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Abstract

The inde�nitely repeated prisoner's dilemma game provides a paradigm for long-

term cooperation in the face of short-term incentives for free riding. However, the

extent to which players cooperate in the laboratory depends on the parameters of the

game. To understand this, I take a simple direct approach motivated by theory. I

hypothesize that players tremble and that they �nd the best perfect public equilibrium

of the induced game of imperfect public information. I calibrate the probability of

trembling using no data from repeated game experiments. This model makes sharp

predictions and does a good job both qualitatively and quantitatively in explaining

the experimental data.
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1. Introduction

The in�nitely repeated prisoner's dilemma game provides a paradigm for long-term

cooperation in the face of short-term incentives for free riding. Such an environment

is induced in the laboratory by ending the game with a role of the dice. In a repeated

inde�nite horizon prisoner's dilemma game, players are then rematched with new

opponents to play another inde�nite horizon prisoner's dilemma game. This enables

us to see in the laboratory the long-term play of experienced players - the type of

play that is most relevant in most applications outside the laboratory.

Theoretically, when the discount factor is su�ciently high, on account of the folk

theorem of Fudenberg and Maskin (1986), any degree of cooperation is possible in

equilibrium. However, game theorists have long believed, or at least hoped, that

players will �nd their way to cooperative equilibria. This hope has proven false in

experimental studies such as Dal Bo and Frechette (2011).

In order to explain how the degree of long-term cooperation depends on the speci�c

payo� parameters of the game researchers, such as Dal Bo and Frechette (2011),

Blonski, Ockenfels and Spagnolo (2011), Blonski and Spagnolo (2015) and Fudenberg

and Rehbinder (2024), have employed a variety of models motivated by individual

learning. Here, I take a simple direct approach, motivated by theory. I hypothesize

�rst that players tremble, and second that, given these trembles, they achieve the

greatest welfare possible in equilibrum. An inde�nite horizon prisoner's dilemma

game is then one of imperfect public signals and I study the welfare maximizing

memory-one perfect public equilibria.

Based on earlier work on non-repeated games in Levine (2025), I assume that the

chance that a player trembles uniformly is 1/3, that is, there is a 1/6 chance of playing

an unintended action. I show that this calibration does a good job qualitatively and

quantitatively of explaining cooperation levels in twelve repeated prisoner's dilemma

treatments from ten papers.

I defer the literature review to section 5 where I explicitly compare the results

of this theory to earlier work on cooperation in repeated games. There I show that

performance of noise theory is similar to theories that are estimated from the repeated

game data.
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2. The Model

Two players i ∈ {1, 2} repeatedly play a prisoner's dilemma stage game. They

take actions ai ∈ {C,D}, C for cooperate and D for defect. Payo�s are symmetric

and given by ui(a) where a denotes the pro�le. Following the literature, payo�s

are normalized so that ui(CC) = 1 and ui(DD) = 0. After each stage game, the

match continues with probability 0 < δ < 1. Welfare in each period is given by

ω(a) = (u1(a) + u2(a))/2.

2.1. Trembles

Having described the environment, I turn to the theory. Players tremble uni-

formly with probability 1 > φ > 0. This makes it necessary to distinguish between

intentions and actions. The game is then one of imperfect public information with

players choosing intentions and observing public signals which are the outcomes. Fol-

lowing Fudenberg, Levine and Maskin (1994) the solution concept is perfect public

equilibrium. Because of the nature of matching in the laboratory, equilibria must be

symmetric.

With respect to intentions, let αi denote the probability that i intends to cooper-

ate. The probability that i actually cooperates is then given by α̃i = (1 − φ/2)αi +

(φ/2)(1−αi). The intention pro�le of the two players induces a probability distribu-

tion over outcomes y ∈ {CC,CD,DC,DD}by

π(y|α) =



α̃1α̃2

α̃1(1− α̃2)

(1− α̃1)α̃2

(1− α̃1)(1− α̃2)

y = CC

y = CD

y = DC

y = DD

.

Utility in the one-shot game as a function of intentions is accordingly given by U i(α) =∑
y∈A2 π(y|α)ui(y).

2.2. One Period Memory

A one-period memory strategy is σi(y) is a probability vector over intentions

ai ∈ A, conditional on the previous period outcome y ∈ {CC,CD,DC,DD}. It is

used together with an initial strategy σi0, also a probability vector over ai ∈ A. This
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class of strategies is commonly used in studying experimental repeated games, for

example, by Fudenberg and Rehbinder (2024).

For any initial y and one-period memory strategies σi expected utility is given

recursively by

V i(y|σ) = (1− δ)U i(σ(y)) + δ
∑
a∈A2

∑
y′∈A2

σi(ai|y)σ−i(a−i|y)π(y′|a)V i(y′|σ)

De�ne the 4× 4 matrix for y, y′ ∈ A2 by

H(y, y′|σ) =
∑
a∈A2

σi(ai|y)σ−i(a−i|y)π(y′|a)

then V i(σ) = (I − δH(σ))−1(1− δ)U i, where U i is the 4-vector of utilities U i(σ(y)).

2.3. Incentive Compatibility

The memory-one pro�le σ is incentive compatible if for all i ∈ 1, 2, di ∈ {C,D},
y ∈ {CC,CD,DC,DD}

V i(y|σ) ≥ (1− δ)U i(di, σ−i(y)) + δ
∑
a−i∈A

∑
y′∈A2

σ−i(a−i|y)π(y′|di, a−i)V i(y′|σ).

