then knowledge of the empirical distribution

provides a basis upon which to distinguish one from the other.

The first part of the paper considers information structure assessment from the

perspective of an outsider who only observes player behavior (actions, not strategies).

To this end, we introduce the notion of empirical compatibility between games. One

game is said to be empirically compatible with another when the empirical distribu-

tion induced by any behavior strategy profile in the first game can also be induced

by an appropriately chosen behavior strategy profile in the second. Thus, even un-

der infinite repetition, it is impossible to distinguish between empirically compatible

games based solely upon the observed behavior of players.

Our analysis is facilitated by the introduction of a graphical device, the influ-
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ence opportunity diagram (hereafter, IOD). We define the IOD constructively for a

broad class of finite-length extensive-form games, including those with infinite action

sets. A basic result is that such diagrams summarize information about the con-

ditional independencies that must be observed in all empirical distributions arising

from play of the underlying game. Thus, a necessary condition for two games to

be empirically compatible is that their IODs imply a consistent set of conditional

independencies. This condition is not, in general, sufficient because differences in the

specific information upon which players condition their behavior may imply empirical

incompatibility. However, we do identify a broad class of games, termed games of per-

fect observation, for which this condition is also sufficient. For games of this type, we

apply a well-known result from the artificial intelligence literature (see Appendix A)

to show that empirical compatibility can be determined by simple visual comparison

of their respective IODs.

The second part of the paper shifts the focus to influence assessment from the

inside — that is, to games in which the players themselves are uncertain about the in-

formation structure governing their play. If equilibrium is interpreted as the outcome

of some generic learning process (as is typical in the literature on learning in noncoop-

erative games), then a player’s equilibrium beliefs regarding the underlying influence

relationships should be consistent with reality. This idea leads to a new equilibrium

notion, that of a causal Nash equilibrium, which imposes such consistency on player

beliefs. We demonstrate the relationship between causal Nash equilibrium and other

well-known equilibrium ideas.

An obvious question is whether this new equilibrium concept holds useful impli-

cations for situations of genuine economic interest. We can think of at least two cases

in which it does. The first and, perhaps most obvious, is when payoffs are systemati-

cally related to information structure. In such situations, refining beliefs with respect

to the true information structure may well lead to a better assessment of the payoffs

faced both by oneself and one’s opponents. The second case, which to our knowledge
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has previously received no explicit attention in the economics literature, is when a

player (or players) must choose an appropriate ‘intervention’ in the activities of one

or more of their opponents. A player is said to have intervention ability when his or

her choice of action determines, non-trivially, the feasible actions available to others.1

Here, an accurate assessment of the game’s influence relationships may be crucial to

the success of the interventionist. We term these intervention games and present an

example of causal Nash equilibrium applied to such a game.

The remainder of the paper is organized as follows. The next section presents

several simple examples designed to illustrate the notion of empirical compatibility.

Section 3 lays out the definition of a finite-length extensive-form game (which differs

in some ways from the usual setup) and defines empirical compatibility. In Section 4,

we present our main results regarding the analysis of empirical compatibility from the

outside perspective. Section 4.1 shows how to construct an IOD from an extensive-

form game. Section 4.2 connects information structure to empirical compatibility

through the IOD. Section 4.3 shows how to test empirical compatibility between two

games by visual inspection of their respective IODs. Section 5 shifts the focus to

influence uncertainty within the game. First, we give a motivating example in which

uncertainty about who takes the role of Stackleberg leader may cause potential en-

trants to stay out of a market. Section 5.2 introduces our definition of causal Nash

equilibrium and makes formal comparisons to several well-known equilibrium con-

cepts. Section 5.3 presents an extended example of causal Nash equilibrium applied

to an intervention game. We conclude in Section 6 with a more thorough discussion

of related research and potential extensions.

2 Examples and Intuition

Consider the game trees presented in Figures 1 through 3. The first, ΓA, has the

familiar structure of a standard “signalling” game. The other three are variations
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involving the same players who have the same feasible actions at the time of their

moves. We wish to show that ΓA and ΓB are in an equivalence class in the sense

that any distribution on action profiles generated by (behavioral) strategies in one

can also be generated by an appropriate choice of strategies in the other. ΓC, on the

other hand, is not a member of this class.

Let A ≡ {(u, L,U) , ..., (d,R,D)} be the set of possible action profiles in each

of the three games (up to a permutation of the components). We refer to a single

profile a ∈ A as an “outcome” of play. Let θk ≡
(
θk
N
, θk

I
, θk

II

)
denote a behavior

strategy profile in Γk where θki is the strategy chosen by player i in game k. Every

behavior strategy in each of the three games implies a probability distribution m
θ
k

on A constructed as follows, for all a ∈ A,

m
θ
A (a) ≡ θAII (aII |aI) θ

A

I (aI |aN) θ
A

N (aN) ,

m
θ
B (a) ≡ θB

N
(aN |aI) θ

B

I
(aI |aII) θ

B

II
(aII) ,

m
θ
C (a) ≡ θCII (aII) θ

C

I (aI) θ
C

N (aN) .

Now, suppose ΓA is repeated a large number of times under a fixed strategy

profile θA. Assume the outcomes are recorded and reported to an outside observer

who knows that one of ΓA, ΓB, or ΓC is the game responsible for generating the data

(but not which). The question we wish to answer is whether there are any strategies

θA that would allow the outsider to correctly identify ΓA as the underlying game.

First, note that the construction of m
θ
A immediately implies that, for all a ∈ A,

the following factorization holds

m
θ
A (a) = m

θ
A (aII |aI)mθ

A (aI |aN)mθ
A (aN) .

Of course, m
θ
B and m

θ
C can be factored analogously. By the definition of conditional

6



probability, for every θA,

m
θ
A (a) = m

θ
A (aII |aI)mθ

A (aI |aN)mθ
A (aN)

=
m

θ
A (aII , aI)

m
θ
A (aI)

m
θ
A (aI, aN )

m
θ
A (aN)

m
θ
A (aN)

=
m

θ
A (aN , aI)

m
θ
A (aI)

m
θ
A (aI , aII)

m
θ
A (aII)

m
θ
A (aII)

= m
θ
A (aN |aI)mθ

A (aI |aII)mθ
A (aII) .

This is significant because it implies that for every behavior strategy in ΓA, one can

find a corresponding strategy in ΓB that generates exactly the same distribution onA;

given θA, simply construct θB such that, for all a ∈ A, θB
N
(aN |aI) ≡ m

θ
A (aN |aI) ,

and so on. Then, m
θ
A = m

θ
B . Therefore, the outside observer — even with very

exact information about the true distribution on outcomes implied by some behavior

strategy — can never distinguish between ΓA and ΓB. Since the converse is also true,

we say that ΓA and ΓB are empirically equivalent.

On the other hand, it should be clear that ΓC is not a member of the empirical

equivalence class containing ΓA and ΓB. Barring correlated strategies without an

explicit correlating device, there are many strategy profiles in ΓA (and, therefore, in

ΓB as well) that generate distributions over action profiles that could not possibly

correspond to any strategy profile in ΓC. In particular any θA in which either player

I’s behavior varies with Nature’s play or player II’s behavior varies with the play

of player I results in a m
θ
A that cannot be arranged by an appropriate choice of

strategy in ΓC.

3 The Model

Wherever possible, capital letters (X,Z) denote sets, small letters (a,w) either el-

ements of sets or functions, and script letters, (A,F) collections of sets. Sets with

product structure are indicated by bold capitals (A,E) with small bold (a, e) denot-

ing typical elements (ordered profiles) in such sets. Graphs and probability spaces
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play a large role in the following analysis. Standard notation and definitions are

adopted wherever possible.

3.1 Extensive-Form Games

We begin with a finite-length, extensive-form game of perfect recall. The game Γ has

a game tree (X,E) with nodes X and edges E. Players are indexed by N ≡ {1, ..., n}

with n < ∞. The terminal nodes are Z ⊂ X with typical element z. Payoffs are given

by u : Z → Rn. Attention is restricted to games in which influence opportunities

between players are fixed.2 Specifically, assume that all paths are of length t < ∞

and that the player-move order is summarized by an onto function o : T → N where

T ≡ {1, ..., t} and i = o (r) means that i is the player who (always) has the rth move.3

Every (xr, xr+1) ∈ E corresponds to an action available at xr. For all r ∈ T,

let Ar be the union of the actions available at the nodes in Xr. Edges are labeled

in such a way that every history is unique. In particular, every z ∈ Z corre-

sponds to a unique action profile az = (a1z , ..., atz). The set of all action profiles

is A ≡ ∪z∈Zaz. Each Ar comes equipped with a σ-algebra Ar. The σ-algebra for A

is A ≡ σ ({F ∈ ×r∈TAr|F ⊂ A}). Assume all measure spaces are standard.4 We call

(A,A) the outcome space. This, coupled with an appropriate probability measure,

is the focal object of our analysis. Let az �→ v (az) ≡ u (z) translate payoffs on Z to

payoffs on A.

For r ∈ T, the history at r is anA-measurable function a �→ h̃r (a) ≡ (a1, ..., ar−1).

