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Abstract

This paper considers incentive-constrained efficient contractual matching in the presence of moral hazard. Teams/firms

of finite individuals form in order to produce stochastic output in the presence of moral hazard. I characterize by the

duality in linear programming an idealized market environment for efficiency.

Contract arbitrageurs specializing in writing contracts for teams, insurers, a market for lotteries on contracts,

Lindahl prices for the lotteries, and public randomization device are shown to be required for efficiency in the finite

economy. A public randomization device needs to accommodate and signal enormous amounts of information since

all the firms’ random contracts are correlated. Insurers are committed to avoid cream-skimming, and essentially

cross-subsidize across firms. Also, insurers need to know all the details of the economy to calculate the right prices.

In the continuum economy, each firm possesses its own independent randomization device for the exercise of its

contract, and the role of insurers is replaced by ex-post market, in which contract arbitrageurs trade in contingent

claims market before the realization of idiosyncratic shocks, and the unemployed trade in the spot market.

The role of duality in linear programming is exploited to describe decentralization and the welfare theorems. Once

a planner’s problem is set without consideration of a decentralized economy, economic interpretation of dual linear

program characterizes an environment (markets, public randomization devices, contract arbitrageurs, and insurers)

of efficiently decentralized economy.
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comments. I also thank Sushil Bikhchandani, Harold L. Cole, Bryan Ellickson, Ichiro Obara, David Rahman, and
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1 Introduction

Motivation

Information asymmetry inside an organization is an important issue in economics. The partial equilib-

rium analysis approach (see Grossman and Hart (1983)) has been employed to characterize the optimal wage

scheme from the principal’s point of view. It summarizes the effect of competition by a single parameter of

the agent’s outside option. The general equilibrium approach following Prescott and Townsend (1984) has

been employed to characterize the incentive-constrained efficient allocation, in which principals are perfectly

competitive that they get zero profit. The incompleteness of these two approaches is (i) that competition is

not fully captured, (ii) that bargaining power is given to principals or agents by assumption (for example,

Bennardo and Chiappori (2001)), and (iii) that the team formation problem is largely ignored. In order to

determine bargaining power, study of matching or team formation is unavoidable.

The team formation (Cole and Prescott (1997), Ellickson, Grodal, Scotchmer, and Zame (1997, 2001),

Makkowski and Ostroy (2003)) and matching literatures have not considered moral hazard problem within

teams until recently. Rahman (2005a) and Zame (2005) study team formation models with incentive prob-

lems. Similarities and differences of the two to this paper are mentioned later.

Objective

This paper considers incentive-constrained efficient contractual matching of a finite number of individuals

and continuums of individuals in the presence of moral hazard. A finite number of individuals form a

team/firm in order to produce stochastic output. Moral hazard problems exist within firms since the efforts

that individuals make are not verifiable.

The goals of the paper are (i) to characterize conditions for incentive-constrained efficiency and (ii) to

show a convergence of the finite model to the continuum one. A few characteristics of the finite model are

eliminated in the continuum; therefore the convergence shows what are implicitly assumed in the continuum

model. Linear programming is used as a methodology. Once a planners problem is set as a linear program-

ming problem, economic interpretation of duality in linear programming characterizes an idealized market

environment (institutions, technologies such as public randomization, and markets) for achieving efficiency.

Models and Results

In the finite economy, a market of lotteries on matchings with Lindahl prices, public randomization

devices, contract arbitrageurs, and insurers are by linear programming found to be necessary for efficiency.

Random matching improves efficiency by creating the uncertainty to relax incentive compatibility con-

straints more. In order to implement random matching, a lottery market for matching and a public random-

ization device for the lotteries are required. (See Prescott and Shell (2002)) Unlimitedly supplied contract

arbitrageurs in the finite economy are expected money maximizers inventing exclusive random contracts that

(i) depend on the entire state of the economy and (ii) prohibit individuals from trading in the spot market.
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Since arbitrageurs compete, they will try to create lotteries as favorable as possible to individuals in the sense

that the contract insures individuals as much as possible without breaking proper incentive compatibility

constraints. Contract arbitrageurs and individuals trade the lotteries. A contract arbitrageur could be active

or inactive depending on whether his contract is chosen by the public randomization device or not. Another

public randomization device is required to implement random contracts invented by contract arbitrageurs.

Even though contract arbitrageurs are risk-neutral, they have to deliver non-money commodities promised

by the contracts. Therefore, they purchase insurance for non-money commodities to eliminate the risk;

hence, it is shown that access to the insurance market by a firm promotes efficiency, while the access to

the market by an individual is not desirable. Lastly required are unlimitedly supplied insurers as expected

money maximizers committed to avoid cream-skimming. Markets for lotteries on matchings and insurance

take place before the realization of matching. Contract arbitrageurs and insurers end up with zero profit

since they are unlimitedly supplied.

The insurer’s commitment to avoid cream-skimming means that the insurer cross-subsidizes; i.e., the

insurance premium and the value of the expected payments do not coincide. However, contract arbitrageurs

get zero expected profit since the subsidies are channeled to individuals through contract arbitrageurs.