A pair consisting of an initial pro�le and memory-one pro�le (σ0, σ) is incentive

compatible if σ is incentive compatible and for all i ∈ {1, 2},di ∈ {C,D}

V
i
(σ0, σ) ≡ (1− δ)U i(σ0) + δ

∑
a∈A2

∑
y′∈A2

σi0(ai)σ−i0 (a−i)π(y′|a)V i(y′|σ) ≥

(1− δ)U i(di, σ−i0 ) + δ
∑
a−i∈A

∑
y′∈A2

σ−i0 (a−i)π(y′|di, a−i)V i(y′|σ).

Let Σ denote the set of all symmetric incentive compatible pairs (σ0, σ).

2.4. Welfare Maximum

Maximizing welfare subject to the incentive contraints de�nes ω̂ = max(σ0,σ)∈Σ V
i
(σ0, σ).

Noise theory predicts that this should describe long-run average welfare in laboratory

play.
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2.5. Computation

Based on earlier work on non-repeated games in Levine (2025) I used the tremble

parameter φ = 1/3.

Maximization took place searching over a grid of K+1 points for each component

of σi. In order to �nd mixed strategies all ε-equilibria were computed. De�ne Γ = 0.33

to be the greatest gain to defecting in any payo� matrix in Table 3.2 below. Then

ε = .51Γ/K assures if there are mixed equilibria they will be found.

The �rst run used K = 20. As σi(CC) was always in {0, 1} this restriction was

imposed for the second run with K = 80. Recall that in a Harsanyi puri�cation

individuals are restricted to pure strategies and mixing takes place only because

di�erent individuals use di�erent pure strategies. Since the number of participants

per session was less than 30, using a grid of K = 80 is greater precision than can be

obtained with a Harsanyi puri�cation

On an ordinary desktop computer searching grids of K = 20 took about thirty

seconds to solve for each treatment.

3. The Data

I started with all the data in the metastudies of Dal Bo and Frechette (2018)

and Fudenberg and Rehbinder (2024). As in Fudenberg and Rehbinder (2024) I

excluded treatments with �nite endings. As I am interested in long-run play, I used

only data starting from the tenth match from experiments in which the sessions lasted

more than �fteen matches. Twenty �ve treatments from ten papers remained: the

ten papers are listed in Table 3.1 below. As indicated, some of the studies replicated

treatments originally done in Dal Bo and Frechette (2011).
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abbreviation replication citation

dal_fre no Dal Bo and Frechette (2011)
dre_et_al_08 no Dreber et al (2008)

bru_kam no Bruttel and Kamecke (2012)
she_tar_sai no Sherstyuk, Tarui and Saijo (2013)
kag_sch no Kagel and Schley (2013)

are_cou_ran no Arechar, Kouchaki and Rand (2018)
dal_fre_15 yes Dal Bo and Frechette (2015)
dal_fre_19 yes Dal Bo and Frechette (2019)
pro_rus_sof yes Proto, Rustichini and So�anos (2019)
ghi_sue yes Ghidoni and Suetens (2022)

Table 3.1: Studies

replication indicates if study replicates treatments in Dal Bo and Frechette (2011)

In these studies there are nine normalized payo� matrices shown below in Table

3.2.

payo�s u1(CC) u1(CD) u1(DC) u1(DD)

dal_fre:A 1.00 −1.86 3.57 0.00
dal_fre:B 1.00 −0.87 1.67 0.00
dal_fre:C 1.00 −0.57 1.09 0.00

dre_et_al_08:A 1.00 −2.00 3.00 0.00
dre_et_al_08:B 1.00 −1.00 2.00 0.00

bru_kam 1.00 −0.83 2.17 0.00
she_tar_sai 1.00 −0.25 2.00 0.00
kag_sch 1.00 −0.50 2.00 0.00

are_cou_ran 1.00 −0.33 1.33 0.00

Table 3.2: Payo� Matrices: player 1 payo�s

C for cooperate, D for defect

These payo� matrices are combined with di�erent discount factors and give rise

to twelve distinct treatments shown below in Table 3.3. The column CD-DC is the

welfare from the o�-diagonal where one player cooperates and one defects. I always

aggregate statistics by combining all experiments which are replications of each other.
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payo�s δ CD-DC welfare ω cooperation participants matches

dal_fre:A 0.50 0.86 0.14 0.10 196 42
dal_fre:B 0.50 0.41 0.15 0.18 80 61
dal_fre:C 0.50 0.26 0.39 0.46 306 43
dal_fre:A 0.75 0.86 0.25 0.19 146 33
dal_fre:B 0.75 0.41 0.64 0.65 68 42
dal_fre:C 0.75 0.26 0.69 0.72 260 44

dre_et_al_08:A 0.75 0.50 0.14 0.14 28 21
dre_et_al_08:B 0.75 0.50 0.46 0.46 22 27

bru_kam 0.80 0.67 0.35 0.32 36 20
she_tar_sai 0.75 0.88 0.69 0.59 56 26
kag_sch 0.75 0.75 0.58 0.53 114 30

are_cou_ran 0.13 0.50 0.19 0.19 66 21

Table 3.3: Treatments: by payo�s and δ

welfare: average welfare in the data
cooperation: fraction of times cooperation is chosen in the data
CD-DC: average payo� when one cooperates and one defects

matches: average number of matches in the data

3.1. Cooperation vs. Welfare

Welfare is predicted by the theory and has a strong economic meaning, so is a

natural measure of �what happened in a treatment.� By contrast earlier work has

focused on cooperation rates. Of course, the reason that cooperation is interesting in

the prisoner's dilemma is precisely because the dilemma is that mutual cooperation

welfare dominates the dominant strategy equilibrium. That is, the dilemma it is

about welfare and cooperation is correlated with welfare.