We use hr to denote a typical element of h̃r (A) and define h̃1 to be a constant equal

to the null history h0. For every move r, there is a bijective relationship between

h̃r (A) , the set of all (r − 1)-length action profiles, and Xr. In general, players do

not know the full profile of actions leading up to their move. To reflect this, Xr is

partitioned into a collection of subsets called the move-r information partition and

whose elements are called move-r information sets. Given the bijective relationship

between Z and A (and the fact that every path in the tree contains exactly one
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node in Xr), the move-r information partition implies a corresponding partition of

A whose elements, we assume, are A-measurable. Define the information at move r,

Ir, to be the sub-σ-algebra of A generated by this partition; note that Ir ⊆ σ
(
h̃r

)
.

Typically, not all ofAr is available to player o (r) given a particular history hr. The

feasible actions at r are given by the Ir-measurable move-r feasible action constraint

c̃r : A → Ar. The measurability condition that is implied by the standard assumption

that feasible action sets are equal for all histories in the same information set. This

allows us to write c̃r

(
h̃r (a)

)
or c̃r (hr) without ambiguity.

Let ∆(X,X ) denote the set of probability measures on a measure space (X,X ) ;

whenX is countable, we simply write∆(X) where it is to be understood thatX = 2X.

Traditionally, a behavior strategy at a move is a function from the information sets at

that move to probability measures on the player’s feasible actions. Equivalently, we

implement this idea by defining a behavior strategy at move-r to be an Ir-measurable

function θr : A → ∆(Ar,Ar) where θr
(
F |h̃r (a)

)
is the probability that player

o (r) takes an action in F ∈ Ar given her arrival at the node corresponding to the

partial history h̃r (a). The measurability requirement achieves the effect of making

θr constant on all histories in the same information set. Naturally, θr
(
·|h̃r (a)

)
is

restricted to assign positive probability only to measurable subsets of c̃r

(
h̃r (a)

)
.

Player i’s behavior strategy is defined as the profile θi ≡ (θr)r∈o−1(i). Σi is the set of

all behavior strategies available to i. A strategy profile is an element θ ∈ Σ ≡ ×i∈NΣi.

When convenient, we use the familiar shorthand θ = (θi, θ−i) .

3.2 Empirical Distribution

Given a game meeting the conditions of the previous section, every behavior strategy

profile θ induces a probability space, denoted (A,A, mθ) . The measure mθ can be

constructed directly from θ as follows: for all F ∈ A,

mθ (F) ≡

∫
A1

. . .

∫
At

IF (a) θt (dat|a1, . . . , at−1) · · · θ2 (da2|a1) θ1 (da1) , (1)
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where
∫

indicates Lebesgue integration and IF is the indicator function for F. We

call mθ the empirical distribution induced by θ. For all r ∈ T, define ãr : A → Ar so

that ãr (a) is the projection of a into its rth dimension. Then, for all a ∈ A, Fr ∈ Ar,

mθ

(
Fr|h̃r

)
(a) = θr

(
Fr|h̃r (a)

)
(2)

where mθ

(
Fr|h̃r

)
denotes the conditional probability of ã−1

r
(Fr) given σ

(
h̃r
)
.5

We use mθ

(
ãr|h̃r

)
to denote the mθ-conditional distribution of ãr given σ

(
h̃r

)
.

Since θr is Ir-measurable, mθ

(
ãr|h̃r

)
is equal to mθ (ãr|Ir) . This, combined with (1)

and (2), implies that, for all θ ∈ Σ,

mθ =
∏
r∈T

mθ (ãr|Ir) , (3)

in the sense that, for all F ∈ A, mθ (F) =
∫
F
mθ (a) da =

∫
F

(∏
r∈T

mθ (ãr|Ir) (a)

)
da.

Equation (3) says that the information structure of an extensive-form game implies

certain conditional independencies in every empirical distribution that could arise

as a result of play. Alternatively, given an arbitrary mθ, is it possible to use the

relationship in (3) to deduce the information structure of the underlying game? The

answer is: yes, up to an equivalence class of games as described in the next section.

3.3 Empirical Compatibility and Equivalence

A game Γ′ is said to be empirically compatible with Γ when the empirical distribution

induced by any strategy profile in Γ can also be induced by an appropriately chosen

strategy profile in Γ′. Consider a situation in which the data generated by a game

is cross-sectional; i.e., a listing of the specific actions taken by each player without

reference to the timing of the moves. Then, an individual observing outcomes gen-

erated by repeated play of θ in Γ, eventually, develops a fairly precise estimate of

mθ. However, when Γ′ is empirically compatible with Γ, then there is no collection of

Γ-generated data capable of ruling out Γ′ as the true underlying game.
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An obvious necessary condition for empirical compatibility (in the sense described

above) is that the games have consistent player sets and outcome profiles. Given a

permutation f : T → T, let f (a) denote the permuted profile
(
af(r)

)
r∈T

and, for

F ⊆ A, let f (F) be the set whose elements are the permuted elements of F. Then, Γ′

is outcome compatible with Γ if and only if: (1)N = N ′; (2) there exists a permutation

f such that f (A) = A
′; (3) for all r ∈ T , o (r) = o′ (f (r)); and, (4) for all r ∈ T ,

Ar = A′

f(r). Let OΓ denote the class of games that are outcome compatible with Γ.

If Γ′ ∈ OΓ, then there may exist a θ′∈ Σ
′ that induces an empirical distribution on

(A,A) ; i.e., constructed as in (1) but using the appropriate permutation. When this

is the case, we write mθ
′ without ambiguity.

Definition 1 A game Γ′ is said to be empirically compatible with Γ, denoted Γ 	 Γ′,

if Γ′ ∈ OΓ and there exists a function g : Σ → Σ
′ such that ∀θ ∈ Σ, mθ = mg(θ).

If both Γ 	 Γ′ and Γ′ 	 Γ, then Γ and Γ′ are said to be empirically equivalent,

denoted Γ ∼ Γ′. The interpretation is that when Γ′ and Γ are empirically equivalent,

any behavior observed under Γ (“observed” in the sense of knowing mθ) could also

be observed under Γ′ and visa versa. When Γ ∼ Γ′, Γ differs from Γ′ in terms of

its information and, possibly, payoff structures. Note that empirical compatibility is

strong in the sense that the condition must hold for all θ ∈ Σ. Alternatively, for

example, one might be interested in a notion of empirical compatibility defined only

for specific (e.g., equilibrium) profiles.

Lemma 1 Empirical equivalence is an equivalence relation on the space of finite-

length extensive form games. Moreover, if Γ ∼ Γ′, then (f (A′) , f (A′))= (A,A) for

some permutation f and there exists an onto correspondence g : Σ ⇒ Σ
′ such that

∀θ ∈ Σ,θ′ ∈ g (θ) , mθ = mθ
′ .

To help fix ideas, let us revisit the examples in Section 2. Starting with ΓA, for

all θA ∈ Σ
A, the empirical distribution m

θ
A is constructed by: for all a ∈ A,

m
θ
A (a) = θA

II
(aII |aI) θ

A

I
(aI |aN) θ

A

N
(aN) .
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Let Aai
⊂ A be the event in A corresponding to player i playing action ai; e.g.,

AU = {a1, a2,a5, a6} . Then, it is easy to check that, for all θA ∈ Σ
A,

m
θ
A = m

θ
A

(
ãII |I

A

II

)
m

θ
A

(
ãI |I

A

I

)
m

θ
A

(
ãN |I

A

N

)
,

where, IA
N

= {∅,A} (i.e., θA
N

is a constant), IA
I

= {∅,AU ,AD,A} and IA
II

=

{∅,AL,AR,A}.

Clearly, ΓB ∈ OΓA. Moreover, as we saw in the example, for any θA ∈ ΣA, there

corresponds a θB ∈ ΣB such that, for all a ∈ A,

m
θ
A (a) = θBN (aN |aI) θ

B

I (aI |aII) θ
B

II (aII) .

Therefore, ΓA 	 ΓB. Since this works in both directions, it is also true that ΓB 	 ΓA,

thereby implying ΓA ∼ ΓB.

4 Assessing Empirical Compatibility

In this section we analyze empirical compatibility from the perspective of an outside

observer who, we suppose, observes a large number of outcomes generated by repeti-

tion of a game with unknown information structure. To what extent does such data

illuminate the game’s underlying information structure? Given a candidate game,

empirical compatibility can be checked with the same “brute-force” approach used in

the motivating examples. In simple cases, the analysis is relatively straightforward.

On the other hand, consider the game in Figure 4. Here, 5 players interact under a

relatively complex information structure. The implications of this structure for the

empirical distributions on actions arising from player strategies are not obvious. We

now develop results by which these implications are neatly analyzed.

4.1 Influence Opportunity Diagrams

Loosely, player o (r) is said to have the opportunity to influence play at move s if

he has a choice of feasible actions available under some conceivable play of the game
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that permits player o (s) to alter her behavior regardless of what her other opponents

do (i.e., opponents other than o (r)). The following definition formalizes this idea.

Definition 2 The influence opportunity diagram of Γ is a graph (T,→) such that

r → s if and only if r < s, and there exist a,a′ ∈ A satisfying each of the following

conditions: (1) h̃r (a) = h̃r (a
′) ; (2) ∃F ∈Is such that h̃−1r+1 (a1, ..., ar) ⊂ F and a

′ ∈

F
c; (3) a′s �= as; and, (4) ãj(a

′)j∈{k|k>r, k→s} = ãj(a)j∈{k|k>r, k→s}.

