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1. Introduction

I analyze a social evolutionary model in which there is a non-excludable

public good that reduces the chances of a catastrophe. The novel contribu-

tion of this paper is to demonstrate how resilient types that cannot survive

head-to-head competition with other more sel�sh types, nevertheless sur-

vive if they provide protection against catastrophes that reduce the total

population.

Models of stochastic social evolution as developed by Young (1993),

Kandori, Mailath and Rob (1993) Ellison (2000), Cui and Zhai (2010),

Peski (2010), Levine and Modica (2016a) and Newton (2021), among oth-

ers, describe predominant behavior in the long run when individual group

members adopt strategies that promise increased utility. These models have

been used to show, for example, that if types can be observed by other

members, then in a population matched to play repeated prisoner's dilemma

games, cooperation supported by punishment strategies can emerge in the

long run. Implicit in these results is that the public good is excludable, as

it need only be provided to those of the same type. However, in practice we

observe not only cooperation in individual interactions, but the production

of public goods that bene�t both cooperators and cheaters equally. If a non-

excludable public good is neutral, in the sense of providing equal advantage

to everyone, can evolution favor the production of such public goods?

In the standard setting of group selection with identi�able types and

a �xed population, I show that under certain conditions the answer is no.

As in the literature of the evolution of cooperation in individual matching

games, I use a group selection model in which it is possible to distinguish

the types that contribute from types that do not. Although the assumption

of identi�able types is controversial, I indicate in Section 7 that in the set-

ting of social evolution it can be considered reasonable. In such a model,

a population of types that punish other types but not their own has good

stability properties: it requires a large invasion of mutants to reduce punish-

ment enough to acquire an advantage over the incumbents. Writers in the
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evolutionary literature such as Ellison (2000) have long been aware of this.

Among types that punish, with equal numbers of a nasty type that does

not produce the public good, and a type that does produce the public good,

the nasty type yields more utility. Consequently, under certain conditions

this implies that the nasty types will predominate in the long run.

Why then are neutral non-excludable public goods produced? I introduce

a novel element into the analysis: the possibility of catastrophic reductions

in population that are mitigated by the public good. I refer to this as

resilience. After a catastrophic reduction in population, the nasty types still

have an advantage. However, with a much smaller population, evolution

has a much higher degree of randomness. While frequently nasty types will

reemerge, there is a good chance that types that do produce the public good

will emerge instead. In this case the frequency with which types are present

depends less on whether they have an immediate advantage, and more on

whether they avoid catastrophes. This shifts the evolutionary advantage

towards types that produce the public good.

In the formal analysis I show that if the public good is su�ciently e�ective

in reducing the frequency of catastrophes, then indeed the predominant long

run behavior will involve production of the public good. More strongly, I

show that with a large enough population, the predominant type will be

one that maximizes output of the public good subject to the constraint that

punishment is adequate to prevent free-riding. As this theoretical argument

involves taking limits, it is reasonable to ask if the range of parameters for

which the result holds is unrealistically extreme. To answer this question, I

conduct simulations showing that the theoretical results hold for plausible

parameter values.

As indicated, I propose a speci�c mechanism through which types that

provide the public good survive and thrive: they do so on account of catas-

trophes that reduce population and make it easier for new types to enter.

Human catastrophes can take place in many ways: they may be ecological

as in Diamond (2005), may involve losses in war as in Levine and Modica
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(2013), or may simply involve civil strife, arising, for example, out of inequal-

ity. In this respect, the insurance schemes studied by Townsend (1994) may

be seen to reduce the chances of catastrophe.

Catastrophes that reduce population are not uncommon. Some of the

more notable ones are the severe glaciation of the Younger Dryas period(Peteet

(1995)), the depopulation of Rome between the second and sixth centuries

AD (Twine (1992)), and the Great Famine of the 1840s in Ireland (Ross

(2002)). Notice that the theory does not say that new, more resilient institu-

tions will emerge from these catastrophes. Rather, it says that institutional

change is more likely after such a catastrophe. One example is the decline

of serfdom in England after the Black Death plague (Bailey (2014)).

Finally, the idea that population reductions make it easier for new en-

trants to thrive is strongly supported in the biological record. A key fact

(see for example Jablonski (2001)) is that mass extinctions caused by events

such as asteroid strikes not only reduce the population of existing species,

but subsequently lead to a great increase in the diversity of species.

Related Literature and Marginal Contribution

The idea that evolution favors functional institutions is scarcely new.

For example, in a repeated game setting with enough structure, evolution

favors the grim trigger strategy. This is the thrust of the work of Bowles and

Choi (2013) and Choi and Bowles (2007) in their study of the emergence of

institutions in the post-Dryas period. More abstract results can be found in

Axelrod and Hamilton (1981), Binmore and Samuelson (1992), Johnson,

Levine and Pesendorfer (2001), Dal Bo and Pujals (2015), and Juang and

Sabourian (2021) among others. In the biological literature this model has

been called that of parochial altruism.