Cooperation rates do directly measure behavior. Hence, it is sensible to ask how

welfare di�ers from the cooperation rate. First, if players play only CC or DD

then the two are the same: because payo�s are normalized, welfare is equal to the

cooperation rate. Second, if o�-diagonal welfare is one half, as it is in Dreber et al

(2008) and Arechar, Kouchaki and Rand (2018) then the two are the same. All of

the o�-diagonal welfares are reported in Table 3.3 above.

The cooperation rate is an imperfect measure of �what happened in a treatment�

because it does not account for correlation. It views a 50 − 50 alternation between

CC and DD as exactly the same as a 50−50 alternation between CD and DC. From

the point of view of behavior those two alternations are quite di�erent. In a game like
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dal_fre:C where o�-diagonal welfare is 0.26 alternating between one cooperating and

defecting is not terribly good. By contrast, in a game she_tar_sai where o�-diagonal

welfare is 0.88 alternating between one cooperating and one defecting is not so bad.

While from an economic point of view welfare is meaningful and so is arguably

a better measure, the bottom line is that as a practical matter it does not make

much di�erence: the two measures are highly correlated. Using the data in Table 3.3

I regressed cooperation rates on welfare. The results in Table 3.4 below show how

highly correlated the two measures are.

intercept slope

coe�cient −0.02 1.01
se 0.03 0.07

Table 3.4: Regression of cooperation on welfare ω

R-squared is 0.95

Since the theory here predicts welfare and as it has strong economic meaning, I

will focus on that.

4. Theory vs. Data

The results of this study are summarized in Table 4.1 below. It shows the twelve

treatments, together with the welfare prediction of noise theory ω̂ versus the empirical

welfare ω. Also shown for comparative purposes are the minimum and maximum

welfare achievable with noise. The italics are cases where the theory says that mutual

defection is the only equilibrium. There are two substantial anomalies in the data,

both highlighted in bold: dal_fre:C;δ = 0.50 and dre_et_al_08:B. The latter is

based on little data - only 22 participants - but the former has the most data of any

treatment - 306 participants - so is unlikely due to sampling error in measuring ω.

These anomalies will be discussed in greater detail subsequently.
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payo� matrix δ theory ω̂ data ω min max participants

dal_fre:A 0.50 0.27 0.14 0.27 0.93 197
dal_fre:B 0.50 0.14 0.15 0.14 0.81 80
dal_fre:C 0.50 0.67 0.39 0.10 0.77 306
dal_fre:A 0.75 0.27 0.25 0.27 0.93 146
dal_fre:B 0.75 0.69 0.64 0.14 0.81 68
dal_fre:C 0.75 0.74 0.69 0.10 0.77 260

dre_et_al_08:A 0.75 0.17 0.14 0.17 0.83 28
dre_et_al_08:B 0.75 0.67 0.46 0.17 0.83 22

bru_kam 0.80 0.21 0.35 0.21 0.88 36
she_tar_sai 0.75 0.67 0.69 0.27 0.94 56
kag_sch 0.75 0.67 0.58 0.24 0.90 114

are_cou_ran 0.13 0.17 0.19 0.17 0.83 66

Table 4.1: Welfare: theory versus data

min/max: welfare of mutual defection/cooperation with noise
italics: theory ω̂ equal to minimum
bold: error |ω̂ − ω| of more than 0.16

The �rst take-away from the table is that supporting cooperation can be costly.

Call the treatments where mutual-defection is not the only equilibrium cooperative.

From Table 4.3 below, these equilibrium are all supported by a strategy that cooper-

ates in the �rst period and whenever the outcome last period was CC. Never-the-less

for she_tar_sai and kag_sch the maximum welfare that can be achieved by mutual

cooperation with noise is at least 0.23 greater than the best equilibrium predicted

by the theory. This means that there is a substantial cost from punishing noisy

opponents.

I turn now to a more detailed assessment of the results in Table 4.1.

4.1. Qualitative Analysis.

I �rst examine how well the theory explains the data from a qualitative point

of view. First, in the six italicized treatments where mutual defection is the only

equilibrium, in two treatments welfare predictions are o� by 0.13− 0.14 while in the

remaining four cases welfare in the data is within 0.03 of what the theory predicts.

The highest empirical welfare in these mutual-defection cases is 0.35.

By contrast, in the cooperative cases welfare in the data is at least 0.39 and exceeds

the welfare of mutual-defection with noise by at least 0.29. That is, the treatments

that are predicted to have mutual defection have less cooperation (as measured by
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welfare) than those that are predicted to be cooperative. The theory does a good job

sorting out the cooperative treatments.

The theory also sorts well based on cooperation rates. The italicized treatments

all have a predicted cooperation rate of 0.17 due to the assumed 1/6 probability of

trembling onto an unintended action. The empirical cooperation rates for �ve of the

treatments range from 0.10 to 0.19 with the sixth being equal to 0.32. By contrast,

the empirical cooperation rates in the cooperative treatments are all at least 0.46.

4.2. Quantitative Analysis

I turn now to the quantitative �t of the theory. In section 5 below I will compare

it to other theories, but in an absolute sense, how big is big? Should a di�erence

between the theory and data of 0.05 as is the case in dal_fre:B;δ = 0.75 be regarded

as large or small? There is no unique answer to this question, but insight can be

gained by looking at past practice.