The meat of the definition is that r → s when there is some move-r history (item

1) at which player o (r) has a choice of actions that cause play at s to be at different

information sets (item 2) and to which player o (s) can respond differently (item

3). Note that item 2 implies that there are at least two distinct actions available

at r, one that guarantees the occurrence of F and another that is necessary for the

occurrence of Fc (but may not guarantee it). Influence is only an “opportunity”

since this condition is neither necessary nor sufficient for move r actions to have an

actual effect on move s behavior. For example, the player at move s may choose to

ignore the action taken at move r (e.g., when θs is constant on A). Alternatively,

the player at move r may influence play at move s indirectly through other players

(e.g., when r → q → s even though r � s). Item 4 is a technical condition that

rules out spurious influence due to feasible action restrictions that force the move

at s to be independent of actions taken at r given actions taken at some subset of

moves following r. Although spurious influence due to game structure is a technical

possibility, it does not arise in any games of economic interest with which we are

familiar.

Return to game ΓA in Figure 1. Here, player I observes player N and player

II observes player I, which suggests the IOD should be N → I and I → II. To

see that this is correct, first check N → I. In this case, II = {∅,FU ,FD,A} where

FU ≡ {a1, a2, a5,a6} . Then, (a5, a4) establish the result: (1) h̃N (a5) = h̃N (a8) = h0,

(2) h̃−1I (h0, U) = {a1,a2, a5,a6} = FU and a4 ∈ F
c = FD, and (3) ãI (a5) = (R) �=

ã3 (a4) = (L) . Item (4) is automatically satisfied since there are not moves between
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N and II. Similarly, I → II is established by (a1, a6) . However, N � II since the

smallest III-measurable event containing either h̃−1N (U) or h̃−1N (D) is A.6

By identical reasoning, the IODs for the game in Figure 3 is N ← I ← II.

The IOD for Figure 2 is a graph with three nodes and no edges. The IOD for the

Gatekeeper game (Figure 4) is simply:

1 2

↘ ↙

3

↙ ↘

4 5

Player 3 is the “gatekeeper” of information flowing from players 1 and 2 to players 4

and 5.

To understand item (4) of the definition, consider Game I in Figure 5. Notice that

this game has the unusual feature that player 2’s feasible action sets are different at

every information set. Without item (4), the IOD would be 1 → 2, 2 → 3 and 1 → 3.

However, by condition (4), 1 → 3 is removed. Intuitively, the game’s structure implies

that knowing the action chosen by 1 is always irrelevant in assessing 3’s behavior when

the action taken by 2 is already known. If the feasible actions at information set 2b

are {U,D} , as in Game II, then the IOD is 1 → 2, 2 → 3 and 1 → 3.

Lemma 2 Let (T,→) be an IOD for some game Γ. If r, s ∈ T such that r < s and

r � s, then Is ⊆ σ
(
h̃
s\r

)
where h̃

s\r (a) ≡ (a1, ..., ar−1, ar+1, ..., as−1).

The preceding lemma is helpful in establishing the conditional independencies

implied by game structure (Proposition 1, below). The following lemma follows im-

mediately from the requirement that r → s only if r < s. This is needed for the

results in Section 4.3.

Lemma 3 Every influence opportunity diagram is a directed, acyclic graph.
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We now demonstrate that the IOD summarizes certain conditional independen-

cies that must arise in every empirical distribution of play.7 Given (T,→) , the set of

moves at which players may exert a direct influence upon player o (r) at move r is

{s ∈ T |s → r} . Define π̃r (a) ≡ (ãk)k∈{s∈T |s→r} to be the σ
(
h̃r

)
-measurable projec-

tion of a into the dimensions indexed by {s ∈ T |s → r}. If {s ∈ T |s → r} = ∅, let π̃r

be an arbitrary constant (in which case, σ (π̃r) = {∅,A}).

Proposition 1 Given a game Γ with influence opportunity diagram (T,→) ,

∀θ ∈ Σ, mθ =
∏
r∈T

mθ (ãr|π̃r) . (4)

4.2 Compatibility and Independence in Probability

If Γ 	 Γ′, then there does not exist a strategy profile in Γ that, sufficiently repeated,

generates data that distinguishes it from Γ′. In particular, equation (1) and the

measurability restriction on behavior strategies imply that Γ 	 Γ′ if and only if

Γ′ ∈OΓ and

∀θ ∈ Σ, mθ =
∏
r∈T

mθ (ãr|I
′

r
) , (5)

where I ′

r
⊂ A corresponds to the information at move f(r) in Γ′.8 In other words,

testing whether Γ′ is empirically compatible with Γ is equivalent to checking for out-

come compatibility and then checking whether every empirical distribution induced

by a strategy in Γ can be factored according to the information algebras implied by

Γ′.9 Since I ′

r
⊆ σ (π̃′

r
), we have the following corollary to Proposition 1.

Corollary 1 If Γ 	 Γ′ then

∀θ ∈ Σ, mθ =
∏
r∈T

mθ (ãr|π̃
′

r
) . (6)

To see why condition (6) is only necessary (i.e., as opposed to necessary and

sufficient when Γ′ ∈OΓ), consider the two games in Figure 6. Both have the same

IOD: I → II. Moreover Γ2∈OΓ1
and Γ1∈OΓ2

. Clearly, however, there are empirical
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distributions that can arise in Γ1 but not in Γ2. Indeed, Γ2 	 Γ1 but Γ1 � Γ2. The

issue is the measurability distinction between conditions (5) and (6). If I2

II
is the

information algebra for II in Γ2, then there are behavior strategies for II in Γ1 that

are not I2

II
-measurable even though every such strategy is σ

(
π̃2
II

)
-measurable.

For certain types of games, Corollary 1 can be strengthened. Γ is said to be a

game of perfect observation if, for all r ∈ T, Ir = σ (π̃r) ; a game of perfect observation

is one in which a player observes the moves of those preceding her either perfectly or

not at all. This class contains many extensive-form games of economic interest: all

of the games in Section 2 meet this requirement as do many standard market games

such as Cournot, Stackleberg, etc.

Proposition 2 Let Γ′ be a game of perfect observation. Then, Γ 	 Γ′ if and only if

Γ′ ∈ OΓ and condition (6) hold.

Suppose one is interested in determining whether two games, say Γ and Γ′, happen

to be empirically compatible. Then, Corollary 1 implies a sufficient condition by which

to reject empirical compatibility.10

Proposition 3 Suppose Γ′ ∈ OΓ, then Γ �	 Γ′ if ∃θ ∈ Σ, r ∈ T such that mθ (ar|π̃r)

is not σ(π̃′

r
)-measurable.

Proposition 3 provides a sufficient test for rejecting empirical compatibility. What

about a sufficient test to establish it? Corollary 1 seems impractical as a basis for

this since it appears to require checking an infinite number of strategies. As we now

show, however, it is not necessary to test every empirical distribution. Rather, very

generally it is possible to select one distribution that illuminates all of the conditional

dependencies that may arise and all the information available to each agent.

A strategy profile θ ∈ Σ is said to be maximally revealing if and only if there

does not exist S ⊂ {s ∈ T |s → r} such that mθ(ãr|π̃S) = mθ(ãr|π̃r), where π̃S() is

the projection of a to the dimensions indexed by S. If θ is maximally revealing,
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then the IOD is minimal in the sense that removal of any edge causes equation (4)

to fail. Game II in Figure 5 illustrates a maximally revealing strategy (where θ

is identified by the edge weights shown). To see this, recall that the IOD is given

by 1 → 2, 1 → 3 and 2 → 3. Note that mθ (U |L) = .50 but mθ (U) = .41. In

addition, mθ (x|L,D) = 1 while mθ (x|D) = .54, mθ (x|L) = .50 and mθ (x) = .41.

So, mθ (a3) = mθ (L)mθ (D|L)mθ (x|L,D) exactly per the IOD and this equality

fails by the removal of any conditioning variables.

Proposition 4 For every game there exists a maximally revealing strategy profile.

If θ is maximally revealing, then an observer who knows the move order o and

empirical distribution mθ can accurately infer the game’s IOD. A strategy profile

θ′ that is not maximally revealing implies that mθ
′ contains additional conditional

independencies relative to mθ (due, i.e., to players who choose to ignore certain

information or who play certain actions with zero probability). Note, however, that

such a θ′ can never introduce new conditional dependencies relative to mθ.

Thus, a test for empirical compatibility between Γ and Γ′, where Γ ∈ OΓ′ , is: 1)

take any maximally revealing strategy profile θ in Γ, and 2) check whether equation

(4) holds. If not, the games are not empirically compatible. If Γ and Γ′ are games

of perfect observation then the ability to factor mθ according to (4) also provides a

sufficient test of empirical compatibility. We formalize this below.

Proposition 5 Suppose Γ′ is a game of perfect observation and that Γ ∈ OΓ′. If

there exists a maximally revealing θ ∈ Σ such that mθ =
∏

r∈T
mθ (ar|π̃

′

r
) , then

Γ 	 Γ′.