In the repeated game framework, the public good is excludable and pun-

ishment takes place through repetition. By contrast, in this paper I consider

a non-excludable public good and contemporaneous punishment. Even in

the context of cartels, incentives are often provided through contemporane-

ous �nes rather than future market action. More broadly, industry operates
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through contemporaneous rewards in the form of wages, and criminal justice

operates through punishments, such as imprisonment, not through revenge-

driven retaliation. The same is true of the ostracism and peer pressure that

Ostrom (1990) documents are widely used for public goods provision.

In the contemporaneous punishment environment, there is a strong evo-

lutionary force towards conformity. However, many social norms can be

supported as conformist through punishment of deviators. Consider the

following intuition. Suppose that there are two equal-sized groups, one of

which contributes, and one of which does not, and that both punish each

other for failing to conform. Then everyone bene�ts from the public good

and su�ers the same punishment. Here, it is the non-contributing group

that does best, as they avoid paying for the public good. Put di�erently, the

possibility of punishing deviators creates a strong evolutionary force towards

conformity - but not obviously towards e�ciency. Notice the key di�erence

with prisoner's dilemma type models: here the free-riders are able to punish

the contributors. Rusch (2014) observes that the inability of free-riders to

punish is a key limitation of the parochial altruism model. That limitation

is lifted here.

This pressure towards conformity connects the results here to the litera-

ture on conformity. Benassy (1998) and Akerlof and Kranton (2005) show

how conformity can result in dysfunctionality. By contrast, Coase (1960)

and Ostrom (1990) show that we often see the provision of non-excludable

public goods. Here, I show that while evolution can lead to dysfunctionality

when catastrophes are not important, they lead to the provision of non-

excludable public goods that increase resilience to catastrophes, when those

are important.

The presence of aggregate risk in the form of catastrophes is reminiscent

of the work of Robson (1992) and Heller and Nehama (2023) on aggre-

gate risk preferences and evolutionary growth, while the idea of collapse

and rebuilding occurs in the form of large deviation events that upset self-

con�rming equilibrium in Cho and Kasa (2014). The literature on evolution
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under con�ict also has related results. The theory that it leads to hegemony,

as in Levine and Modica (2012), Levine and Modica (2013), Levine and

Modica (2016a) Levine and Modica (2022), and Bilancini, Boncinelli and

Marcos-Prieto (2022), has a similar �avor to the results here. In particu-

lar, the evolution of the ability to withstand �outside pressure� is similar to

resilience in this paper. However, those papers consider neither punishment

nor conformity. They also are limited to explaining how a public good can

protect against being absorbed by another society, but have nothing to say

about natural disasters.

The model here is one of group selection with identi�able types. These

models are controversial because they rely on types being able to identify

themselves and outsiders. Indeed, conformist types here are related to the

biological notion of a �green-beard�, who helps their own types and hurts

other types,2 but it di�ers in the sense that a conformist type does not nec-

essarily help their own type, and if they do help, they help all types equally.

It is similar to what Gardner and West (2010) call a �facultative harm-

ing green-beard.� While the literature on biological evolution recognizes

that green-beards promote cooperation, it is generally viewed that they are

unsuccessful in doing so because they are subject to invasion by fake green-

beards. In the current setting of human behavior, this problem is mitigated

by the fact that it is generally possible to observe whether people conform to

the social norm and whether they punish those who fail to do so. I elaborate

on this point in section 7.

In the context of evolution favoring e�ciency, the early work of Winter

(1971) showed how the survival of more pro�table �rms leads to e�cient

competitive equilibrium, which has a more modern incarnation in Seranno

and Volij (2008). There is also a literature that studies the evolution of

altruism in an environment without the possibility of punishment. Positive

assortative matching, as in Alger and Weibull (2013), and voluntary migra-

2See Hamilton (1964a), Hamilton (1964b) and Jansen and Van Baalen (2006).
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tion, as in Ely (2003), for example, gives reason for the survival of altruism.

As made explicit in Dutta, Levine and Modica (2022), this type of altruism

may serve in a useful way as the �grease on the wheels of resilience.�

2. The Model

In each of t = 1, 2, . . . periods there is a �nite group whose members

are assigned to a �nite collection of types I. In period t there is an integer

number nit > 0 of members of type i and the vector nt constitutes the state.

A number mi > 0 of each type are residual and these populations do not

change over time,3 while the remaining variable populations of nit −mi ≥ 0

evolve according to an evolutionary process that is Markov on the state space

and is described below. I denote by M =
∑

im
i the residual population,

and by Nt =
∑

i n
i
t the total population. It is convenient as well to record

the population fractions φit = nit/Nt.