Below in Table 4.2 I have gathered together data from games where Nash equilib-

rium uniquely predicts an equilibrium path of mutual defection. These are the �nite

horizon games from Dal Bo (2005) together with the two treatments in this paper,

dal_fre:A;δ = 0.5 and are_cou_ran. My reading of the literature is that mutual de-

fection is regarded as a good description of what happens in those games. However,

as reported in the second column of Table 4.2 cooperation rates are small but not

zero.

game cooperation rate

dal_bo:H = 1 0.06
dal_bo:H = 2 0.07
dal_bo:H = 4 0.18

dal_fre:A;δ = 0.5 0.10
are_cou_ran 0.19

Table 4.2: Cooperation rate errors for unique Nash equilibrium paths

�nite games: cooperation is average over �nal two matches, H is number of
supergame periods
dal_fre and are_cou_ran: average is over the 10th and later matches from Table 3.3

I take this as an indication of what is an acceptable error for a theory. Below in

Figure 4.1 below I compare the histogram from Table 4.2 with the histogram from

Table 4.1.
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Figure 4.1: Error Histograms

left are the Nash cooperation rate errors from Table 4.2
right are the welfare errors for noise theory from Table 4.1

There are two take-aways from this. First, in general, the quantitive errors in noise

theory are small compared to what has been viewed as acceptable for subgame perfect

equilibrium. Second, as highlighted in Table 4.1, the two bold-faced observations,

dal_fre:C;δ = 0.50 and dre_et_al_08:B, are indeed anomolous, with errors larger

than what would ordinarily be considered �acceptable.�

Below in Figure 4.2 I show a graphical view of the theory against the data. The

horizontal axis is the theoretical prediction of welfare and the vertical axis the em-

pirical welfare.
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Figure 4.2: Scatter Plot of Welfare: Data ω Against Theory ω̂

If the theory was perfectly correct then the dots representing observations in

Figure 4.2 would lie on the 45° line. With the exception of the two anomolous outliers

dal_fre:C;δ = 0.50 and dre_et_al_08:B they are generally close.

4.3. Sampling Error vs. Speci�cation Error

The di�erence between the theory and the data as reported in Table 4.1 has

two sources: sampling error and speci�cation error. In the case of Nash equilibrium

the theory is deterministic: there is no sampling error, and so the error is entirely

speci�cation error. By contrast noise theory is stochastic due both to trembling

and the use of mixed strategies. Standard errors can be computed by Monte Carlo

simulation, but there is an easy upper bound that is fairly accurate.

Welfare is between zero and one. The greatest variance possible for any such

random variable is 1/4 attained by the binomial with mean equal to 1/2. Because

trembles and mixing are independent between periods, each match is an independent

draw. Hence, for each treatment, the number of observations is half the number

of participants times the average number of matches after the ninth. These can be

computed from Table 3.3 above. The least number of observations is dre_et_al_08:A

with 168, the greatest dal_fre:C with 4862. These give rise to upper bounds on

the standard error of 0.039 and 0.007 respectively. Even the largest of these upper
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bounds, 0.039, is inadequate to explain the anomolous treatments. The smallest of

these divergences of data from theory is 0.21 in dre_et_al_08:B. This is more than

�ve times the uppermost possible standard error.

This is all to say that it is speci�cation error not sampling error that is important

for the anomalies.

4.4. Best Equilibrium Strategies

Below in Table 4.3 are shown strategies that support the maximum welfare re-

ported in Table 4.1 above.

payo�s δ initial CC CD DC DD

dal_fre:A 0.50 0.00 0.00 0.00 0.00 0.00
dal_fre:B 0.50 0.00 0.00 0.00 0.00 0.00
dal_fre:C 0.50 1.00 1.00 0.00 0.00 1.00
dal_fre:A 0.75 0.00 0.00 0.00 0.00 0.00
dal_fre:B 0.75 1.00 1.00 0.30 1.00 0.08
dal_fre:C 0.75 1.00 1.00 0.91 1.00 0.26

dre_et_al_08:A 0.75 0.00 0.00 0.00 0.00 0.00
dre_et_al_08:B 0.75 1.00 1.00 0.01 1.00 0.00

bru_kam 0.80 0.00 0.00 0.00 0.00 0.00
she_tar_sai 0.75 1.00 1.00 0.00 0.28 0.01
kag_sch 0.75 1.00 1.00 0.00 0.53 0.01

are_cou_ran 0.13 0.00 0.00 0.00 0.00 0.00

Table 4.3: Best Equilibrium Strategies

player 1 conditional probabilities of cooperating
CC,CD,DC,DD are last the period outcome

The strategy (0, 0, 0, 0, 0) is mutual-defection and is the only available equilibrium

in the italicized treatments. The strategy (1, 1, 0, 0, 0) is the grim-trigger strategy,

which is never used. Mixed strategies are rare. All of the cooperative strategies

cooperate initially and when the state is CC. They have the general form have

the form (1, 1,M,H,L) where M < H. This can be described as grim-trigger with

forgiveness (L) and apology (H > M). When one player defects and the other

cooperates the defecting player �apologizes� by cooperating with a higher probability

than the other.
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Each of the memory-one strategy give rise to a 2× 2 game with payo�s

(1− δ)U i(a) + δ
∑
y∈A

π(y|a)V i(y|σ).

The best equilibrium memory-one strategies give rise to three types of games. The

�rst are prisoner's dilemma games in which it is dominant to defect. Here the only

equilibrium of the supergame is mutual defection. The second are coordination games

in which CC and DD are equilibria with a mixed one in between (which, however, is

never optimal to use). Here the equilibrium can be chosen in a state dependent way

to provide incentives for cooperation. The third are indi�erence games where players

are indi�erent between cooperating and defecting regardless of what the opponent

does. In these latter games mixing sometimes takes place, and, in an o�-diagonal

states y ∈ {CD,DC}, the mixing need not be symmetric and generally is not.