Corollary 2 Suppose Γ and Γ′ are games of perfect observation, Γ′ ∈ OΓ and

Γ ∈ OΓ′. If there exist maximally revealing θ ∈ Σ and θ′ ∈ Σ
′ such that mθ =∏

r∈T mθ (ãr|π̃
′

r) and mθ
′ =

∏
r∈T mθ

′

(
a′f ′(r)|π̃f ′(r)

)
, then Γ ∼ Γ′.
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4.3 A Simple Visual Test for Empirical Compatibility

The number of possible conditional independencies implied by the IOD of any rea-

sonably complex game will be quite large. This section presents a result that allows

the testing of empirical equivalence by direct comparison of IODs without reference

to specific probability parameters. For the following proposition, given a directed

graph (T,→) , let E be the set of edges without reference to direction; i.e., {i, j} ∈ E

if and only if (i → j) or (j → i) . Let S ⊂ T 3 be the set of all ordered triples such

that (i, j, k) ∈ S if and only if (i → j) , (k → j) and {i, k} /∈ E.

Proposition 6 Assume Γ ∈ OΓ′. If Γ 	 Γ′ then (T,→) and (T,→′) are such that

E ⊆ E ′ and S ⊆ S
′. If Γ′ is also a game of perfect observation, then these conditions

are also sufficient.

Corollary 3 Assume Γ and Γ′ are games of perfect observation and Γ ∈ OΓ′ and

Γ′ ∈ OΓ. Then, Γ ∼ Γ′ if only if (T,→) and (T,→′) are such that E = E ′ and S = S
′.

This is an especially nice result in games of perfect observation because it allows

us to test empirical compatibility between games by direct visual inspection of their

IODs. To see this, consider once again games ΓA and ΓB in Section 2. These are

both games of perfect observation. The IODs are N → I → II and N ← I ← II,

respectively. By Corollary 3, we know almost immediately that these games are

empirically equivalent: EA = EB = {{N, I} , {I, II}} and S
A= S

B = ∅. Recall that

the IOD for the Gatekeeper game is:

c1 c2

↘ ↙

c3

↙ ↘

c4 c5

Since this is a game of perfect observation, Corollary 3 tells us that there are no other

games with which this game is empirically equivalent. Any empirically compatible
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IOD would have the same set of edges, some with different directions. However,

reversing any arrow above either breaks a converging pair of arrows or creates a new

one.11

Finally, the requirement that elements of S not include convergent arrows with

linked tails (i.e., (i, j, k) ∈ S ⇒{i, k} /∈ E) has an implication for three-move games

that should be kept in mind when reviewing the examples in Sections 5.1 and 5.3.

Namely, all outcome compatible games whose IOD is a variation of the fully connected

graph

1

↙ ↘

2 −→ 3

are empirically compatible.

5 Influence from the Player’s Perspective

In this section, we consider the implications of empirical compatibility from the per-

spective of the players inside a game. There are at least two cases in which uncertainty

about a game’s information structure may have equilibrium implications. The first

is when payoffs are correlated with game structure. That is, when knowledge about

the structure of the game may allow players to infer something about their own type.

We begin this section with a motivating example of this kind. We then present a new

equilibrium notion, causal Nash equilibrium, for games in which uncertainty about

who influences whom is an important factor. Finally, we close with an example of

the second case, games in which the central interest is in the ability of one player to

intervene in the activities of others. In such situations, the interventionist’s beliefs

about his influence relationships may have important behavioral implications.
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5.1 Causal Uncertainty as a Barrier to Entry

Consider a situation in which a firm must decide whether or not to enter an industry.

Assume the potential entrant is a short-term player (i.e., will play for one period

only) which, upon entry, challenges a long-term incumbent in a market game of

quantity competition. Suppose the challenger is uncertain both about the information

structure and its ownmarginal cost. Imagine the challenger has in its possession cross-

sectional quantity data from a long sequence of interactions in which entry occurred

(by other short-term competitors). Assume that the data indicates a noisy process

with a strong negative correlation between the quantity choices of the incumbent and

those of its competitors. Demand parameters are known, but actual cost information

is not publicly available. Entrants share a common cost.

What should the challenger do? The correlated quantity choices suggest that

someone, either the entrant or the incumbent, takes the role of Stackleberg leader.

To make things concrete, suppose the market game is parameterized as follows. The

market leader and follower have constant marginal costs of cl = 2 and cf = 1,

respectively. Inverse demand is given by P ≡ 7− ql − qf where (ql, qf) ∈ R2
+ are the

quantities chosen by the two firms. Firm production processes are prone to stochastic

shocks with actual output for firm k given by qak ≡ qk + εk where εk ∼ (0, σ2k) is an

i.i.d. random noise term. The Nash equilibrium expected output is q̄l = 2 and q̄f = 2.

The expected profit for the leader is v̄l = 2 and for the follower is v̄f = 4. Actual

observations (i.e., the data available to the challenger) are generated by qal = 2 + εl

and qaf = 2− 1

2
εl+ εf . This implies that Cov

(
qal , q

a
f

)
< 0. The challenger knows these

parameters, but not the role to which it will be assigned upon entry.

Let Γ1 be the game in which the incumbent is the leader and Γ2 be the one in

which entrants lead. Assume once and for all that entrants are always Stackleberg

followers; i.e., the true game is Γ1. If the challenger enters, it pays a one-time entry

fee of 3. If it stays out, it receives a payoff of zero. In this situation, the Nash

equilibrium of the game is for our challenger to enter with a net expected payoff of 1.
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The incumbent is assumed to know the truth and to play optimally in every period

(which is simply to play his part of the static Nash equilibrium in the market stage

game).

The problemwith applying Nash here is highlighted by Corollary 3. The true stage

game has three moves and a fully connected IOD {(E1 → I) , (I → E2) , (E1 → E2)}

where E1 is the entrant’s decision to enter or not, and I and E2 are the incumbent’s

and the entrant’s quantity choices, respectively. As we discuss on page 19, since

Stackleberg is a game of perfect observation, this is empirically equivalent to the

subgame in which the entrant is the leader. No quantity of data (of the type specified

above) can identify which is the true game. Specifically, suppose the challenger has

initial prior µ ∈ [0, 1] that Γ1 is the true stage game. If µ ≤ 1

2
, the subjectively

rational challenger enters, otherwise it does not. Notice that, if entry occurs, the

challenger learns the game is, indeed, Γ1 and, upon learning this, has no regrets

about its decision. On the other hand, if the firm stays out, it receives a payoff

of zero (as expected) and no sequence of additional entry data generated by future

challengers will ever reveal its mistake.

One well-known solution concept that may seem appropriate in this situation is

Bayesian Nash equilibrium (hereafter, BNE). However, BNE requires players to have

common and correct priors which, in this context, implies either that all challengers

enter or all challengers stay out. In particular, assuming the challenger has a wealth

of data from previous entries but decides to stay out is inconsistent with BNE. Ap-

parently, some solution concept other than Nash or BNE is required. This is the

subject to which our analysis now turns.

5.2 Causal Nash Equilibrium

In the spirit of the literature on game theoretic learning, we wish to develop an

equilibrium concept whose interpretation is consistent with situations like the one

described above. In equilibrium, players begin with priors that are consistent with
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some (unmodelled) pre-play learning process that (implicitly) generates information

about the game’s influence relationships, they choose strategies that are optimal with

respect to these priors and, as play unfolds, nothing observed with positive probability

refutes their initial priors. Specifically, suppose players in some game Γ are uncertain

about the game’s information structure and payoffs; that is, everyone knows they

are playing some game in OΓ. Let µ̂i denote player i’s initial prior regarding which

of the games in OΓ is the one actually being played. For simplicity, assume that

Λi ≡ support (µ̂i) is finite. We do not require players to have common priors, but we

do impose a minimal amount of consistency with the underlying game: for all i ∈ N,

Γ ∈ Λi.

In this context, each player needs to know what she will do at any information set

that could be reached in any of the games she believes she might be playing. Recall

that the information sets at a move in Γ correspond to a partition of A. Therefore,

for all Γk ∈ Λi, let Ck
r ⊂ A denote the partition of A that corresponds to player

i’s move-r information sets in Γk. Define Ck
i ≡ ∪r∈o−1(i)C

k

r
. For each C ∈ Ck

i
, there

is a corresponding set of feasible actions for player i, which we now denote Ak

C
(the

definition ofOΓ ensures measure consistency across games, so we suppress reference to

the associated σ-algebras). Thus, reaching an information set in game Γk is equivalent

to being told
(
C, Ak

C

)
. Define ΩΛi

≡ ∪Γk∈Λi
∪C∈Ck

i

(
C, Ak

C

)
; that is, ΩΛi

is the set of

all
(
C, Ak

C

)
upon which i may condition her behavior given her belief that the true

game is one contained in Λi. When Λi is clear from the context, we simply write Ωi.

Let ω denote a typical element of Ωi and Aω its feasible action component.

To illustrate, suppose player II from the examples in Section 2 places positive

weight on ΓA (Figure 1) and ΓB (Figure 2); so, ΛII =
{
ΓA,ΓB

}
. As we know,

ΓA,ΓB ∈ OΓ. Player II has one move. If the true game is ΓA, then at the time of

her move, she knows either CL ≡ {a1,a2, a3, a4} or CR ≡ {a5, a6, a7,a8} and that

she is to choose one of {u, d} . If, on the other hand, ΓB is the game, her knowledge

at the time of her move is completely unrefined; that is, she knows C∅ ≡ A and
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that her feasible actions are {u, d} . Therefore, CA
II

= {CL,CR} and CB
II

= {A} .