Therefore, a combined welfare theorem is proved in the finite model, which states that the entire utility

frontier could be decentralized; hence, there is no distinction between the first and the second welfare

theorems. Mathematically, I illustrate that the combined welfare theorems is from two characteristics of

the model: the matching structure and/or firms are essentially public goods, and pricing in the model is

non-linear. The uncertainty structure in the finite economy is endogenously determined by the matching

structure of the economy; hence, my choice directly effects others’ decisions. The price of a lottery on a

contract specifying effort and consumption cannot be linearly decomposed into prices of consumption and

effort. These public good characteristics of matching and the non-linear pricing yields a large degree of

freedom in choosing prices; therefore the entire utility frontier can be decentralized in the finite model.

In an economy with continuums of individuals in which contracts are functions of idiosyncratic shocks, the

requirement found by linear programming for efficiency are the following: a market of lotteries on matchings

with Lindahl prices, common randomization devices, and contract arbitrageurs.

The role of the public randomization device implementing random contracts and the restrictions of insur-

ers disappear as the finite economy converges to the continuum one. In the finite economy, the randomization

device implementing random contracts needs to accommodate and signal enormous amounts of information

in the sense that all the firms’ random contracts are correlated. However, in the continuum economy, each

firm possesses its own randomization device for the exercise of its contract, and the randomization devices

are not correlated. In other words, the correlation amongst the contracts across firms can become indepen-

dent as the size of the economy grows. In the elimination of the public randomization device, elimination
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of correlation among contracts is obtained by increasing the randomness within contracts, therefore it is

shown that random contracts are not only for the relaxation of incentive compatibility constraints, but also

for simplicity of contracts in the sense that information outside firms is unnecessary to implement contracts.

Uhlig (1996) raises the following question: what could be a limit of a finite economy where contracts depend

upon shocks of all individuals in the economy. This paper provides an answer to the question for an economy.

This finding hints a justification of the contracts depending only on idiosyncratic shocks in other general

equilibrium contract models as well.

Insurers in the finite economy are committed to taking care of all the risk involved in the economy.

Without commitment, they can sell more insurance to some firms if the insurance premium exceeds the

expected payment, and none to others. In other words, insurers are committed not to engage in cream-

skimming; hence they cross-subsidize across firms. Insurers committed to pooling the risks in this way are

hardly observed. Also, insurers need to know all the details of the economy to calculate the right prices in

order to bid for the license, which does not seem realistic. The role of the insurers in the continuum economy

is replaced by an ex-post market that is a mixture of spot market trading by the unemployed and contingent

claims market trading by contract arbitrageurs. Therefore, there is no need for insurers to achieve efficiency

in the continuum economy.

The combined welfare theorem does not hold in the continuum economy. Given that the continuum

economy is a limit of the finite economy, having two different welfare theorems in the continuum and the

finite models seem contradictory to the convergence. However, since the insurer in the finite model is to take

care of all the risk in the economy, the risk premium does not necessarily have to reflect the true value of the

insurance, i.e. the expected payment from the insurance. If the insurer were to engage in cream-skimming,

the insurer would not sell insurance to some of firms. In other words, the inequality of the value and the

price of insurance means that the insurer cross-subsidizes firms. On the other hand, there is no cross-subsidy

in the continuum model since the ex-post market replaces the role of insurer. Therefore the two different

welfare theorems are in fact not contradictory.

The results of (1) elimination of the public randomization device implementing random contracts, (2)

replacement of insurers with the ex-post market, (3) no cross-subsidies for efficiency in the continuum

economy, and (4) the combined welfare theorems in the finite economy are from the formulation of resource

constraints in linear programming.

I show that trades of lotteries are necessary for efficiency even in the continuum economy. Therefore,

it is shown that efficiency typically requires the following: (i) individuals of the same type to obtain differ-

ent expected utilities when assigned to different firms, (ii) compensating wage differentials which equalize

the utilities of individuals in different firms are generally incompatible with efficiency, and (iii) competitive

equilibria are efficient if the lotteries market exists. A continuum of each type possess their own common
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randomization device that direct team assignment. Common randomization devices are independent across

types. Bennardo and Piccolo (2005) study a general equilibrium model where agents’ preferences, produc-

tivity, and labor endowments depend on their health status, and they found the similar results. Discussion

is detailed in section 3.5.

Random matching is due to the nature of indivisibility of teams coupled with the assumption of non-

transferable utilities. Random contract is due to the nature of the incentive compatibility constraints. Indi-

visibility of teams and the incentive compatibility constraints exist even in the continuum model; therefore

random matching and random contract exist even in the continuum model.

The condition of no spot market trading by the employed is derived by observing the linearity and

non-linearity of prices. Even though the price of lottery is linear in the space of probabilities as in Cole

and Prescott (1997), the price is not linear in the space of commodities in the sense that the price of

the lottery cannot be linearly decomposed into commodity prices. Therefore, arbitrage opportunity exists.

Exclusiveness of contracts is to avoid arbitrage; hence, it is to achieve efficiency. Requirement of non-linear

prices in the presence of non-convex domain is observed in many other literatures. For example, see Bisin

and Gottardi (1999) and Hellwig (2005). Since the non-convexity due to indivisibility nature of teams and

the incentive compatibility exists even in the continuum model, the condition of no spot market trading by

the employed does not vanish.