5. Learning Theoretic Approach

In the last twenty years there has been extensive research into when cooperation

emerges in repeated prisoner's dilemma games in the laboratory. There are four main

theories: subgame perfect equilibrium, risk dominance, critical discount factor, and

reinforcement learning. With the exception of reinforcement learning, none explicitly

account for the presence of trembling, although there is a di�erent literature that

examines perfect public equilibrium where the experimenter introduces noise in ob-

servation: a good review of the entire literature can be found in Dal Bo and Frechette

(2018).

The �rst approach to the issue of cooperation is that of subgame perfect equi-

librium studied in Dal Bo (2005). He shows that �nite games have low cooperation

rates, while inde�nitely repeated games with cooperative equilibria have high coop-

eration rates. Subsequent research has borne out the idea that if mutual defection

is the only equilibrium then cooperation rates are low. This can be seen in Table

4.2 above, although, in fact, the cooperation rates range from 0.10 to 0.19, while the

theory predicts 0.00.

Subsequent research by Dal Bo and Frechette (2011) (the results of which are

included here) showed that the reverse need not be true. Even if cooperation is an

equilibrium cooperation rates can be low. This can be seen in Table 4.1 above, while

dal_fre:B;δ = 0.50, dal_fre:A;δ = 0.75 and dre_et_al_08:A all admit cooperative
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equilibria (without noise), all have low cooperation rates - welfare is no higher than

0.25 and cooperation rates no more than 0.19.

The anomaly of games in which there are cooperative equilibria, yet cooperation

does not emerge, led to learning theoretic considerations. Theories of learning and

evolution such as Kandori, Mailath and Rob (1993) and Young (1993) suggest that

in a 2×2 game risk dominance plays a key role in determining which equilibrium will

emerge when there are multiple equilibria. To make this operational in an inde�nitely

repeated game where there are 32 memory-one strategies the literature has focused on

just two such strategies: mutual-defection and grim-trigger. Before discussing how

this works and the �ndings, I want to point out that this choice incorporates the

basic hypothesis of this paper - that players are trying to achieve a good outcome.

Speci�cally, if the opponent is thought to randomize equally over all 32 memory-one

strategies, for all the treatments here, always-defect is a best response. By limit-

ing attention to grim-trigger, the question becomes: if players are trying to �nd a

good solution using grim-trigger, will they be able to learn to do so? Note that this

methodology can be extended to other games by considering the welfare worst and

best equilibria.

Dal Bo and Frechette (2011) examine risk dominance in the �rst six games of Table

3.3. They give mixed reviews. Their assessment is based on whether cooperation rose

or fell over time, and they do not have a clear theory of what constitutes high and

low cooperation - standard theories being limited to 0.00 and 1.00. Moreover, rising

and falling is a di�cult criteria because initial match cooperation ranges from 28%

to 56% and doing well in the early matches may mean doing less well in the later

matches.

Before looking at the data, I �rst introduce two key theoretical constructs con-

nected with risk dominance. The �rst is the basin: the greatest proportion of players

who can be playing always defect for grim-trigger to be a best response. This can be

computed as

β = max

{
0,

(1− δ)(u1(DC)− 1)− δ
(1− δ)(u1(DC) + u1(CD)− 1)− δ

}
.

Note that the right-hand expression will be negative when grim-trigger is not an

equilibrium at all, in which case the size of the basin is 0. If this is greater than

0.50 then grim-trigger is risk dominant, if it is smaller then mutual-defection is risk
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dominant.

A related idea is that of the critical discount factor. This was originally introduced

by Blonski, Ockenfels and Spagnolo (2011) based on axiomatic ideas, the crucial one

being that for any given payo� matrix there is a critical discount factor above which

there will be cooperation and below which there will not. They have additional less

persuasive axioms concerning additive separability and so forth, but the bottom line

is that they compute

∆ = δ − u1(DC)− u1(CD)− 1

u1(DC)− u1(CD)

where the negative term is the critical discount factor. In other words, there should

be cooperation if ∆ is positive and should not be if it is negative. Blonski and

Spagnolo (2015) subsequently pointed out that the critical discount factor is the

discount factor that makes players indi�erent between grim-trigger and always-defect

when the population is 50 − 50 between the two, so this has a similar �avor to the

basin.

Finally, in a recent paper, Fudenberg and Rehbinder (2024) consider a six parame-

ter reinforcement learning model using ∆ as an explanatory variable. They undertake

the ambitious program of predicting play in every round of every match. The details

of that model are well described in the paper. For the purposes here I generated

arti�cial data using the parameters from their Table 4. For each treatment in Table

3.3 I conducted a Monte Carlo simulation with 1000 trials. I used the greatest even

number less than the mean number of participants per session (14) and the mean

number of matches for the treatment from Table 3.3. Averaging welfare over the

tenth and subsequent matches generated predictions ˆ̂ω of welfare for each treatment.

I turn now to how β,∆, ω̂ and ˆ̂ω fare with respect to the data.

5.1. Sorting Cooperation Levels

As indicated those treatments predicted to have mutual defection by ω̂ have

strictly lower welfare than those that are cooperative. How do β,∆ do on this score? The β theory predicts mutual defection when β < 0.5

and ∆ theory when ∆ < 0. These generate the same predictions about mutual de-

fection as ω̂ except that ω̂ predicts mutual defection for bru_kam and the other two

do not. As welfare in bru_kam is higher than any of the other italicized treatments,

this means that while β,∆ disagree with ω̂ about where the dividing line is, they also
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correctly yield lower welfare in the treatments they predict to have mutual-defection

than those they predict to have cooperation.

5.2. Bifurcation

As just indicated, all four theories do a good job sorting the data into high and

low welfare treatments. It is a characteristic of the static theories - ω̂, β,∆ - that

there is a bifurcation. That is, as the parameters are gradually changed from a

game in which the only equilibrium is mutual defection, welfare should jump when

cooperative equilibria emerge. In other words, the prediction is that a histogram of

welfare should be U-shaped, exhibiting low and high welfare, but nothing in between.