Given her uncertainty, player II must develop an action plan that allows for any of

ΩII = {(CL, {u, d}) , (CR, {u, d}) , (C∅, {u, d}) , }.

A subjective behavior strategy for player i given µi is a function φi such that, for

all ω ∈ Ωi, φi (ω) ∈ ∆(Aω,Aω) . Given µi, let Φi be the set of all subjective behavior

strategies for i. It is easy to see that φi restricted to the ω implied by Γk, for example,

corresponds to a unique behavior strategy for i in Γk, written φi|Γk ∈ Σ
k
i
. Thus, given

a game Γ, a profile of subjective strategies φ = (φ1, . . . , φn) implies a probability space

(A,A,mφ) where mφ is the measure induced by (φ1|Γ, . . . , φn|Γ) ∈ Σ.

For all Γk ∈ Λi, player i makes some assessment, denoted θk

−i
, of the strategies

adopted by the other players when the true game is Γk. Let Θ̂i ≡
(
θk

−i

)
Γk∈Λi

be the

profile summarizing i’s assessment of opponent behavior in each of these games. Given

a subjective behavior strategy φi and beliefs
(
µ̂i, Θ̂i

)
, we can define the expected

payoff

Ev

(
φi|µ̂i, Θ̂i

)
≡

∑
Γk∈Λi

µ̂i

(
Γk

) ∫
A

vk
i (a)m(φ

i|Γk
,θk−i)

(da) .

For beliefs
(
µ̂i, Θ̂i

)
, the best reply correspondence is

BR
(
µ̂i, Θ̂i

)
≡

{
φi ∈ Φi|∀φ

′

i
∈ Φi, Ev

(
φ
i
|µ̂

i
, Θ̂i

)
≥ Ev

(
φ′

i
|µ̂

i
, Θ̂i

)}
.

Let µ̂ ≡ (µ̂
1
, . . . , µ̂n) and Θ̂ ≡

(
Θ̂1, . . . , Θ̂n

)
denote profiles of player beliefs regard-

ing the underlying game and opponent behavior, respectively.

In a causal Nash equilibrium (hereafter, CNE), we desire agents to maintain beliefs

that are consistent both with the information they observe as well as with the best

assessment of influence relations possible from (hypothetical) data on pre-equilibrium

play. We have not yet identified what events i thinks he might observe at the con-

clusion of play if, say, Γk is the true game. What we assume is that i knows exactly

as much as is implied by his payoff vk
i
. Formally, Vk

i
is the partition of A implied by

vk
i
. Lastly, for the upcoming influence-consistency condition, let ΞΓ denote the set of

games that are empirically compatible with Γ.
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Definition 3 A profile φ is a causal Nash equilibrium if there exist beliefs
(
µ̂, Θ̂

)
such that, for all i ∈ N : (1) Subjective optimization: φi ∈ BR

(
µ̂i, Θ̂i

)
; (2) Uncon-

tradicted beliefs: (i) for all Γk ∈ Λi, B ∈ Ck
i ∪ Vk

i , m(φi|Γk ,θk
−i)

(B) = mφ (B) , (ii)

vk

i
= vi mφ-a.s.; and, (3) Learned structure: Λi ⊆ ΞΓ.

The first condition says that players play best responses to their beliefs. The

second imposes consistency between a player’s expectations and the true distribution

induced on their own observables by φ. That is, a player’s expectations are cor-

rect with respect to information sets arrived at with positive probability during the

game
(
Ck
i

)
as well as with whatever information is reported at its conclusion

(
Vk
i

)
.

Moreover, conditional expectations over own outcomes upon arriving at a particular

information set are also correct. The last requirement limits the set of games under

consideration to those meeting the “pre-equilibrium learning” consistency condition.

The interpretation of this is that, as players grope their way toward equilibrium dur-

ing the (unmodelled) learning phase, they discover the influence relationships implied

by the structure of their game. Finally, although a subjective strategy must provide

for the possibility that player i observes the same histories with two distinct action

sets (i.e.,
(
C, Ak

C

)
or

(
C, Al

C

)
with Ak

C
�= Al

C
), items (2) and (3) combined with the

assumption of perfect recall imply that this never occurs in equilibrium (e.g., Γ1 and

Γ2 in the preceding illustration are not empirically compatible).

Returning to the entry example, let φ be given by: (i) qE = 0, and (ii) qI =
5

2
if

qE = 0 and qI = 2 otherwise. Assume the challenger’s beliefs about which game is

being played is given by µE > 1

2
. Regarding the incumbent’s strategy, the challenger

correctly believes the incumbent produces 5

2
when there is no entry and 2 otherwise.

The incumbent knows the game and assumes the challenger produces 2 if it enters.

Equilibrium payoffs are as expected. These strategies and beliefs constitute a causal

Nash equilibrium.

CNE places no explicit restrictions on players’ beliefs about the rationality or

payoffs of their opponents. Of course, (µ̂i, Θ̂i) may explicitly include such additional
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restrictions. For example, a self-confirming equilibrium (SCE) in Γ is a CNE such

that, for all i ∈ N, µ̂i (Γ) = 1. So, SCEΓ ⊆ CNEΓ where SCEΓ is the set of self-

confirming equilibria associated with Γ, etc. A Nash equilibrium (NE) is an SCE

such that, for all i ∈ N, Θ̂i = θ
−i. Therefore, NEΓ ⊆ SCEΓ. A Bayesian Nash

equilibrium (BNE) is an SCE in which, for all i, j ∈ N, µ̂i = µ̂j and Θ̂i = θ
−i. So,

BNEΓ ⊆ SCEΓ. Summing up:

Proposition 7 For any finite-length extensive-form game Γ, NEΓ ⊆ SCEΓ ⊆ CNEΓ

and BNEΓ ⊆ CNEΓ.

Kalai and Lehrer (1995) present the notion of a “subjective game” and a corre-

sponding definition of subjective Nash equilibrium (SNE). Their novelty is to demon-

strate that a player need not know the entire game or his co-players’ strategies in

order to compute a best response. Rather, it suffices for a player to know his own

“environment response function,” a mapping from his available actions probability

distributions on the consequences he might experience as a result of those actions.

We wish to show that, in the context of the games studied by Kalai and Lehrer, CNE

is a refinement of SNE.

In order to make the comparison formal we must introduce some new concepts

and the corresponding notation (much of the latter adopted directly from Kalai and

Lehrer). For consistency, we restrict attention to finite subjective games, which are

simultaneous-move games played in stages. In each stage, player i has a countable

set of actions, denoted Ai. The outcome of any stage is an element in Astg ≡ ×i∈NAi.

Let T index repetitions of the stage, so the outcome space for the game as a whole

is the Cartesian product A ≡ (Astg)
t . (Much of the analysis in Kalai and Lehrer

focuses on games with infinitely repeated stages, but introducing a dynamic version

of CNE is beyond the scope of this paper).

As before, when game Γ and player i are understood from the context, Cr denotes

the partition of A that summarizes what player i knows at the start of stage r; in
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this setup, e.g., for all players, C1 = {A}. Vi is defined with respect to vi as before.

In a subjective game, Ci ≡ Vi ∪r∈o−1(i) Cr is called i’s set of consequences. Since Astg

is countable and t < ∞, Ci is also countable. The idea is that, in stage r, player i

recalls the consequence reported at the end of stage (r − 1) , Cr ∈ Ci, and chooses

an action in Ai. He is then informed of a new consequence Cr+1 ∈ Ci. Under perfect

recall, consequences do double-duty — they imply both the history known to i at the

start of a stage as well as the event reported to i at its conclusion.

The environment response function for a player summarizes his individual decision

problem. Formally, ei|Cr−1ai,r
(Cr) denotes the probability of player i’s stage r conse-

quence being Cr given that his last consequence was Cr−1 and that he took action

ai,r. Given a profile of opponent strategies θ
−i, the computation of i’s environment

response function is straightforward: for all r ∈ T, ai,r ∈ Ai and Cr−1,Cr ∈ Ci,

ei|Cr−1ai,r
(Cr) = mθ (Cr|Cr−1)

where θi is chosen such thatCr−1∩
{
a
′ ∈ A|a′i,r = ai,r

}
occurs with positive probability.

If θ−i is such thatCr−1 is impossible no matter what strategy i chooses, then ei|Cr−1ai,r

can be defined arbitrarily (since this situation never comes up).

Thus, ei summarizes all the stochastic information i needs to calculate an optimal

strategy. Let (A,σ (Ci) , mθi,ei) be the probability space in whichmθi,ei is the measure

on i’s individually observable events σ (Ci) ⊂ A, induced by mθ. Define

Ev (θi|ei) ≡
∑
C∈Vi

vi (C)mθi,ei (C) .

Given an ei, the best-response correspondence is

BR (ei) ≡ {θi ∈ Σi |∀θ
′

i ∈ Σi, Ev (θi|ei) ≥ Ev (θ
′

i|ei)} .