Each type i ∈ I provides resilience wi ≥ 0 which is a public good, and

imposes a utility punishment P i/Nt ≥ 0 on each member that is of a di�erent

type. Both resilience and punishment are costly, and type i incurs a private

utility cost ci = αwi+ψmax{0, P i−P} with α, ψ, P > 0. The total private

cost, including punishment by other types, incurred by an individual of type

i at t can then be computed as

Ci(φt) = ci +
∑
j 6=i

φjtP
j.

Resilience provides no utility but, as explained below, reduces the chances

of a catastrophic drop in population.

This formulation allows for a wide variety of types. A sel�sh type provides

3Having a residual population avoids the problem of types becoming extinct. An
alternative would be to allow extinction but reintroduce extinct types through mutation.
The basic results would not be changed if the probability of catastrophe is high relative
to the mutation rate, but the details and computations are considerably more di�cult
due to the need to account for mutations even in the absence of a catastrophe.
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no resilience and does not punish: wi = 0, P i = 0 so minimizes cost at

ci = 0. A nasty type also provides no resilience, but provides the maximum

punishment consistent with no cost: wi = 0, P i = P . An altruistic type

provides resilience, but does not punish: wi > 0, P i = 0 so ci > 0.

A conformist type i satis�es ci < cj + P i for every other type j 6= i.

That is, when all others are conformists of the same type, the conformists

get strictly more utility than any other type. A nasty type, at least, is

conformist, and I assume that there is exactly one type that is nasty. By

contrast, an altruistic type is not conformist: deviating to nastiness reduces

cost without incurring punishment. An immediate consequence of the exis-

tence of the nasty type is that the conformism constraints reduce to ci < P i.

The evolutionary process

Two forces determine the evolution of the variable population: catastro-

phes and arrivals. Catastrophes are governed by v > 0, N,N , where v is

a measure of the importance of resilience in preventing catastrophes, N is

the population after a catastrophe, and N > N is the largest sustainable

population.

I study the case where catastrophes and arrivals of the un�t are rare

events, and I use a single parameter 1 > ε > 0 of how rare these events are.

Speci�cally, it will be convenient to specify probabilities in terms of their

resistances: probabilities at time t will have the form

h(nt) = H(nt)ε
r(nt)

where H(nt) is uniformly bounded between zero and one, and the resistance

r(nt) ≥ 0. Roughly speaking, higher resistance, as measured by r(nt), means

an order of magnitude of lower probability. By contrast, H(nt) is a scaling

factor that allows for variations in probabilities that are independent of the

parameter ε, the measure of how rare, rare events are. As discussed below,

a key assumption is that greater resilience results in greater resistance to

catastrophes.
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The Markov process governing the evolution of nt over time is de�ned

by transition probabilities, which in turn are determined by a sequence of

random events.

1. A catastrophe occurs with resistance r0κ(nt). If a catastrophe occurs,

then Nt −N members are randomly removed from the variable population.

2. If a catastrophe does not occur, then with some probability exactly

one type i will receive one additional member. This is referred to as arrival

to the type and has resistance rip(nt).

3. If an arrival leads to a population that is greater than N , then one

member is randomly removed from the variable population.

Formally, denote by Ñ(nt, K)[nt+1] the probability of the vector nt+1

induced by removing K members randomly from the variable population in

nt. Let n
+i
t be the population derived from nt by increasing the population

of type i by one. Then the transition probabilities are given by

Pr(nt+1|nt) =
(
Hκ(nt)ε

r0κ(nt)
)
Ñ(nt, Nt −N)[nt+1]

+
(
1−Hκ(nt)ε

r0κ(nt)
)∑

i∈I

1 (nt+1 = nt)
(
1−H i

p(nt)ε
rip(nt)

)
+
(
1−Hκ(nt)ε

r0κ(nt)
)∑

i∈I

1
(
nt < N

)
1
(
nt+1 = n+i

t

)
H i
p(nt)ε

rip(nt)

+
(
1−Hκ(nt)ε

r0κ(nt)
)∑

i∈I

1
(
nt = N

)
H i
p(nt)ε

rip(nt)Ñ(n+i
t , 1)[nt+1]. (2.1)

The �rst line corresponds to a catastrophe, and the �nal three lines to no

catastrophe. The second line corresponds to no arrival taking place. The

third line is for a population below the limit, in which case an arrival is

added according to H i
p(nt)ε

rip(nt). The fourth line is for a population already

at the limit, in which case an arrival is added according to H i
p(nt)ε

rip(nt),

then one member is subtracted according to Ñ(n+i
t , 1)[nt+1]. As indicated

above, H i
p(nt) and H i

p(nt) are scaling factors for probabilities, but do not
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e�ect resistance.