Below in Figure 5.1 is the histogram of empirical welfare.

Figure 5.1: Histogram of Empirical Welfare

The �rst thing to observe is that the histogram is compressed: the low welfare

treatments give welfare well greater than zero and the high welfare treatments are

even further away from one. Consequently the β,∆ theories in their purest form

cannot contend with the data quantitatively. They predict welfare of 0 when they
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predict mutual defection, while it ranges from 0.10 to 0.25 in the data. They predict

grim-trigger with welfare of 1.00 in the remaining cases, while empirical welfare in

those cases ranges from 0.35 to 0.69.

The second observation is that while the histogram is generally U-shaped, there

is also a middle-range spike between 0.35 and 0.46. These correspond to the two

anomolous treatments in noise theory - dal_fre:C;δ = 0.5 and dre_et_al_08:B, plus

bru_kam. This poses a challenge for all the theories, about which, more below.

5.3. Monotonicity

According to the relevant theories empirical welfare should be increasing in ω̂, β,∆, ˆ̂ω.

If empirical welfare is increasing in the theoretical constructs, then the theoretical

constructs should be increasing in the data. I examine this below in Figure 5.2 plot-

ting the welfare data on the horizontal axis against ω̂ and ˆ̂ω and values of β and ∆

normalized so they will conveniently �t on the graph.

Figure 5.2: Theory Against Data

As can be seen, while all curves are generally upward sloping, none are increasing.

Note also that, consistent with discussion of bifurcation above, all of the theories are

quite challenged in the middle range between 0.35 and 0.46.
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To investigate further, observe that two theories, ω̂ and ˆ̂ω make speci�c predictions

of welfare. Unless we take the discredited theory of 0 for mutual-defection and 1 for

cooperation, the theories β,∆ do not. However, we can regress the data on the

theoretical constructs to get reasonable predictions.2 The results are shown in Table

5.1 below.

parameters mean abs R2 intercept (se) slope (se)

ω̂ 0 0.09 0.75 0.00 1.00
β 2 0.09 0.77 0.09 (0.06) 0.58 (0.10)
∆ 2 0.09 0.75 0.36 (0.03) 0.98 (0.18)
ˆ̂ω 6 0.10 0.75 0.00 1.00

Table 5.1: Predictors of Welfare ω

parameters: number of parameters estimated from repeated game data
mean abs: mean absolute error

R2 not adjusted

The bottom line is that there is little di�erence in accuracy between the theo-

ries. All have similar mean square error (R2) and mean absolute error. Put another

way: we might think of β,∆, ˆ̂ω as the best we can do looking at the data. Perhaps

imperfection is unavoidable because of di�erence in subject populations, laboratory

conditions, locations, and other factors not accounted for by the theories. Noise the-

ory, which does not look at the data at all, does just as well. However, as I will

indicate below, it is possible to do better.

5.4. Predicted Values

As indicated ω̂ and ˆ̂ω make speci�c predictions about welfare in each treatment

and for β,∆ we can use the �tted values from the regression in Table 5.1 as predictions.

Below in Table 5.2 I report the predictions of the four theories along with the data.

2As the relationship might not be linear I also ran regressions with quadratic terms, but these

added little.
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payo� matrix δ ω̂ β ∆ ˆ̂ω data ω

dal_fre:A 0.50 0.27 0.09 0.05 0.12 0.14
dal_fre:B 0.50 0.14 0.25 0.25 0.22 0.15
dal_fre:C 0.50 0.67 0.45 0.46 0.47 0.39
dal_fre:A 0.75 0.27 0.20 0.30 0.31 0.25
dal_fre:B 0.75 0.69 0.52 0.50 0.57 0.64
dal_fre:C 0.75 0.74 0.58 0.70 0.79 0.69

dre_et_al_08:A 0.75 0.17 0.29 0.31 0.30 0.14
dre_et_al_08:B 0.75 0.67 0.48 0.44 0.50 0.46

bru_kam 0.80 0.21 0.54 0.49 0.58 0.35
she_tar_sai 0.75 0.67 0.61 0.55 0.67 0.69
kag_sch 0.75 0.67 0.56 0.51 0.60 0.58

are_cou_ran 0.13 0.17 0.09 0.10 0.24 0.19

Table 5.2: Welfare Predictions vs. Data

italics: noise ω̂ equal to minimum
bold: error |ω̂ − ω| or | ˆ̂ω − ω| of more than 0.16

The takeaway is this. Noise theory has more outliers, with two major anomalies,

while each of the other theories has only a single anomaly. For the �ve low welfare

treatments, with the exception of dal_fre:A, noise theory does better than any of the

other theories. Indeed: what 5.2 highlights is that noise theory does very well most of

the time, but fails badly twice - for dal_fre:C;δ = 0.50 and dre_et_al_08:B. This is

suggestive that there might be some missing ingredient that explains what is di�erent

about those treatments.

5.5. Noise and Learning as Complements

Noise and learning theory need not be in competition. Step back for a moment.

Whatever participants are doing in the laboratory they are not searching grids of

hundreds of thousands of points to �nd a best solution to a problem. Instead they

are in a noisy environment trying to learn by trial and error. Indeed, it seems likely

that they understand the need to punish bad behavior and reward good behavior and

that they seek to do so in a way that leads to a good social outcome. Remarkably, in

ten out of twelve treatments they do nearly as well as if they had solved the problem

on the grid.