The last piece of the analysis is to assume that players do not know their true

environment response function. Instead, player i assesses ei by a subjective environ-

ment response function êi. That is, êi|Cr−1ai,r
(Cr) is i’s subjective assessment that
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Cr occurs after having been told Cr−1 and having taken action ai,r. Then, mθi,êi

represents i’s belief on observable events given his choice of θi and his assessment êi.

Definition 4 The pair (θ, ê), ê ≡ (ê1, . . . , ên), is a subjective Nash equilibrium

(SNE) if, for all i ∈ N : (1) subjective optimization: θi ∈ BR(êi); and, (2) uncontra-

dicted beliefs: mθi,ei = mθi,êi.

To prove that CNE refines SNE we need only demonstrate that beliefs
(
µ̂i, Θ̂i

)
,

as defined above, imply a subjective environment response function in the finite sub-

jective game. Then, items (1) and (2) in Definition 4 are implied by items (1) and

(2) in Definition 3 (players are assumed to know their payoffs in a subjective game).

So, the only difference is that CNE has the learned influence requirement, item (3),

that is not imposed in SNE. It is assumed that players know they are playing a finite

subjective game.

Proposition 8 Given a finite subjective game Γ, CNEΓ ⊆ SNEΓ.

5.3 Intervention Games

We now turn to a class of games in which the distinctions of Definition 3 are mean-

ingful. Define an intervention game as one in which some player must choose an

appropriate intervention, meaning taking an action that changes the feasible actions

available to some other player or players. Consider the following extended example

of such a game.

A manager, denotedM , is responsible for the output of two departments, denoted

A and B. The firm’s profits, which the manager wishes to maximize, depend upon

coordination between the departments. The options available to M are: 1) pursue

a decentralized strategy and permit the two departments to engage in activities as

they see fit, or 2) implement an intervention strategy to improve coordination by

setting departmental actions (e.g., by monitoring and policing that department’s
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behavior). Assume, perhaps due to resource constraints, that M can only intervene

in the activities of one department or the other.

Referring to Figure 7, suppose the actual departmental subgame is Γ1 : A moves,

then B attempts to coordinate. We suppress payoffs to A and B and assume they

play fixed strategies. The order of moves is: 1) M chooses from the set of actions

AM ≡
{
a0
M
, aL

M
, aR

M
, al

M
, ar

M

}
where

a0
M

= {L,R, l, r} (do nothing),

aL
M

= {L, l, r} (make A play L),

aR
M

= {R, l, r} (make A play R),

al
M

= {L,R, l} (make B play l),

ar
M

= {L,R, r} (make B play r),

2) A moves by choosing aA ∈ {L,R} ∩ aM , and 3) B moves by choosing aB ∈

{l, r} ∩ aM . M receives vM = 1 if A and B coordinate (i.e., {L, l} or {R, r}) and 0

otherwise. Any choice other than the “do nothing” option by M is an intervention.

The idea is that M can either sit by and let the game run its natural course, or

(imperfectly) influence the joint behavior of A and B.

Suppose, however, that M does not know the structure of the interaction between

departments. For simplicity, assume that the departments play according to: A op-

erates independently with θA (L,R) = (.4, .6) and B attempts to coordinate with the

following probabilities

A action θB (l, r|aA)

L (.8, .2)

R (.1, .9)

After a sufficient history of unmanaged departmental interaction, M observes the
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following outcome frequencies

Empirical Distribution m

Dept. Activity Profiles Observed Frequency

(L, l) .48

(L, r) .12

(R, l) .04

(R, r) .36

It is clear that A and B already do a reasonable job of coordinating. Left to their own

devices, coordinate 84% of the time. Thus, the expected payoff of the decentralized

(do nothing) approach .84.

From the history of interaction described in the preceding table, it is clear that

either A or B plays a leadership role with the counterpart attempting to coordinate

(with mixed success). Clearly, the simultaneous-move subgame, Γ3, can be ruled out.

Γ1 and Γ2 on the other hand, are empirically equivalent. This is easily seen since the

respective IODs are {(M → A) , (M → B) , (B → A)} and {(M → A) , (M → B) , (A → B)} ,

both of which conform to the conditions in Corollary 3. Decomposing the empirical

distribution into departmental strategies consistent with Γ2, we have the following: B

operates independently with θB (l, r) = (.52, .48) and A attempts to coordinate with

these probabilities

B action θA (L,R|aB)

l (.92, .08)

r (.25, .75)

Can M do better with an intervention? Since Γ3 can be ruled out, suppose

µM (Γ1) = µM (Γ2) = 0.5. Then, the expected payoffs associated with the available

interventions are:
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Payoff in Γi

Action Γ1 Γ2 Expected Payoff

Do nothing .84 .84 .84

Fix L .80 .52 .66

Fix R .90 .48 .69

Fix l .40 .92 .66

Fix r .60 .75 .68

These beliefs and doing nothing constitute a CNE. Objectively, of course, M should

intervene and fix aA = R, thereby increasing the expected payoff from .84 to .90.

Thus, doing nothing is not a NE. Since positive weight is placed by M on Γ2, neither

is it a SCE.

Suppose µM (Γ3) = 1 with θ̃A (L,R) = (.4, .6) and θ̃B (l, r) = (.5, .5) . The subjec-

tive expected intervention-contingent payoffs are

Do nothing .5

Fix aA = L .5

Fix aA = R .5

Fix aB = l .4

Fix aB = r .6

The subjectively rational manager sets aB = r, observes mθ (L) = (.4) and mθ (R) =

(.6) as expected and receives the expected payoff of .6. This is an SNE, but not a

CNE since condition (3) of the CNE definition fails.

6 Discussion

Although our definition of empirically compatible games is new, the idea of empirically

equivalent strategies is introduced at least as early as Kuhn (1953). Two strategies,

behavior or mixed, are equivalent if they lead to the same probability distribution
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over outcomes for all strategies of one’s opponents. Kuhn demonstrates that, in

games of perfect recall, every mixed strategy is equivalent to the unique behavior

strategy it generates and each behavior strategy is equivalent to every mixed strategy

that generates it (see Aumann, 1964, for an extension to infinite games). It follows

immediately that every extensive-form game of perfect recall is empirically compatible

with its reduced normal form and visa versa. Our results demonstrate that, generally,

the set of empirically compatible games is much larger.

We have interpreted the results in Section 4 as consistent with the inferences that

would be made by an outside observer with sufficiently informative empirical data.

One question that immediately comes to mind is whether these ideas can be extended

to construct an econometric test for game structure given cross sectional data on

player actions. For example, the maximum likelihood estimate of the information

structure for an industry could be useful in refining cost estimation in I/O empirical

work (as suggested by the example in Section 5.1). This is the subject of on-going

research.

The literature contains two primary approaches to analyzing situations in which

players do not know the structure of the game. The first, and closest to ours in spirit,

is Kalai and Lehrer’s (1993, 1995) work on subjective games and their notion of

subjective equilibrium. Kalai and Lehrer show that, provided beliefs are sufficiently

close to the truth, play converges to a SNE. Moving to an infinitely repeated version

of CNE and exploring the convergence properties of noisy learning processes strikes

us as a worthwhile extension of this paper; we conjecture that results along the lines

of Kalai and Lehrer also hold in our setting. The second approach, is to encode a

player’s uncertainty regarding the information structure of the game into his or her

type (à la Harsanyi, 1967 — 68). When players have correct (and, therefore, common)

priors, there is nothing in our methodology that is inconsistent with the Harsanyi

approach.

Several authors have proposed other equilibrium definitions whose interpretations
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are consistent with the idea that equilibria arise as the result of learning.12 The

structure shared by these definitions is: 1) players have prior beliefs about certain

unknowns (i.e., competitor strategies and/or various elements of game structure), and

2) choose strategies that are best-replies to these beliefs, which then, 3) generate “ob-

servables” that do not refute the priors upon which the strategy choices were based.

CNE has the novelty that beliefs are restricted to the set of empirically compati-

ble games rather than, say, the set of games empirically consistent with the specific

equilibrium strategy profile (typically, a much larger set). The stronger condition is

appropriate if players observe a wide range of behavior prior to settling down into

equilibrium.

A game’s IOD is a graph that summarizes information about its empirical distri-

butions. This idea (i.e., using graphs to encode probabilistic information) is not new

outside economics. In particular, there is a burgeoning artificial intelligence litera-

ture on the use of graphs to simultaneously model causal hypotheses and to encode

the conditional independence relations implied by these hypotheses. Such graphs are

called probabilistic networks.13 An important distinction in our work is that the IOD

is derived from the primitives of a game and not from the properties of a single,

arbitrarily-specified probability distribution. Thus, the information encoded in an

IOD holds for all empirical distributions arising from play in the underlying game.

Moreover, many of the results in the first part of the paper rely on the special struc-

ture implied by distributions of this kind and, as mentioned earlier, may not hold in

a non-game-theoretic context.

Until recently, work on probabilistic networks in the artificial intelligence com-

munity focused upon the decision problem of a single individual. Thus, another

aspect separates our work from the existing AI literature is its use of these objects

in the solution of game-theoretic (i.e., interactive) decision problems. Two other

papers, one by Koller and Milch (2002) and another by La Mura (2002) also use

probabilistic networks to derive results of interest to game theorists along a different
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line. Both of these papers develop alternative representations for interactive decision

problems based upon probabilistic networks (i.e., as opposed to a game’s strategic or

normal form) and argue that these representations are not only computationally ad-

vantageous but also provide qualitative insight into the structural interdependencies

between player decisions.
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A AI Results

The next proposition is due to Verma and Pearl (1990; see also Geiger et al. 1990). It

demonstrates that a directed, acyclic graph can be used to summarize the conditional

independencies implied by a joint distribution on a finite set of random variables.