Assumptions about the process

De�ne per capita resilience as Wt =
∑

i φ
i
tw

i. I assume that resistance

to a catastrophe is given by r0κ(nt) = rκ(vWt, Nt/N). The function rκ is

assumed to be strictly positive and is strictly increasing in its �rst argument

with derivative bounded uniformly away from zero. That is, for �xed Nt,

increasing resilience increases resistance to catastrophe. If N is determined

by the geographical area occupied by the group, then Nt/N is a measure of

population density. I am agnostic as to the dependence of resistance on the

population density. If catastrophes are due to invasion by neighbors occu-

pying a similar geographical area, then a large population density is likely

to reduce their probability. If catastrophes are due to ecological collapse, a

large population density is likely to increase their probability.

The resistance to arrival rip(nt) is assumed to depend only on the private

cost of type i relative to the cost of other types. Speci�cally, letting z be

a I − 1 vector of non-negative pairs (φj, Cj), there is a common arrival

resistance function rp(C
i, z) and rip(nt) = rp

(
Ci(φt),

(
φjt , C

j(φt)
)
j 6=i

)
. The

common arrival resistance function rp is assumed weakly increasing in C
i and

anonymous with respect to z in the sense that it is invariant to permuting

the pairs.

Denote the average cost of all types by z =
∑

j φ
jCj. I refer to above

average cost types i, for which Ci > z, as un�t. I assume that the resistance

to arrival for these un�t types satis�es rp(C
i, z) ≥ 1. For a least cost type

i, with Ci ≤ minj C
j, the resistance to arrival rip(nt) is assumed to be zero.

That is, there is a positive probability that an arrival occurs to some type.

It is worth pointing out that the arrival rate depends not only on the

resistance, but also the multiplier H i
p(nt). This allows the possibility that

the overall arrival rate is greater in larger populations, and in particular that

it is proportional to the size of the population.

A simple example of an arrival resistance function is the noisy best re-

sponse dynamic. Here the least cost types have zero resistance to arrival,
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and all other types have resistance one to arrival. The interpretation is that

a new group member chooses a type that promises the highest utility with

high probability, and only with probability ε chooses an inferior type.

Note that ε determines both the probabilities of catastrophes and ar-

rivals: that is to say, in the limit I will study both probabilities will be

small. However, no assumption has been made about the relative rates at

which these probabilities go to zero: these depend on the magnitude of the

resistance to catastrophes, about which no assumption has been made.

Stochastic stability

I call the state in which nit = N − M + mi, that is, the population

is at a maximum, and the variable population consists entirely of type i,

the i-state. If type i is conformist, the i state is a conformist state. I say

that a type i is a resilience providing type, or resilient type for short, if it

is conformist and for any other conformist j we have wi ≥ wj. That is,

a resilient type maximizes resilience among conformist types. Since there

is a type (the nasty type) that is conformist, a resilient type exists. If i

is a resilient type, then the i-state is a resilient state. The goal of this

paper is to characterize stochastically stable states. To minimize notation

and maximize readability I will abbreviate �there exists an N such that for

N > N � as �if N is su�ciently large.�

Proposition 2.1. For given N and M, if N is su�ciently large, then for all

ε > 0 the Markov process de�ned by the transition probabilities in equation

2.1 has a unique ergodic distribution µε that converges to a unique limit µ0

as ε→ 0. The limit distribution µ0 is an ergodic distribution of the Markov

process with ε = 0 and the ergodic classes of that process are conformist

i-states.

Following standard practice, those conformist i-states that have positive

probability in the limit distribution µ0 are called stochastically stable. The

implication of stochastic stability is that, when ε is small, �most of the time�
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we will observe one of these stochastically stable states. In 5, I illustrate

this by Monte Carlo simulation.

Proof. For ε > 0 the Markov process de�ned by the transition probabilities in

equation 2.1 has a positive probability path from any state to any other state,

and because the resistance to no arrival is zero there are no deterministic

cycles. From Young (1993) this implies µε is unique and has a unique limit

µ0 and that limit is an ergodic distribution for ε = 0. Lemma 4.2 below

shows that when ε = 0 states that are not conformist i-states are transient,

and Corollary 4.4 shows that the conformist i-states are absorbing. Hence

the ergodic classes for ε = 0 are individual conformist i-states and not, for

example, best response cycles.

3. Conformism and Resilience

Recall that ci = αwi + ψmax{0, P i − P} where ψ measures the cost of

punishment and that v is the importance of resilience in reducing catastro-

phes. The following are the main results of the paper:

Theorem 3.1. For given N :

(i) If N is su�ciently large, only conformist states are stochastically

stable

(ii) There exists a v̂ such that for any v > v̂ if N is su�ciently large,

only resilient states are stochastically stable.

All of these results assume that N is large relative to N . The �rst result

(already implied by Proposition 2.1) is general, and says that only conformist

states are stochastically stable. But which conformist states? The second

result says that if public goods are highly e�ective in reducing catastrophes

(v large), then only resilient states are stochastically stable.