What about the other two treatments, the anomalies? It may well be that some

solutions are harder to �nd by trial and error than others, and here it seems as if

learning theory should be able to provide a guide. Unlike noise theory, Table 5.1
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shows that the learning theories provide a relatively accurate description of welfare

in the two anomalous cases. Perhaps for an intermediate range of learning values,

indicating that it is not so obvious whether cooperation can be achieved, learning is

hard, and so fails to �nd the best solution? Indeed, Table 5.1 shows exactly that.

For β predictions the two anomolous treatments have predicted values between 0.45

and 0.48,while for all the other treatments predicted values lie outside this range.

Similarly for ∆ the anomolous treatments have predicted values between 0.44 and

0.46 while all the other treatments have predicted values outside this range. Table

5.3 summarizes the situation and also maps the predicted values (an increasing linear

transformation of the underlying values) from Table 5.1 back to the underlying values

of β and ∆.

β predict β ∆ predict ∆

highest below low 0.29 0.33 0.30 −0.06
low anomaly 0.45 0.61 0.44 0.08
high anomaly 0.48 0.67 0.46 0.10

lowest above high 0.52 0.72 0.50 0.14

Table 5.3: β,∆ ranges

predicted welfare and underlying values of β,∆
low and high anomaly: the lowest and highest values for anomolous treatments

highest below low: highest value of non-anomolous treatment below high anomaly
lowest above high: lowest value of non-anomolous treatment above low anomaly

From this we may conclude that if β is between 0.61 and 0.71 or ∆ between 0.08

and 0.10 there is an anomaly. These range are not narrowly pinned down in the data:

they could be as large as 0.34 to 0.71 and −0.05 to 0.13.

If a theory does not work all the time it is useful to be able to predict when it

will and will not work. Here learning theory enables the prediction of the anomolous

cases - and both β and ∆ are computed directly from the experimental instructions

and involve no estimation. As a crude approximation we might conjecture that in

the anomolous range of β,∆ participants are only able to make it halfway from the

minimum welfare with noise to the highest equilibrium welfare. In both cases this

predicts a welfare of 0.42 as against the empirical welfare of 0.39 and 0.46, so is

reasonably accurate.

Note that bru_kam poses something of a puzzle. According to noise theory there is

no better equilibrium than mutual-defection, while the learning theories indicate that
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learning is easier than in the anomolous range - and so should lead to a cooperative

equilibrium. In fact the data lies about midway in between ω̂ and the predictions

of the learning theories, although a bit closer to noise theory. Perhaps when noise

predicts mutual-defection but learning theory is above the anomolous range it would

make sense to make a prediction in between. A related fact about the bru_kam

treatment is that it sensitive to a small change in the amount of noise. As discussed

in Section 6 below there is a bifurcation point in φ ∈ (0.332, 0.333) and when φ

is reduced to 0.332, theoretical welfare jumps from 0.21 to 0.69, surrounding the

empirical welfare of 0.35. As there is no clear cut recipe for what to do here, I have

not pursued this.

Returning to the hybrid theory, how does it fare? In the anomolous range we

take the average of the minimum with noise and the highest equilibrium welfare, and

otherwise we predict the highest equilibrium welfare. This involves, in some sense, the

estimation of three parameters: the bottom and top of the anomolous range and the

weight on the minimum welfare and equilibrium welfare. This hybrid theory results

in a mean absolute error of 0.05 and an unadjusted R2 of 0.91. That is to say: this

hybrid theory does extremely well and much better than any of the theories in Table

5.1.

5.6. Application to Other Classes of Games

A good theory ought to be able to predict behavior in more than one class of

games. In previous work, in Levine (2025), I studied non-repeated games using the

model described here augmented to allow for social preferences that are irrelevant in

the repeated prisoner's dilemma setting. In that paper there was a single signi�cant

anomaly. This occured in an experiment by Nikiforakis and Normann (2008). They

studied a four player public goods game with punishment, varying the e�cacy of

punishment from 1 to 4. While contributions in the treatments from 2 to 4 are

well predicted by the theory, in the treatment with an e�cacy of 1 contributions to

the public good fall well below what the theory predicts. Could the hybrid theory

described above also be a possible explanation for this anomoly?

As indicated, the basin β can be de�ned in any game with multiple equilibria. In

the case of the public goods game with punishment, the worst Nash equilibrium is no

contribution and the best is the maximum contribution by all four players combined

with maximum o�-the-path punishment for failing to contribute the full amount. In
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the earlier working paper version of this paper Levine (2024) (available online), I

computed the basins for the public good game treatments. I found that the basin

for treatment 1, the anomolous treatment, is β = 0.57. For the non-anomolous

treatment with e�cacy 2, the basin is β =0.71. The higher e�cacy treatments 3, 4

have even larger basins. Above in Table 5.3 the lower bound for anomolous outcomes

is in [0.34, 0.61] and the upper bound in [0.68, 0.71]. Hence the public good game

treatment 1, with β = 0.57, is plausibly in the anomolous range. By contrast the the

treatment 2 , with β = 0.71, is plausibly in the non-anomolous range.

Another way to say this is to take the lower bound for anomalies to be in [0.34, 0.56],

and the upper bound to be in [0.68, 0.70]. Then β explains the anomalies and lack

of anomalies in both the games studied here and in the public good game studied in

Levine (2025).

6. Robustness

The noise theory is governed by a single parameter φ. I have not tried to estimate

φ. The strategy of estimation tries to �t parameters to particular treatments, experi-

ments, or classes of treatments. I believe it is more useful to look for parameters that

are stable across similar populations and stakes - in this case college students playing

for normal stakes, and φ = 1/3, in fact, does the job. Never-the-less it is useful to

understand how the theory changes with φ.