Proposition 9 was originally proven for finite probability spaces. For the extension to

the infinite case, see Cowell et al. (1999, p. 63).

Proposition 9 Suppose V = {v1, ..., vn} is a finite collection of random variables

on a probability space (Ω,F , m). Assume (V,→) and (V,→)′ are minimal directed,

acyclic graphs such that m =
∏

n

j=1m (vj|paj) .Then, m =
∏n

j=1m
(
vj|pa

′

j

)
if and only

if E=E ′ and S = S
′.

Corollary 4 Suppose V = {v1, ..., vn} is a finite collection of random variables on a

probability space (Ω,F , m). Assume (V,→) and (V,→)′ are directed, acyclic graphs

such that m =
∏n

j=1m (vj|paj) . If (V,→) is minimal, then m =
∏n

j=1m
(
vj|pa

′

j

)
if

and only if E⊆E ′ and S ⊆ S
′.

B Proofs of the propositions

B.1 Lemma 1

Part I (Equivalence relation) Reflexivity: Given Γ and the identity mappings f (r) =

r and g (θ) = θ implies Γ 	 Γ. Transitivity: Assume Γ ∼ Γ̂ and Γ̂ ∼ Γ′. Suppose

Γ 	 Γ̂ with permutation f and strategy mapping g, and Γ̂ 	 Γ′ with permutation f̂

and mapping ĝ. Then, Γ 	 Γ′ under f̃ ≡ f ◦ f̂ . and g̃ ≡ g ◦ ĝ. By similar reasoning,

Γ′ 	 Γ. Therefore, Γ ∼ Γ′. Symmetry: This is immediate from the definition. Part

II ((f (A′) , f (A′))= (A,A)) This is immediate from Γ ∈ OΓ′ and Γ′ ∈ OΓ. Part III

Let g and ĝ be functions meeting the conditions of Γ 	 Γ̂ and Γ̂ 	 Γ, respectively.
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Define g̃ : Σ ⇒ Γ̂ as follows:

∀θ ∈ Σ, g̃ (θ) ≡

 g (θ) if θ /∈ ĝ
(
Σ̂

)
ĝ−1 (θ) if θ ∈ ĝ

(
Σ̂

)
Clearly, g̃ is onto and has the desired property for θ /∈ ĝ

(
Σ̂

)
. Suppose θ ∈ ĝ

(
Σ̂

)
.

Then, for all θ̂ ∈ĝ−1 (θ) ,
(
Â, Â, m̂

ˆθ

)
=

(
Â, Â, m̂θ

)
by the definition of ĝ. By

the equality of measurable spaces (Part II), it is also the case that (A,A,m
ˆθ
) =

(A,A, mθ) .

B.2 Lemma 2

1. Let F
′∈Is be an arbitrary element of the partition of A that generates Is.

Recall, Is ⊆ σ
(
h̃s

)
, so we can trivially construct an index set J , such that F′ =⋃

j∈J h
j
r∩G

j
r ∩G

j
r+ where hj

r ∈ σ
(
h̃r

)
, Gj

r ∈ σ (ãr) , G
j
r+ ∈ σ (ãr+1, . . . , ãs−1) .

2. We claim that for all F′∈Is there exist an index set J , hj
r ∈ σ

(
h̃r

)
and G

j
r+ ∈

σ (ãr+1, . . . , ãs−1) such that

F
′ =

⋃
j∈J

(
h
j
r ∩ ã−1r

(
c̃r
(
h
j
r

))
∩G

j
r+

)
Suppose not. Then, there exist hr, B ⊂ c̃r(hr), and Gr+ such that B �= ∅,

Bc �= ∅, and

F
′ ⊃ hr ∩B ∩Gr+,

F
′ �⊃ hr ∩Bc ∩Gr+.

But this clearly contradicts r � s.

3. Using, items 1) and 2)

F
′ =

⋃
j∈J

(
h
j
r ∩ ã−1r

(
c̃r
(
h
j
r

))
∩G

j
r+

)
=

⋃
j∈J

(
h
j
r ∩G

j
r+

)
But, this implies that F′ ∈ σ

(
h̃s\r

)
. Thus, Is ⊆ σ

(
h̃s\r

)
.
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B.3 Proposition 1

Given equation (3), equation (4) holds if, for all θ ∈ Σ, r ∈ T,

mθ (ãr|π̃r) = mθ (ãr|Ir) . (7)

Recall, for all F ∈ A,mθ (ãr (F) |π̃r) is the conditional probability of ã−1
r

(Fr) given

σ (π̃r) where Fr ≡ {a ∈ Ar|∃a ∈ F, ãr (a) = a} . Thus, the two conditions charac-

terizing mθ (ãr|π̃r) are: (i) mθ (ãr|π̃r) is σ (π̃r)-measurable and (ii) for all F ∈ A,

G ∈ σ (π̃r) , ∫
G

mθ (ãr (F) |π̃r) (a)mθ (da) = mθ

(
ã−1
r

(Fr) ∩G
)
.

We need to demonstrate that mθ (ãr|Ir) also satisfies these conditions. For all r ∈ T,

Lemma 2 implies thatF ∈ Ir ⇒ F ∈ σ (ãk)k∈{s∈T |s�r}c. Of course, σ (ãk)k∈{s∈T |s�r}c =

σ (π̃r) , so Ir ⊂ σ (π̃r). Therefore, mθ (ãr|Ir) is σ (π̃r)-measurable. But this (and the

definition of conditional probability) implies that, for all F ∈ A, G ∈ σ (π̃r) ,∫
G

mθ (ãr (F) |Ir) (a)mθ (da) = mθ

(
ã−1
r

(Fr) ∩G
)
.

B.4 Proposition 2

The necessity of (6) follows from Corollary 1. Assume Γ′ ∈ OΓ and let f be the

permutation guaranteed by this relationship. Consider an arbitrary θ ∈ Σ. By the

premise,mθ =
∏

r∈T mθ (ãr|π̃
′

r) . By the definition of perfect observation, for all r ∈ T,

I ′

r = σ (π̃′

r) . Therefore, for all θ ∈ Σ, r ∈ T, choose θ′ ∈ Σ
′ such that ∀F ∈ Ar,

θ′

f(r)

(
F |h̃f(r) (f (a))

)
= mθ (F |π̃′

r) (a), r ∈ T .

B.5 Proposition 3

Let θ ∈ Σ, r ∈ T satisfy the premise. Since mθ (ãr|π̃r) is not σ(π̃′

r)-measurable,

condition (6) fails and hence, by the contrapositive of Corollary 1, Γ �	 Γ′.
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B.6 Proposition 4

Let Cr denote the partition generating Ir, |G| denote the cardinality of the set G

and, for all s ∈ T, let Πs ≡ {r ∈ T |r → s} . We prove Proposition 4 by constructing

a strategy for the game and showing it is maximally revealing. We construct the

strategy as follows:

1. For all s such that |Πs| = 0, pick arbitrary a ∈ A and letHs = {a} andGs = ∅.

2. Otherwise, by the definition of an IOD (Definition 2), for each r ∈ Πs, there

exist Fr ∈ Cs and (ar, a
′

r
) ∈ Fr×F

c

r
such that h̃r(ar) = h̃r(a

′

r
), ãr (ar) �= ãr (a

′

r
),

ãs (ar) �= ãs (a
′

r
), and ãk (ar) = ãk (a

′

r
) for k ∈ Πs \{r}. For each r ∈ Πs, choose

such a pair (ar, a
′

r
) and defineHs ≡

⋃
r∈Πs

{ar, a
′

r
}, andGs ≡ {G ∈ Cs|Hs∩G �=

∅}.

3. Let H ≡
⋃

t

s=1
Hs. Note that H is finite.

4. Define behavior strategies of the agent at move s ∈ T , θs, as follows:

(a) For each F ∈ Cs, H ∩ F �= ∅, let θs(a|F) be such that: (i) θs(a|F) > 0 if

a ∈ ãs(H∩F) and zero otherwise, and (ii) for any two distinct F,F′ ∈ Cs,

H ∩ F �= ∅, H ∩ F
′ �= ∅, θs(a|F) �= θs(b|F

′) for any distinct a, b ∈ ãs(H).

If ãs(H ∩ F) is a singleton, condition (ii) may require the need to find a

second a′ ∈ c̃s(F) \ ãs(H) with which to construct a distinct θs(a|F) (as

long as |c̃s(H)| > 1). In such a case a′ can be an arbitrary element of

cs(F) \ ãs(H).

(b) For each F ∈ Cs, H ∩ F = ∅, define θs(a|F) such that it assigns full

probability to some a ∈ c̃s(F).