Below in Proposition 6.1 is a third result showing that, when the baseline

resistance to catastrophes is large, then only nasty states are stochastically

stable. As explained there, this result requires additional assumptions.
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E�cient production and punishment size

Can it be the case that very large punishments, by imposing a much

higher cost on opponents than on the type, might be �more stable� than

smaller punishments? That is, is it true that evolution favors large punish-

ments? The next result shows that this is not the case for resilient types.

This is a duality result: under conformity, to maximize resilience, punish-

ment must be minimized for a given cost.

Proposition 3.2. Suppose that P i > P and that there is a conformist j

with P j < P i and cj ≥ ci. Then i is not a resilient type.

Proof. If ci ≥ P i, then i is not a conformist type, so not a resilient type

either. So assume ci < P i. Since P i > P it follows that max{0, P i − P} =
P i−P . Since wγ = cγ/α− (ψ/α)max{0, P γ −P} for any type γ, it follows

that wj > wi, implying that i is not a resilient type.

4. Proof of the Main Result

I �rst give an overview of the proof. As indicated, for ε = 0 conformist

states, by discouraging deviations, are absorbing, while all other states are

transient. Hence, ergodic distributions place weight only on conformist

states, so only these can be stochastically stable. These facts are in Lem-

mas 4.1 and 4.2. Lemma 4.3 is a technical result showing that conformity

constraints can be perturbed by a �xed amount while remaining valid.

If v is su�ciently large, then the public good is important for preventing

catastrophes. This is Lemma 4.6. If N is su�ciently large, then, in addition,

it is di�cult to move between conformist states when Nt = N , because it

requires a great deal of arrival to un�t types. This is Corollary 4.4. The key

idea is that once the population has fallen, only few arrivals to un�t types

are enough to tilt the system to a new state. This is Corollary 4.5. Since

it is relatively easy to move between conformist states once the population

has fallen (Lemma 4.7), stochastic stability requires a high level of resilience

(Lemma 4.8).
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To analyze stochastic stability using standard methods, it is necessary to

assess the resistance in moving from one state to another. The resistance of

the transition from nt to nt+1 is the maximum of the resistances in equation

2.1. For any sequence of transitions the resistance of the path is the sum of

the resistances of the transitions. The resistance from one state to another

is the least resistance over any path starting in the �rst state and ending in

the other, and such a path is called a least resistance path.

Lemma 4.1. If type i has least cost Ci, then there is a zero resistance

transition to a state with an arrival to type i that still has least cost. In

particular there is a zero resistance path to the i-state.

Proof. The least cost type always has zero resistance to arrival. Hence what

must be shown is that after such an arrival, type i still has least cost. The

cost di�erence between i and j 6= i is

Ci(φt)− Cj(φt) = ci − cj +
∑
ω 6=i

φωt P
ω −

∑
ω 6=j

φωt P
ω

= ci − cj + φjtP
j − φitP i. (4.1)

An arrival to i weakly increases φi and weakly decreases φj, regardless of

whether or not some type γ 6= i is removed from the population, and whether

or not γ = j. It follows that for all j 6= i the cost di�erence Ci(φt)−Cj(φt)

is weakly decreased, so i remains least cost.

Lemma 4.2. For a given M , if N is su�ciently large, and if i is not con-

formist, then, in the i-state, there is zero resistance to reaching a conformist

state.

Proof. By Lemma 4.1 it su�ces to show that if i is not conformist, and N is

su�ciently large, then there is a conformist γ with least cost in the i-state.

For type i, cost is Ci(φt) = ci +
∑

j 6=i(m
j/Nt)P

j. As i is not conformist

ci ≥ P i. Let γ be chosen as a minimizer of
∑

j 6=γm
jP j over γ 6= i subject

to cγ ≡ 0, and notice that it must be that P γ > 0 so that γ is conformist.
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For any ω 6= i we have

Cω(φt) = cω + (1/N)
∑
j 6=ω

mjP j + (1−M/N)P i

= cω + (1−M/N)P i + (1/N)
∑
j 6=ω

mjP j.

If cω = 0, then by construction Cγ(φt) ≤ Cω(φt). If c
ω > 0 and since cγ = 0,

we have cγ+P i < cω+P i. Hence, for N su�ciently large, Cγ(φt) < Cω(φt).

Finally, compare Cγ(φt) with C
i(φt). Since i is not conformist c

i ≥ P i,

so

Cγ(φt)− Ci(φt) = −ci + (1−M/N +mi/N)P i − (mγ/N)P γ < 0.

Lemma 4.3. There exists λ > 0 and θ < 1 such that if i is a conformist

type, then for φit > θ and j 6= i, we have Ci(φt) + λ < Cj(φt).