The technical contribution is to formulate a team model with finite number of individuals using linear

programming. This paper is an extensive exercise of the application of linear programming to general

equilibrium theory. The roles of definition of equilibria and welfare theorems have been implicitly reversed

in the general equilibrium literature: welfare theorems are proved after the definition of equilibria, but the

definition was properly stated in order to satisfy the theorems. The approach here is to explicate the reversed

roles of the definition and the theorems. Once the planner’s problem is set as a linear programming problem,

the duality of linear programming gives a direct interpretation of the welfare theorems, and the definition of

equilibria is obtained by investigating the dual linear programming problem. The methodology here can be

used as a general procedure for characterizing an efficient decentralized economy.

Literature Review

The related team literatures can be classified into four categories.

Firstly, there are literatures considering a model with continuums of individuals where lotteries are used

to improve efficiency of economy. Cole and Prescott (1997) consider a team model without informational

asymmetry. Since preferences over risk are exploited for efficiency, lottery market is introduced. Prescott and

Townsend (2000) deal with the problem of hiring monitors to relax incentive constraints for workers in general

equilibrium. However, by assuming homogeneous individuals, the complementarity and substitutability of

individuals within teams are ignored.
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Secondly, there are literatures considering models with continuums of individuals where lotteries are not

used. For decentralization without lotteries, same type individuals get the same utility even when their

choices are different. The difference of Cole and Prescott (1997) and literatures in this category is further

discussed in section 3.5. Ellickson, Grodal, Scotchmer, and Zame (1999) consider a team model without

informational asymmetry. Their model is more general than this paper in the sense that individuals can

join many teams with the presence of externality inside teams. Makowski and Ostroy (2003) is the first

paper to use the duality of linear programming to model a team economy. Rahman (2005a) extends the

notion of contractual pricing of Makowski and Ostroy (2003), proposes a version of price taking equilibrium

to formalized the idea that individuals compete to play games, and shows that anonymous pricing of jobs

fail to decentralized incentive-constrained efficiency. With quasi-linearity of utilities assumed in Makowski

and Ostroy (2003) and Rahman (2005a), a market for lotteries on matching is not required for decentraliza-

tion since money can compensate the difference of utilities from non-money commodities when same type

individuals are assigned to different occupations. Zame (2005) considers a team model with moral hazard

and adverse selection. He sets up a decentralized economy, and shows that the equilibria may not be Pareto

optimal. Moreover, equilibria may even be Pareto ranked. His paper focuses on a proper concept of equilib-

rium refinement, Population Perfect equilibrium. My paper’s approach is to set up a planner’s problem, and

to investigate the decentralization possibility; hence, the welfare theorems are derived automatically, and

refinement is unnecessary. In short, Zame (2005) characterizes equilibria under a given environment, while

I derive necessary conditions on an environment for it to be incentive-cocnstrained efficient.

Thirdly, even though Garatt (1995) is not a team model paper, he investigates the consequence of indi-

visibility in a model with finite number of individuals. He finds that a public randomization device (sunspot

device) is required for efficiency. My paper shares a similar phenomenon in that a public randomization

device is required to implement random contracts correlated across teams in the finite model.

Lastly, Ellickson, Grodal, Scotchmer, and Zame (2001) is a finite analogue of their previous paper. They

show that an approximate core can be approximately decentralized by prices for private goods and for club

memberships.

Related linear programming literatures include the followings. Makowski and Ostory (1996) is the first

paper utilizing the duality of linear programming to characterize decentralization. Makowski and Ostroy

(2003) and Rahman (2005a) extend the methodology to model team economies. Jerez (2003) identifies

welfare effects associated with the incentives of the agents to truthfully reveal their private information. By

linear programming, Rahman (2005b) explores the role of monitoring within a team in a general equilibrium

setting with quasi-linearity of utilities.

Ostroy and Song (2005) explore a new perspective on correlated equilibrium of games as public goods

decision. The finite model of this paper can be understood as an extended version of correlated equilibrium
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(see Myerson (1991)) in the sense that each team does not observe how other individuals are matched. All

the utility frontier can be decentralized in Ostroy and Song (2005) as well.

Other related literatures include Dam and Pèrez-Castrillo (2001), Serfes (2003), and Magill and Quinzii

(2005) that are interested in characterizing more specific contractual forms in a more simplified environment.

Outline

In section 2, I present a model of the finite economy with bilateral matching, and characterize an

environment of decentralized economy. Bilateral matching is considered only for the simplicity of notation

and exposition. The generalization to teams with arbitrary number of members follows in section 5. Section

3 considers continuum economy with bilateral matching. Generalization of the the economies to team

economies is straightforward, and is provided in section 5. Section 4 shows convergence of the finite model

to the continuum one. Section 6 discusses more generalizations: inclusion of economy-wide global shocks

and play of correlated games inside teams. Section 7 is summary and conclusion. All the proofs are in

appendices, unless otherwise mentioned.

2 A Matching Problem with Moral Hazard: Finite Economy

The linear programming formulation of the planner’s problem without considering decentralization is pro-

posed in section 2.1. In section 2.2, the market environment required for the decentralization is naturally

derived by the dual linear programming problem. The proof of the welfare theorem is in Section 2.3. Dis-

cussion on the welfare theorems is in section 2.4.

2.1 Planner’s problem

The planner’s problem is formulated as a linear programming problem.

Assignments of Matching and Efforts: There are two heterogeneous populations, I and J . A typical

individual in I, J , or I ∪ J is denoted by i, j, or k. Each individual can work only when each is matched

with one from the other population. Let E be a finite set of efforts. When i and j are matched, it is said

that firm (ij) is formed. When they are matched, they contract upon their efforts, which are denoted by

(ei, ej) ∈ E2. Although I assume that the support of efforts is the same for all the individuals, it is without

loss of generality since it can be relaxed by assuming infinite costs of certain efforts for certain individuals.