Clearly, this procedure generates a strategy θ ∈ Σ. Furthermore, mθ(a) > 0 for

all a ∈ H. Let H
′ = {a ∈ A|mθ(a) > 0} so that H ⊆ H

′ and by construction

|H′| < ∞. We need to confirm that this strategy satisfies the condition of being
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maximally revealing; i.e., there does not exist s ∈ T and S ⊂ {r ∈ T |r → s} such

that mθ(ãs|π̃S) = mθ(ãs|π̃s), where π̃S() is the projection of a to the dimensions

indexed by S. For all (r, s) such that r → s, and all a ∈ A, define the events G(a),

F
a|s
r , F

a|s
−r as follows: G(a) is the intersection of H′ with the smallest set B ∈ Is such

that h̃−1r+1(h̃r+1(a)) ⊆ B; Fa|s ≡ H
′
⋂

{j|j→s} ã
−1
j (a) and F

a|s
−r ≡ H

′
⋂

{j|j �=r, j→s} ã
−1
j (a).

The strategy θ, as constructed above, is maximally revealing if there does not

exist (r, s) such that r → s and for all a ∈ H
′

mθ

(
F
a|s ∩ ã−1

s
(a)

)
mθ (Fa|s)

=
mθ

(
F
a|s
−r ∩ ã−1

s
(a)

)
mθ

(
F
a|s
−r

) (8)

By construction above, for all (r, s) there exist ars, a
′
rs ∈ H, such that ars, a

′
rs

satisfy the conditions of definition 2, and a
′
rs �∈ G(ars). Recall that we chose ars

and a
′
rs such that ãk(ars) = ãk(a

′
rs) for all k ∈ Πs \ {r}. Let ãr(a

′
rs
) = b and

define S = Πs \ {r}. By construction θs(b|h̃s(ars)) �= θs(b|h̃s(a
′
rs)). This implies

mθ(b|h̃s)(ars) �= mθ(b|h̃s)(a
′
rs) which is true if and only if

mθ

(
F
ars|s ∩ ã−1

s
(a′

rs)
)

mθ (Fars|s)
�=

mθ

(
F
a

′
rs|s ∩ ã−1

s
(a′

rs)
)

mθ (Fa
′
rs|s)

.

Since F
ars|s
−r = F

a
′
rs|s

−r , Equation (8) holds for, at most, one of {ars, a
′
rs}.

B.7 Proposition 5

Once Proposition 2 is established, we need only show that condition (6) holds. Take

an arbitrary θ̂ ∈ Σ and r ∈ T and consider θ̂r(ar|Ir). By Proposition 1, θ̂r(ar|Ir) =

θ̂r(ar|π̃r). Using equation (2), we can write

∀F ∈ Ar, θ̂r(F |π̃r) = m
ˆθ
(F |π̃r)

Since θ is maximally revealing for Γ, for all r ∈ T , there does not exist S ⊂ {k|k →

r} such that mθ(ar|π̃S) = mθ(ar|π̃r). This combined with mθ(ar|π̃r) = mθ(ar|π̃
′

r)

implies that σ(π̃r) ⊆ σ(π̃′

r
). Hence, for all F ∈ Ar, mˆθ

(F |π̃r) = m
ˆθ
(F |π̃′

r
). This

implies m
ˆθ
=

∏
r∈T

m
ˆθ
(ãr|π̃

′

r
) .
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B.8 Proposition 6

Let vj = ãj = ã′

f(j) in Corollary 4.

(⇒) Given Γ ∈ OΓ′, pick a fully revealing θ ∈ Σ. As (T,→) is minimal apply

Corollary 4 to get E ⊆ E ′ and S ⊆ S
′.

(⇐)Given Γ ∈ OΓ′, pick a fully revealing θ ∈ Σ. As E ⊆ E ′ and S ⊆ S
′, and (T,→)

is minimal, apply Corollary 4 to obtain mθ(vj|π̃j) = mθ(vj|π̃
′

j). Use this equation to

define mθ on (T,→′) . As Γ′ is a game of perfect observation, the strategy associated

with mθ(ãr|π̃r) is a valid strategy on Γ′. Define g(θ) ≡ θ′(ã′

r|π̃
′

r) = θ(ãr|π̃r). As this

procedure generates a valid strategy for a fully revealing strategy it also works for

any arbitrary θ ∈ Σ (see proof of Prop 5).

B.9 Proposition 8

In a subjective game, each player knows his own consequences and payoffs. This

implies, Ωi = {(C,Ai) |C ∈ Ci} . Therefore, for all Γ
k ∈ Λi, φi|Γk = φi|Γ; so, we write

φi without ambiguity. Let φ be a causal Nash Equilibrium in a subjective game

supported by beliefs
(
µ̂, Θ̂

)
. For all i ∈ N, for all r ∈ T, ai,r ∈ Ai and Cr−1,Cr ∈ Ci,

define,

êi|Cr−1ai,r(Cr) ≡
∑
Γk∈Λi

µ̂i

(
Γk

) ∑
Cr∈Ci

m(φ′i,θk−i)
(Cr|Cr−1)

where, as before, φ′

i is chosen such thatCr−1∩
{
a
′ ∈ A|a′i,r = ai,r

}
occurs with positive

probability. If φ
−i is such that Cr−1 is impossible, define êi|Cr−1ai,r

arbitrarily. For

all Ct ∈ Ct, define

mφi,êi
(Ct) =

∑
ai,r∈Ai

êi|Ct−1ai,r(Ct)φi ((Ct−1, Ai)) (ai,r) ,

where, given the perfect recall assumption,Ct−1 ∈ Ci is the unique consequence such

that Ct−1⊃ Ct. Therefore,

Ev

(
φi|µ̂i, Θ̂i

)
=

∑
C∈Vi

vi (C)mφi,êi
(C) = Ev (φi|êi) .
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Thus, φi ∈ BR
(
µ̂i, Θ̂i

)
⇒ φi ∈ BR (êi) ; i.e., item (1) of Definition 3 implies item

(1) of Definition 4. Since, for all Γk ∈ Λi, r = T,
(
C ∈ Ck

r

)
⇒ (C ∈ Ci) , item (2.i)

of Definition 3 implies mφ
i
,êi = mφ

i
,ei . Since, in a subjective game, player i knows

vi, condition 2.ii is automatically satisfied (i.e., for all subjective games). Thus, item

(2) of Definition 3 implies item (2) of Definition 4. This proves (φ ∈ CNEΓ) ⇒

(φ ∈ SNEΓ) .
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C Footnotes

1. Many real-world managerial situations, for example, appear to be characterized

by this structure.

2. If our results are to be interpreted as relevant to situations in which players

learn about their ability to influence others, it seems reasonable to assume that

they do so in an environment in which such influence is a stationary aspect of

the game.

3. These conditions are less restrictive than they may at first appear since players

may make multiple moves and/or may be limited to a single, ‘null’ action at

certain information sets (see, e.g., Elmes and Reny, 1994).

4. That is, they are finite, denumerable or isomorphic with the unit interval. In

particular, this assumption implies the points in each set are measurable. The

use of this word is due to Mackey (1957).

5. Both (1) and (2) follow from a standard result in probability theory. See, e.g.,

Fristedt and Gray (1997, p. 430-31).

6. Note that N has some hope of influencing II indirectly through I. Even so, II

may choose to ignore the move of I (e.g., pick u at both information sets).

7. In what follows, keep in mind the distinction between probability measures

on (A,A) induced by a strategy profile in the underlying game versus generic

elements of the much larger space∆(A,A). Our results are critically dependant

upon the structure implied by the former.

8. That is, if I ′

f(r) ⊂ A′ is the information at move f(r) in Γ′ (where f is the

permutation guaranteed by Γ′ ∈ OΓ), then F ∈ I ′

r if and only if f (F) ∈ I ′

f(r).

9. Note that feasible action consistency is implied by Γ′ ∈OΓ.
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10. We thank an anonymous referee for pointing out the relationship between

Proposition 1 and an earlier result which enabled us to generalize it (the fol-

lowing proposition) and simplify the proof.

11. This last result raised a question that was put to us by E. Dekel in correspon-

dence. Given the well-known works by Thompson (1952) and Elmes and Reny

(1994) that identify transformations on extensive form games that yield the

equivalence class of games with the same strategic form, is there a set of op-

erations, similar to these in spirit, that yield games with equivalent IODs (in

the sense of Corollary 3)? Due to space limitations, we do not provide a formal

reply. Clearly, however, Corollary 3 does suggest a step-wise transformation

that will yield empirically equivalent extensive forms with different IODs. The

transformation, while difficult to formalize in the context of an extensive form

game, is easy to describe: it is the transformation that flips an “allowed” arrow

(per Corollary 3) in the original IOD.

12. A few of the more important contributions include Battigalli and Guatoli’s

(1988) conjectural equilibrium, Fudenberg and Levine’s (1993) self-confirming

equilibrium and, of course, Kalai and Lehrer’s (1993, 1995) subjective equilib-

rium. For related work, see Abreu, Pearce, and Stacchetti (1990), Blume and

Easley (1992), Brandenburger and Dekel (1993), Geanakoplos (1994), Milgrom

and Roberts (1990), and Nachbar (1996). Howitt and McAfee (1992) employ a

similar idea in a macroeconomic application.

13. Cowell et al. (1999), Jensen (2001) and Pearl (1988, 2000) provide nice intro-

ductions for those interested in pursuing this material further.
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Figure 1: game ΓA
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