Proof. Since there are �nitely many types, it su�ces to �nd a λ > 0 and

θ < 1 for each pair consisting of a conformist i and j 6= i. By the de�nition

of conformity ci < cj + P i. In other words, for φit = 1 it is the case that

ci − cj + (1− φit)P j − φitP i < 0. By continuity, there is a λ > 0, θ < 1 pair

such that if φit > θ, then ci− cj +(1−φit)P j −φitP i+λ < 0. Using equation

4.1, the result then follows from

Ci(φt)− Cj(φt) + λ = ci − cj + φjtP
j − φitP i + λ

≤ ci − cj + (1− φit)P j − φitP i + λ.

Corollary 4.4. For given N , if N is su�ciently large, there is an a > 0

so that in a conformist i-state to reach another conformist state without

a catastrophe has a resistance at least aN . This means that for ε = 0,

conformist states are absorbing.
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By Lemma 4.2, all other states have zero resistance paths to one of these

absorbing states so they are transient. Hence, with ε = 0, only conformist

states have positive weight in any ergodic distribution, so only they can be

stochastically stable. This is part (i) of the Theorem.

Proof. Let i be conformist, and choose λ and θ by Lemma 4.3, so that for

φit > θ and j 6= i we have Ci(φt) + λ < Cj(φt). Let C
i
= maxϕ:ϕi≥θ C

i(ϕ)

and C = max cj + maxP j. Recall that the average cost of all types is

z =
∑

j φ
jCj. Then, for φit > θ, the average cost z is at most (1−φit)C+φitC

i
,

while

Cj(φt) > C
i
+ λ ≥ z − (1− φit)C

φit
+ λ

= z − 1− φit
φit

(
C − z

)
+ λ.

Hence, for

φit ≥
C − z

C − z + λ/2
≡ θ,

Cj(φt) > z + λ/2, that is j 6= i has above average cost. Taking θ = M−mi
N

,

we may choose a = 1 − max{θ + θ, θ + θ}, so that at least aN arrivals of

cost at least one are needed to escape from an i-state.

De�ne r = maxi∈I maxn r
i
p(n).

Corollary 4.5. For any conformist type i, after a catastrophe, the resistance

to reach the conformist i-state is at most R̂ ≡ r(1 +N/(1− θ)).

Proof. To see this, add K ≥ N/(1 − θ) of conformist type i to the post-

catastrophe population of N , which raises the proportion of type i in the

group to φit > θ. By de�nition, each addition has resistance no greater than

r. By Lemma 4.3, in this new state, i has cost at least λ less than any other

type. Hence, the resistance to reach the i-state after a catastrophe is at

most R̂.

Let w denote the resilience provided by a resilient type, and by W the

average resilience in a resilient state.
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Lemma 4.6. There is a v̂ large enough that, for v > v̂, the resistance of

a resilient state to a catastrophe is at least R̂ greater than a non-resilient

state.

Proof. Since rκ is strictly increasing and has slope bounded uniformly above

zero in the �rst argument, it follows that W > wi for all wi < w, thus

there exists a v large enough so that for v > v, we have rκ(vW,Nt/N) −
rκ(vw

i, Nt/N) > R̂.

Lemma 4.7. For �xed v, there is an N large enough such that the least

resistance route from one conformist i-state to another is by having an im-

mediate catastrophe.

Proof. The greatest resistance if there is an immediate catastrophe is rκ(vw, 1)+

R̂, while, if there is no catastrophe at all, it is at least aN . Hence for

N > (rκ(vw, 1) + R̂)/a the least resistance paths between conformist states

must have a catastrophe.

Finally, I show that if N is large enough, the catastrophe must be imme-

diate. That is, it is not possible to reduce resistance below rκ(vw
i, Nt/N)

by increasing a type with low resilience and then having a catastrophe. As I

just showed that we cannot leave the basin of the conformist state i without

greater resistance than an immediate catastrophe, it su�ces to show that

an above average cost arrival with cost at least one reduces the resistance

to a catastrophe by less than one. Consider then a given W and an above

average cost of arrival leading to Ŵ . Continue to let w = maxj w
j. As

resilience is an average, |W − Ŵ | ≤ w/N . Recall that rκ has slope bounded

away from zero in the �rst argument, say by b > 0. Hence

|rκ(vW, 1)− rκ(vŴ , 1)| ≤ vbw/N

and we see that, if N is su�ciently large, this is less than one.

Lemma 4.8. For given N there exists a v̂ and for any v > v̂, if N is

su�ciently large, only resilient states are stochastically stable.
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This is part (ii) of the Theorem.

Proof. Fix N and choose v̂ from Lemma 4.6. Choose v > v̂ and de�ne

su�ciently large N by Lemma 4.7.

Young (1993) characterizes stochastically stable states by analyzing trees

having as nodes the conformist states. Each branch on a tree of all con-

formist states has a resistance equal to the least resistance path from the

node on the branch furthest from the root to the node closest to the root, and

the resistance of the tree is equal to the sum of resistances of all branches.

Stochastically stable states then correspond to the root nodes of least resis-

tance trees.