Generalization to the team model is straightforward and discussed in section 5.

Contractual (extended) Matching Function: Contractual matching function is

A : I ∪ J →
[
(I ∪ J)× E2

]
∪ {(∅, ∅, ∅)}

s.t. A(i) = (j, ei, ej) iff A(j) = (i, ei, ej)

9



If i is not matched to anybody, A(i) = (∅, ∅, ∅). For the simplicity of notation, I write (i, j, ei, ej) ∈ A

if A(i) = (j, ei, ej). I also write (i, j) ∈ A if i and j are matched with certain efforts, and (i, ∅) ∈ A if

A(i) = (∅, ∅, ∅). Define 1 I := I ∪ {∅}, J := J ∪ {∅}, and E := E ∪ {∅}. Define A to be the set of all

contractual functions.

Note that the contractual matching function assigns not only pairs but also the effort for each assigned

pair.

Technology, state, and matching: The state of firm (ij) is denoted by sij ∈ S = {0, 1, . . . , S}. For a

given matching function A, the state of the economy is sA = (sij)(i,j)∈A. sA is realized with probability

Pr(s;A). In other words, the realization of state s is effected by the efforts specified in A. (Note that,

if shocks for firms are independent, Pr(s;A) is the product of the probability of individual shocks. For

example, Pr(s;A) =
∏

(i,j,ei,ej)∈A ϕ(sij ; ei, ej) where ϕ(sij ; ei, ej) is the independent probability of sij in

firm (ij) implementing efforts (ei, ej).)

The output of individual firm (ij) at state sij is q(sij). There is a one-to-one relationship between s and

q, however, I keep this notation to reduce any possible confusion. I often write qij(s) := q(sij) when sij is

an element in s. Also, q(0) = 0, and ϕ(0i∅; ∅, ∅) = 1.

Commodities, Allocation, and Utility Function: There are L non-money commodities and one money

commodity. Let ∆zs
i be a randomized assignment of consumption at state s. Let ∆zi := (∆zs

i )s∈S be a

randomized assignment of consumption defined for all states.

Definition 1 (Assignment/Allocation) Assignment/Allocation (A, (∆zk)) specifies [Assignment] how

individuals are matched with which efforts, A, and [Allocation] what the randomized consumption at the

realization of the state of economy (A, s) are.

The expected utility of i for given (A, (zk)) is denoted by
∑

s∈SA
vi(zs

i )Pr(s;A)−Ei(ei) where Ei(ei) repre-

sents the utility cost of effort ei. vi(·) is strictly increasing, strictly concave, and differentiable. The utility

function of dummy individual ∅, the utility function is defined as v∅(z) = 0 if z = 0, −∞ otherwise.

Allocations as functions of the state of the economy: Allocations are dependent upon the uncertainty

of the economy.

Notations of a few probabilities

X(A): probability that A is realized

1These definitions are for dummy individuals, who are ‘matched’ to the unmatched. Under the assumption that

everybody is matched, all the notation for dummy individuals are useless. Readers who are not interested in formality

can ignore the difference between I and I, and J and J , ignore all the description about dummy individuals, and

assume that everybody is matched.
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X(A, (zk)k∈I∪J): probability that A is realized, and non-random consumption zk are awarded to individuals

Xij(A, zi, zj): probability that A is realized with i and j matched, and i and j consume zi and zj

Xi(A, zi): probability that A is realized, and i consumes zi

Xi(zi|A,∆zi): probability of zi conditional on A and random allocation ∆zi, Xi(A, zi)/
∑

z̃i
Xi(A, z̃i)

Xi(A, zi|, j, ei, ej ,∆(i,j,ei,ej)zi): probability of (A, zi) conditional on matched team (i, j, ei, ej) and random

consumption ∆(i,j,ei,ej)zi := (∆zi)A3(i,j,ei,ej), Xi(A, zi)/
∑

A3(i,j,ei,ej)

∑
zi

Xi(A, zi)

For individual i, random matching with efforts and consumption is described by probability Xi(A, zi). For

example, if Xi(A, zi) = Xi(A, z′i) = Xi(A′, z′′i ) = 1/3, individual i is situated in matching structure A with

probability 2/3, and in A′ with probability 1/3. In the case that A is realized i consumes zi or z′i with

probability 1/2. In the case that individual i is situated in A′, individual i consumes z′′i with certainty.

Xi(A, zi) is a marginal probability of X(A, (zk)) by Xi(A, zi) =
∑

z−i
X(A, (zk)). Technically speaking,

X(A) is a probability mass function since A is a finite set. Xi(A, zi), Xij(A, zi, zj), and X(A, (zk)) are

probability density functions since A × RL×|S|
+ , A × R2L×|S|

+ , and A × R|I∪J|×L×|S|
+ are continuum sets.

However, they are considered as probability mass functions as if there is only finite support. Moreover, they

actually have finite support by Carathéodory’s Theorem on Convex Hull. Technical details will be dealt with

in appendices.

In order to save space, when there is no confusion, ∆(i,j,ei,ej)zi is often written as ∆zi. For example,

(i, j, ei, ej ,∆zi,∆zj) should mean (i, j, ei, ej ,∆(i,j,ei,ej)zi,∆(i,j,ei,ej)zj) since the description does not include

A.