There are two types of changes as φ changes. The �rst is a gradual change in

which strategies do not change much, but the change in noise leads to a change in

welfare. The second is bifurcation where strategies change abruptly as the availability

of cooperative equilibria changes. The latter is substantially more important for the

quality of the �t.

For gradual change, as noise is reduced, welfare decreases for the mutual-defection

treatments and increases for the cooperative treatments. In �ve out of the six mutual-

defection treatments predicted welfare is either highly accurate or understates true

welfare. In the cooperative treatments predicted welfare is generally too high already.

This means that reducing noise will reduce the quality of the �t.

The converse, as noise is increased, is not true. In �ve out of the six mutual-

defection treatments predicted welfare is either highly accurate or overstates true

welfare. Hence increasing noise continues to hurt the �t for the mutual-defection
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treatments. By contrast it improves the �t for the cooperative treatments. Worse for

mutual-defection treatments, better for cooperative treatments.

Bifurcations are reported as ranges in Table 6.1 below. The top of the range

has mutual-defection as the only equilibrium. The bottom of the range has a best

equilibrium that is cooperative. Hence, the bifurcation takes place in the range shown.

For those treatments with bifurcation points nearer φ = 1/3 the ranges were computed

with a higher degree of precision. As expected, dal_fre_A and are_cou_ran have

only mutual-defection as an equilibrium regardless of noise.

payo� matrix δ bifurcation range for φ

dal_fre:A 0.50 none
dal_fre:B 0.50 (0.1, 0.2)
dal_fre:C 0.50 (0.5, 0.6)
dal_fre:A 0.75 (0.0, 0.1)
dal_fre:B 0.75 (0.35, 0.4)
dal_fre:C 0.75 (0.6, 0.7)

dre_et_al_08:A 0.75 (0.1, 0.2)
dre_et_al_08:B 0.75 (0.339, 0.340)

bru_kam 0.80 (0.332, 0.333)
she_tar_sai 0.75 (0.338, 0.339)
kag_sch 0.75 (0.338, 0.339)

are_cou_ran 0.13 none

Table 6.1: Bifurcation Ranges

for φ at the top mutual-defection is the only equilibrium
for φ at the bottom the best equilibrium is cooperative

none indicates for all φ mutual-defection is the only equilibrium

Most of the treatments are quite robust, with their bifurcation points lying well

away from φ = 1/3. Four of the treatments, however, dre_et_al_08:B, bru_kam,

she_tar_sai and kag_sch, have bifurcations close to φ = 1/3.

Getting the classi�cation wrong is extremely costly in both mean absolute and

mean square error. For example, as noise is increased, the she_tar_sai and kag_sch

treatments are the �rst to bifurcate. This takes place in the range φ ∈ [0.338, 0.339]

for both. Predicted welfare drops from 0.67 in both cases to 0.27 for she_tar_sai

and 0.24 for kag_sch. The empirical welfares are 0.69 and 0.58 respectively. Conse-

quently, the absolute error increases from 0.02 and 0.09 to 0.42 and 0.34, increasing

the mean absolute error for the entire sample by about 0.06. In other words, any es-
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timation procedure will need to get the classi�cations of dre_et_al_08:B, bru_kam,

she_tar_sai and kag_sch as right as possible. This means that estimates of φ must

lie between 0.332 and 0.338.

While it seems that φ is tightly pinned down by the data, I think this is decep-

tive. Near a bifurcation point, the theory is sensitive to small changes in the noise

parameter and also small changes in the payo�s and discount factors. For example,

in the she_tar_sai treatment predicted welfare is 0.67 and empirical welfare is 0.69.

If ui(DC) is increased slightly from 2.00 to 2.02 then the only equilibrium is mutual

defection and predicted welfare crashes to 0.27.

It is unlikely that human behavior is as sensitive to small changes as the theory

suggests. Indeed, the central region in Figure 4.1 suggests behavior has substantial

continuity. Hence, in the neighborhood of a bifurcation, varying parameters, or vary-

ing noise by changing subject pools, is likely to create anomalies. I feel con�dent that

if we conducted additional experiments with various parameters close to the bifur-

cation point across a range of di�erent laboratories we would indeed see many more

anomalies.

While it is desirable to have a theory that predicts well across a broad range

of experiments, it is unreasonable to expect that such a theory is going to get the

bifurcation points exactly right. From this point of view, we might want to ignore the

treatments dre_et_al_08:B, bru_kam, she_tar_sai and kag_sch on the grounds

that the theory is not really capable of making good predictions so close to the

bifurcation point. Even if we do so, the overall picture does not change much, as we

are left with the anomaly dal_fre:C;δ = 0.50 which is strong and robust.

7. Conclusion

I have examined a simple theory of noisy play in which there is a 1/6 probability of

a participant choosing an unintended action. This number is not estimated from re-

peated game data, but was used successfully in an earlier study of non-repeated games.

I hypothesize that in the resulting game of imperfect public information welfare is

the highest achievable in perfect public equilibrium with memory one strategies.

With this theory, I examine predicted and actual welfare starting from the tenth

match in twelve di�erent treatments - all of those from Fudenberg and Rehbinder

(2024) that last more than �fteen matches. I �nd that in ten out of the twelve

treatments the theory is accurate to within 0.16, and in seven out of the twelve
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within 0.05. In two of the treatments, the theory does well, qualitatively, predicting

substantial cooperation, but fares poorly quantitatively, with participants achieving

in one case 0.34 less than is predicted by the theory.

I compare the theory to existing theories that are primarily motivated by learning.

These theories are estimated from data on repeated prisoner's dilemma games, but

do no better than noise theory. Finally, I �nd that if learning theory is combined with

noise theory the resulting theory is highly accurate and considerably better than any

of the other theories.
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