Suppose i is at the root of a least resistance tree and is not a resilient

state. Find some resilient state j in the tree and cut it out from the state

γ to which it was connected. By Lemma 4.7 this saves a resistance of at

least rκ(vW, 1). Attach the previous root i to j making j the root. Also by

Lemma 4.7 and Corollary 4.5 this adds a resistance of at most rκ(vw
i, 1)+R̂.

Hence, resistance is decreased by

rκ(vW, 1)− rκ(vwi, 1)− R̂,

which, by Lemma 4.6, is strictly positive. Consequently no state that is not

a resilient state can be at the root of a least cost tree, so is not stochastically

stable.

5. Simulations

The reliance of the theoretical results on small ε and large N relative

to N may raise concerns about the range of parameter values for which the

dynamics described by Theorem 3.1 are veri�ed. In fact, the evolutionary

processes are numerically quite robust: this is supported by a recent theoret-

ical literature, including Kreindler and Young (2014) and Ellison, Fudenberg

and Imhof (2016). I illustrate this through a Monte Carlo simulation that

also highlights the main �nding.
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Recall that ci = αwi + ψmax{0, P i − P} where ψ measures the cost of

punishment and that v is the importance of resilience in reducing catastro-

phes. I take

α P ψ

0.10 1.00 0.33

I will work with four benchmark types: sel�sh types, nasty types, altru-

istic types and resilient types given by

i wi P i ci

sel�sh 0 0 0

nasty 0 1 = P 0

altruistic 10 0 1 = αwi

resilient 10 4 2 = αwi + ψ(P i − P )

The residual population has one of each type, the maximum population

is N = 40, the minimum population is N = 6 and ε = 0.5. Notice that

the population decrease from the largest sustainable population in case of

a catastrophe is 85%, which is large but not extreme, and ε = 0.5, which

is hardly negligible. The numbers bear a reasonable relationship to human

history. From Bowles and Choi (2013) we know that most human evolution

took place in relatively small groups, on the order of N = 40. With typical

ages on the same order, the replacement rate is about one per year, so that

the relevant length of a period is one year, and 40, 000 periods is roughly

half the history of behaviorally modern homo sapiens.

The probability of catastrophe is given by

hκ(vW,Nt/N) = ε3.2+W

and in particular hκ(0, Nt/N) ≈ 1/10 and hκ(10, Nt/N) ≈ 1/1000, which

is to say, for the types that produce no resilience, catastrophes are roughly

once every ten years, while, for the types that do produce resilience, it is

about once every thousand years.

The probability that arrival to some type takes place in the absence of
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a catastrophe is 0.9Nt/N . The Darwinian dynamic is given by constant

resistances of 1 for un�t types, and 0 for those with cost weakly below

average. The multipliers are H i
p = φi · 0.9Nt/N , that is, proportional to

the fraction of the type and the arrival probability. The initial population

N1 = 40 and the initial variable population consists entirely of nasty types.

The Monte Carlo was conducted in R for 40, 000 periods.

The results of the Monte Carlo are shown in the graph below.

As can be seen, the types that are not conformist, the sel�sh and the

altruistic types, play little role. Despite the fact that the simulations are

slanted in favor of the nasty types by starting in the nasty state, nevertheless

the resilient type predominates. In 82% of the periods they constitute more

than 75% of the population. To verify this, I took the seed used in the

�gure and repeated the simulation 100 times, incrementing the seed by one

each time. The average number of periods during which the resilient type

constituted more than 75% of the population over these 100 simulations



20

was slightly above 50%. However, this understates the importance of the

resilient type. When there are many resilient types, the population tends

to be large, as they have few catastrophes: this can be seen in the �gure.

A better measure of evolutionary success is the fraction of resilient types in

the cumulative population. This is considerably higher, at 69%.

6. Survival of the Nasty

When catastrophes are not as important, there are conditions under

which nasty types dominate.

Proposition 6.1. For given N if ψ > 1/2, then in the best response dynamic

if N is su�ciently large, there is a R > 0 such that for infϕ rκ(0, ϕ) > R,

only nasty states are stochastically stable.

To see why an assumption on ψ is needed, suppose that ψ is very small

and that there is a conformist super-punishing type that punishes vastly

more than any other type. As this super punishment has very little cost,

once a decent fraction of super punishing types enter the population, only

this super punishing type has below average cost, and, if catastrophes do

not play an important role, only the super punishing state is stochastically

stable. As it is not clear why one particular type should punish vastly more

than any other type, in Theorem 3.1 this possibility is ruled out by assuming

that ψ > 1/2. This means that types that punish very heavily also bear very

high costs, so there can be no super punishing types.