Choice of Information Structure: Suppose matching with allocation with ∆zi and ∆zj , (i, j, ei, ej ,∆zi,∆zj),

was realized. After i and j are matched, they know that they are matched. The following assumptions can

be employed.

Assumption 1 (Local Information Structure) Once i and j are matched with (ei, ej), they do NOT

observe how others were matched.

Alternatively,

Assumption 2 (Global Information Structure) Once i and j are matched with (ei, ej), they DO ob-

serve how others were matched.

There could be many possible information structure in between, but I only concentrate on these two cases.

Allowing random contracts, the local incentive compatibility constraint (ICl) is∑
A3(i,j,ei,ej)

∑
zi

DGi(e′i|A, zi)Xij(A, zi, zj) ≤ 0 [ICl]
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where deviation gain DGi(e′i|A, zi) is defined by

DGi(e′i|A, zi) :=

[∑
s∈SA

vi(zs
i )Pr(s;A|e′i)− Ei(e′i)

]
−

[∑
s∈SA

vi(zs
i )Pr(s;A)− Ei(ei)

]

where Pr(s;A|e′i) is same as Pr(s;A) with the only difference being A(i) = (j, e′i, ej) (or alternatively A(j) =

(i, e′i, ej)). Since they do not observe the matching of others, uncertainties are two folds, A and s ∈ SA.

Under the global information structure, the global incentive compatibility constraint (ICg) is∑
zi

DGi(e′i|A, zi)Xij(A, zi, zj) ≤ 0 [ICg]

Note that I used unconditional probability Xij(A, zi, zj) so that the constraints are linear in terms of

Xij(·, ·, ·), since I want to model the planner’s problem as a linear programming problem.

Although I assumed that there is no Assignment/Allocation randomizing the efforts, my model is general

enough to incorporate random contracts upon efforts. The extension of contracts randomizing effort is

illustrated in Rahman (2005a). The extension of my model incorporating random contracts upon efforts is

straightforward and mentioned in section 6.3.

2.1.1 Linear Programming Formulation of Planner’s Problem

I formulate the objective function of the planner as a linear function, and all the constraints of the planner

as linear constraints.

Objective Function: The following is the expected utility for individual k.

Uk(Xk(·, ·)) :=
∑
A

∑
zk

[∑
s∈SA

vk(zs
k)Pr(s;A)− Ek(ek)

]
Xk(A, zk)

since Xk(A, zk) is the probability that the planner puts individual k in matching A with consumption zk.

Again, in principle, I need to have
∫

zk
instead of

∑
zk

, however, I keep the notation for simplicity. All the

technical details are delegated to appendices.

As each individual’s weight changes in planner’s objective, all the Pareto efficient allocation can be

obtained. The objective function for the planner is∑
i

λiUi(Xi(·, ·)) +
∑

j

λjUj(Xj(·, ·))

where λ := (λi)i∈I∪J is a weight profile such that λ � 0.

Probability constraints: Sum of probabilities Xk(A, zk) has to be equal to 1∑
A

∑
zk

Xk(A, zk) = 1,∀k ∈ I ∪ J
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Matching constraints: Xi(A, zi) cannot be arbitrary. Let Xij(A, zi, zj) be the probability that i and j

are matched and situated in A with consumption zi and zj . Then the following must hold.

Xij(A, zi, zk) =
∑

z−i,z−j

X(A, (zk)k∈I∪J) if (i, j) ∈ A

Xi(A, zi) =
∑
zj

Xij(A, zi, zj),∀A, i ∈ I, j ∈ J, zi where (i, j) ∈ A

Xj(A, zj) =
∑
zi

Xij(A, zi, zj),∀A, j ∈ J, i ∈ I, zj where (i, j) ∈ A

In other words, Xi(A, zi) is the marginal probability of X(A, (zk)).

Resource Constraint: For any realized matching A and state sA, the consumption cannot be larger than

what was produced in the economy. Therefore,∑
k

zsA

k ≤
∑

(i,j)∈A

q(sij),∀sA ∈ SA, A

The constraint can be written as∑
k

zsA

k −
∑

(i,j)∈A

qij(s)

X(A, (zk)) ≤ 0,∀sA ∈ SA, A, (zk)

Incentive Compatibility Constraints: I consider three cases: (1) no incentive problem, (2) global incen-

tive compatibility constraint, and (3) local incentive compatibility constraint. It is trivial that ICl and ICg

are linear constraints.

In summary, the planner’s problem with weight profile (λk)k∈I∪J is

(P ) max
∑

k

∑
zk

∑
A

λk

[∑
s∈SA

vk(zs
k)Pr(s;A)− Ek(ek)

]
Xk(A, zk)

s.t.
∑
A

∑
zk

Xk(A, zk) = 1,∀k ∈ I ∪ J

Xi(A, zi)−
∑
zj

Xij(A, zi, zj) = 0, Xj(A, zj)−
∑
zi

Xij(A, zi, zj) = 0,∀j, A, zi, zj

Xij(A, zi, zj)−
∑

z−i,z−j

X(A, (zk)) = 0,∀i, j, zi, zj , A∑
k

zsA

k −
∑

(i,j)∈A

qij(s)

X(A, (zk)) ≤ 0,∀sA ∈ SA, A

No IC or ICg or ICl

Xk(A, zk), Xij(A, zi, zj), X(A, (zk)) ≥ 0

Non-Binding Resource constraint: In the economy without moral hazard problem, no resource is wasted

by the planner. With incentive compatibility constraints, it is optimal to waste resources at certain states.