However, even ruling out super punishing types and reducing the chances

of a catastrophe is not enough to lead to stochastic dominance by the nasty

type. Without catastrophes, we need to deal carefully with the size of the

basins of the absorbing states, and this is complicated by the possibility of

a mixture of di�erent types arriving. This is an ubiquitous problem in the

literature on evolution in repeated games, as can be seen from the analysis of

Johnson, Levine and Pesendorfer (2001), and is often avoided by limiting the

number of types, or introducing special assumptions such as supposing that
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evolution largely proceeds through imitation, as in Levine and Pesendorer

(2007).

To illustrate the problem, suppose some fairly high cost type enters in

a decent fraction. This can raise the average cost so that some third type's

cost is now below average, and thus might not have resistance to arrival.

However, this cannot occur in the best-response dynamic in which only least

cost types have zero resistance to arrival. With this assumption, we can now

prove Proposition 6.1.

Proof. The condition that the punishment cost is high ψ > 1/2 guarantees

that if a nasty type is 50% or more of the population, then it does strictly

better than any other type. So the same remains true for some fraction

θ < 1/2. By making N large enough, we ensure this remains true after

accounting for the residual types, and that the actual variable population

of nasty types needed is strictly less than half the population. If we then

take R large enough that r < R, then least resistance paths cannot include a

catastrophe, so we are down to the standard case of analyzing least resistance

paths for a �xed population of N . However, the fact that it takes more than

half the population to have arrivals with strictly positive resistance to escape

a nasty state, while it takes a nasty type to have strictly fewer arrivals with

resistance strictly greater than zero to go from any other conformist i-state

to the nasty state, leads to the standard result, for example, in Morris, Rob

and Shin (1995) or Ellison (2000), that only the nasty state is stochastically

stable. This is easily proven by taking any tree in which the nasty state is

not the root, cutting it and attaching the root to it, and observing that this

strictly reduces the resistance.

Simulation

To illustrate Proposition 6.1, I modify the �rst Monte Carlo example by

reducing the importance of catastrophes, using

hκ(vW,Nt/N) = ε8.1+W
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in place of

hκ(vW,Nt/N) = ε3.2+W .

I also switch to an initial population of resilient types.

The result is plotted in the graph below, in which we see that the nasty

type dominates.

7. Group Selection and the Identi�cation of Types

Crucial to the theory is the assumption that types are observable, al-

though possibly with error. As indicated in the literature review, this has

been a fraught subject in the evolutionary literature on group selection.

Robson (1990)'s discussion of the secret handshake, Levine and Pesendorer

(2007)'s assumption that lying is di�cult, Levine and Szentes (2006) dis-

cussion of the feasibility of identifying those using the same rules, and the
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di�culty in observing o� path play in the repeated game setting, are all

examples of obstacles to identifying types.

In the present setting, if costs, public good production, and the act of

punishment are observable, and members can communicate, the issue is not

problematic. Individuals can be required to identify themselves as a type by

making a public announcement, that is, stating a type i. It is the duty of

each individual of a particular type to incur the prescribed cost and produce

the prescribed amount of public good, and to punish anyone who announces

a di�erent type or fails to carry out the duties of their own type. If costs,

public good production, the act of punishment, and the announcements are

perfectly observed, then so are types.

In practice observability need not be so complete, so it is worth empha-

sizing that the model is consistent with the imperfect observation of types.

Speci�cally, suppose that there is a chance of �accidentally� punishing their

own type, as in Levine and Modica (2016b) or Levine and Mattozzi (2020).

I maintain the assumption that small punishments have no cost, and as-

sume in addition that they do not hurt the population that issues them.

For example, they might be an insult that is o�ensive to other types but

not to members who are type i. I now assume that while P i represents the

expected punishment to a member not of type i, there is also an expected

accidental punishment of πP i to type i members as well.

Type i then issues (1−φi)+φiπ punishments costing ψmax{0, P i−P}.
It also receives φiπ of max{0, P i−P} �by accident� due to inaccurate signals.
Hence the cost function

c(wi, P i)[φi] = αw+φiπ(1+ψ)max{0, P i−P})+(1−φi)ψmax{0, P i−P}.
(7.1)

now depends upon φi as well as wi and P i. Note, however, that if π =

ψ/(1 + ψ), this becomes c(wi, P i)[φi] = αw+ ψmax{0, P i − P} as assumed
previously. Generalizing to allow cost to depend on φi does not change the

main results in Theorem 3.1, as shown in the earlier working paper version

Levine (2024).
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8. Conclusion

The model in this paper shows how resilient types that provide incen-

tives for the provision of public goods will emerge from a process of social

evolution, provided that those public goods provide resilience by protecting

against catastrophes. The model also suggests that non-excludable public

goods are generally produced only insofar as they contribute to resilience.

Some public goods - most notably defense and environmental spending -

clearly contribute to resilience. However, modern economies spend far more

on other programs, primarily social insurance, than they do on either de-

fense or environment. It is less clear that these other expenditures are non-

excludable, but to the extent that they are, the model does not provide a

complete explanation of the public goods we see.
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