13



For example, suppose there are only two states of the economy, the lower output state and a higher output

state. By wasting resources in the lower output state, the planner could implement higher effort. If the higher

probability of the higher output state due to the higher effort level outweighs the waste of the resources, the

planner would waste resource of the lower output state. Holmstrom (1982) emphasizes the role of the

principals as a budget balance breaker. If a resource is wasted in state s, the dual variable for the resource

at state s is zero by complementary slackness of linear programming.

Assumption 3 The domain of the planner’s problem is not empty.

Proposition 1 A solution for the planners problem exists.

Proof. From the assumption on vi(·), the non-emptiness of the domain, and Carathéodory’s Theorem on

convex hull, a maximum exists.

Note that the solution of the planner’s problem is incentive-constrained efficient by definition.

Definition 2 A random assignment of firms and consumption is incentive-constrained efficient if the allo-

cation solves the planner’s problem.

The planner’s problem can be considered as a linear programming problem with an infinite number of

variables. It also has an infinite number of constraints since the second constraint has to be satisfied for all

zi and zj . However, in the appendices, I show that it can be considered as if it is a linear programming

problem of finite variables and finite constraints, since the support of X(A, (zk)) is finite by Carathéodory’s

Theorem on Convex Hull.

If ICg is assumed, there exists an integral solution for the matching assignment. In other words, the

support of
∑

(zk) X(A, (zk)) is a singleton. However, the consumption allocation can be random. In other

words, for a given A, Xi(A, ·) is a non-degenerate random variable. Moreover, the random assignments of

consumption for each individual are correlated, since Xi(A, zi) is a marginal probability of Xij(A, zi, zj),

which is the marginal probability of X(A, (zk)) by the primal constraints. The benefit of the using random

contracts has been pointed by many scholars (see Prescott and Townsend (1984) and Arnott and Stiglitz

(1988)).

On the other hand, if ICl is assumed, there does not exist an integral solution for the matching in general.

By creating uncertainty on matching A, it is possible to relax the incentive compatibility constraints further.

Again, it is well known that the uncertainty makes it easy to implement higher effort with lower cost. The

reason for the usage of random matching under ICl, but not under ICg, is because of the assumption of the

information structure. Under ICl, the effort is made before A is fully known, while under ICg the effort is

made after matching A is known. Apparently, there is no role for relaxing incentive compatibility constraints

by random matching under ICg.
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Proposition 2 (0) Without the incentive compatibility constraints, there exists a solution of non-random

matching and non-random assignment of consumption.

(1) Under ICg, random assignment of consumption is used in general, but there exists a non-random

assignment of matching A.

(2) Under ICl, random assignment of consumption is used in general, and also non-degenrate random

assignment of matching A is used in general.

(3) Under both of ICl and ICg, the random assignment of consumption for each individual are correlated.

Proof. (0) From the concave utility functions, the result follows. (1) By backward induction. (2, 3) By

relaxation of IC by creating uncertainties.

Note that the existence of the solution of the non-random matching assignment in the economy without

moral hazard or with ICg does not necessarily imply that there does not exist a random matching assignment.

Example 1 The economy has only two economic agents, i and j. Only i can choose efforts, e ∈ {eH , eL}.

In the figure below, the two elliptical thick lines are utility frontiers that depend on the effort of individual

i. Let the slope of line BC be ` := λj/λi. For weights other than `, the planer’s solution does not contain

random matching. (Note that matching specifies not only the matching of the individuals, but also efforts.)

For weight `, even though there exist two non-random assignments of matching (B and C), the planner

also can choose any point between them, which is a random assignment.

In other words, the non-random assignment of A in the economy without moral hazard or with ICg

restricts the attainable utility frontier.

u_i

u_j

A B

C

D

e=eH

e=eL

2.2 Decentralization of Efficient Assignment

The dual linear programming problem of the planner’s program specifies a market environment where the

decentralized economy replicates the optimization of the planner’s. The market environment includes com-

modities, prices of the commodities, timing of relevant markets for the commodities, necessary commitment,

technologies such as public randomization devices, and arbitrageurs of the commodities. Detailed derivation
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of the market environment for the decentralization is provided in section 2.3, and I state market environment

here without derivation.

Commodities: In an economy without moral hazard or with ICg, commodities are lotteries on matching

structure and random consumption, (A,∆zi). In the economy with ICl, commodities are lotteries on contract

(i, j, ei, ej ,∆zi) that specifies who are matched, what random payoffs are, and what the efforts are.

Prices of the Commodities: Prices of the contract is individual-specific, i.e. Lindahl prices. In the

economy without moral hazard or with ICg, price of (A,∆zi) for individual i is denoted by ti(A,∆zi). In

the economy with ICl, price of (i, j, ei, ej ,∆zi) is denoted by ti(j, ei, ej ,∆zi).

Players of the economy: Besides the individuals in the planner’s problem, unlimitedly supplied compet-

itive contract arbitrageurs and insurers are derived from the dual linear programming.

Contract arbitrageurs are expected money maximizers, and specialize in contract writing. They try to

maximize expected money income by selling lotteries on matching A to individuals, and by innovating a

contract. Although they are risk neutral in terms of money, they get negative infinite payoff if they do not

fulfill the contract, i.e. if they fail to deliver the non-money good promised in the contract to the members of

the firm. Therefore, they have to insure themselves through an insurer. Since their supplies are unlimited,

they end up with zero profit in equilibrium. Since they compete, contracts will insure individuals as much

as possible with the restriction of incentive compatibility.

Insurers are also expected money maximizers and specialize in insuring all the risks in the economy. In

order to get a license to do business from the planner, the insurers must be committed to taking care of all

the risks faced by the firms in the economy. In other words, the insurers must meet all the demand from

all the firms. For example, if the economy has two firms, T and T ′, the insurer must sell the amount of

insurance that each firm wants to buy even if the insurer’s profit from selling to T ′ is negative. However, as

long as the combined profit from T and T ′ is non-negative, the insurer is willing to be committed to selling

insurance to the economy. In a competitive environment, the equilibrium expected payoff to the insurers

would be zero.

Markets and Timing of Markets: There are a market for lotteries on contracts and a market for

insurance. The timing is described below.

The 0th stage (ex-ante phase): Individuals and contract arbitrageurs trade lotteries on contracts: (A, zi)

in the economy without moral hazard, (A,∆zi) in global information structure, and (i, j, ei, ej ,∆zi)

in local information structure. Contract arbitrageurs and insurers trade insurance for non-money

commodities.

The 1st stage (interim phase): Matching A is realized, and is known to individuals under global infor-

mation structure, but not in local information structure.
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The 2nd stage: i and j choose efforts.

The 3rd stage: The matching and state of the economy are revealed. The contracts are exercised and they

consume.

Note that the price of a contract lottery can be negative, in which case ‘purchase’ means ‘sale’, and ‘sale’

means ‘purchase’.

In the 3rd stage, agents are committed to the consumption specified by the contracts. Therefore they

do not trade after the exercise of contracts. Section 6.4 considers the case where individuals do not have

the technology of commitment to a certain consumption bundle (i.e. they trade in a spot market after the

realization of all uncertainty).

Commitment: The aforementioned timing gives information about what kind of commitments are required

in the economy. Firstly, individuals are committed to the consumption specified by the contracts. It is known

that ex-ante efficiency can be achieved by implementing ex-post inefficiency in the presence of moral hazard.

The planner can achieve ex-post inefficiency in certain states by not equalizing marginal rate of substitution.

If individuals were allowed to trade in a spot market (the 3rd stage), they can obtain higher utility. However,

that possibility would break the incentive compatibility constraint.

It is also assumed that each individual has no private access to a contingent market. With the private

access to a contingent market, an economic agent will try to smooth consumption over states; hence, the

contracted effort cannot be enforced (see Tommasi and Weinschelbaum (2004)).

Existence of public randomization device: In order to exercise random contracts, a public random-

ization device is required. For a realized uncertainty sA, firms pay a randomized payoff zs
i with probability

Xi(A, zi)/
∑

z̃i
Xi(A, z̃i). However, all the firms’ exercise of random contracts have to be correlated by the

primal constraints

Xij(A, zi, zj)−
∑

z−i,z−j

X(A, (zk)) = 0, Xi(A, zi)−
∑
zj

Xij(A, zi, zj) = 0, Xj(A, zj)−
∑
zi

Xij(A, zi, zj) = 0

in order to replicate the solution of the planner’s problem.

Definition 3 (Definition of Equilibrium) 1. Individual Optimization: Individuals buy lotteries on

contract (A, zi) ((A,∆zi) or (i, j, ei, ej ,∆zi)) at per-unit probability price of ti(A, zi) (ti(A,∆zi) or ti(j, ei, ej ,∆zi))

in the economy without moral hazard (with ICg or with ICl). Once matching A is realized, individuals i and

j choose efforts. After the realization of the state of the economy (A, (zk), s, state of the randomization
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device) is known, individuals consume. Formally, the individuals’ problems are

NoIC : max
Qi(A,zi)

X
A

X
zi

"X
s

vi(z
s
i ) Pr(s;A)− Ei(ei)

#
Qi(A, zi) s.t.

X
ti(A, zi)Qi(A, zi) = 0

ICg : max
e′i

max
Qi(A,∆zi)

X
A

(X
zi

"X
s

vi(z
s
i ) Pr(s;A′)− Ei(e

′
i)

#
Xi(zi|A)

)
Qi(A,∆zi)

s.t.
X

(A,∆zi)

ti(A,∆zi)Qi(A,∆zi) = 0

ICl : max
e′i

max
Qi(j,ei,ej ,∆zi)

X
j,ei,ej

8<: X
A3(i,j,ei,ej)

X
zi

"X
s

vi(z
s
i ) Pr(s;A′)− Ei(e

′
i)

#
Xi(A, zi|j, ei, ej)

9=;Qi(j, ei, ej ,∆zi)

s.t.
X

(j,ei,ej ,∆zi)

ti(j, ei, ej ,∆zi)Qi(j, ei, ej ,∆zi) = 0

2. Contract-arbitrageur’s Optimization: Unlimitedly supplied contract-arbitrageurs sell lotteries

to individuals at the price of ti(A, zi), ti(A,∆zi), or ti(j, ei, ej ,∆zi). Also, contract-arbitrageurs insure

themselves through an insurer. Once a contract arbitrageur’s contract is picked by the randomization device,

she takes charge of the firm. Formally, contract arbitrageurs’ problems are

NoIC : max
Qij(A,zi,zj)

X
A3(i,j,ei,ej)

X
zi,zj

[ti(A, zi) + ti(A, zj)− Tij(A, zi, zj)]Qij(A, zi, zj)

ICg : max
Qij(A,∆zi,∆zj)

X
A3(i,j,ei,ej)

X
∆zi,∆zj

[ti(A,∆zi) + ti(A,∆zj)− Tij(A,∆zi,∆zj)]Qij(A,∆zi,∆zj)

s.t. (A,∆zi,∆zj) is globally incentive compatible.

ICl : max
Qij(ei,ej ,∆zi,∆zj)

X
ei,ej

X
∆zi,∆zj

[ti(j, ei, ej ,∆zi) + ti(j, ei, ej ,∆zj)− Tij(ei, ej ,∆zi,∆zj)]Qij(ei, ej ,∆zi,∆zj)

s.t. (i, j, ei, ej ,∆zi) is locally incentive compatible.

3. Insurer’s Optimization: Unlimitedly supplied insurers try to maximize the expected payoff, and

compete for the license to do business. Formally,

NoIC : max
Q(A,(zk))

X
A

X
(zk)

X
(i,j)∈A

Tij(A, zi, zj)Q(A, (∆zk)) s.t.
X

(i,j)∈A

[zsi + zsj − qij(s)] ≤ 0

ICg : max
Q(A,(∆zk))

X
A

X
(∆zk)

X
(i,j)∈A

{Tij(A,∆zi,∆zj)}Q(A, (∆zk)) s.t.
X

(i,j)∈A

[zsi + zsj − qij(s)] ≤ 0

ICl : max
Q(A,(∆zk))

X
A

X
(∆zk)

X
(i,j)∈A

[Tij(ei, ej ,∆zi,∆zj)]Q(A, (∆zk)) s.t.
X

(i,j)∈A

[zsi + zsj − qij(s)] ≤ 0

4. Clearance of Commodity Market Clearance: The commodity market clears at each (A, sA).X
i

zsi +
X

j

zsj ≤
X
i,j

qij(s),∀s ∈ SA

5. Matching Market Clearance (Consistency): The matching market clears in the sense that lottery

purchases are consistent across the population. Moreover, exercises of contracts have to be coordinated in

order to satisfy the resource constraint. In summary,

Xi(A, zi) =
X
zj

Xij(A, zi, zj), Xij(A, zi, zj) =
X

z−i,z−j

X(A, (zk))
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Theorem 1 (Welfare Theorems) [The first welfare theorem] A price-taking equilibrium with a lottery

trade, a randomization device, unlimitedly supplied contract arbitrageurs and insurers is incentive-constrained

efficient. [The second welfare theorem] The planner’s assignment/allocation of matching and consump-

tion (constrained by the incentive compatibility constraint) with any weight profile λ can be decentralized by

a lottery trade, a randomization device, and competitive contract arbitrageurs and insurers. [Characteri-

zation] Contract arbitrageurs and insurers get zero profit.

Discussion follows after the proof.

2.3 Characterization of Equilibria and Proof of Theorem 1

Dual linear programming problem of the planner’s linear programming problem is derived. From the dual

constraints (the constraints of the dual linear programming probelm), a proper definition of price-taking

equilibrium is derived.

2.3.1 Dual Linear Programming

Let the dual variables corresponding to each constraint of the planner’s linear program be yi, yj , ti(A, zi),

tj(A, zj) and p(A, (zi), (zj), s). Then the following is the dual linear program without IC constraints.

(D)min
∑

i

yi +
∑

j

yj

s.t. yi ≥ λi

[∑
s

vi(zs
i )Pr(s;A)− Ei(ei)

]
− ti(A, zi)

0 ≥ ti(A, zi) + tj(A, zj)− Tij(A, zi, zj) (under NoIC)

0 ≥
∑

(i,j,ei,ej)∈A

Tij(A, zi, zj) +

 ∑
(i,j)∈A

qij(s)−
∑

i

zsA
i −

∑
j

zsA
j

 p(A, (zi), (zj), s)

p(A, (zi), (zj), s) ≥ 0

With ICg, the second dual constraint is

0 ≥ ti(A, zi) + tj(A, zj)− Tij(A, zi, zj)

−
∑
e′i

αi(e′i|A, zj)DGi(e′i|A, zi)−
∑
e′j

αj(e′j |A, zi)DGi(e′i|A, zj) (under ICg)

where αi(e′i|A, zj) is the dual variable for the ICg constraint.

With ICl, the second dual constraint is

0 ≥ ti(A, zi) + tj(A, zj)− Tij(A, zi, zj)

−
∑
e′i

αi(e′i|ei, ej , zj)DGi(e′i|A, zi)−
∑
e′j

αj(e′j |ei, ej , zi)DGi(e′i|A, zj) (under ICl)

19



where αi(e′i|ei, ej , zi) is the dual variable for the ICl constraint.

Proposition 3 (Fundamental Theorem of Linear Programming) (1) There exists a solution for each

of the three primal linear programs. (2) There exists a solution for each of the three dual linear programs.

(3) The values of the primal and dual programming are the same for each of the three programmings.

Proposition 4 (Complementary Slackness)

Xi(A, zi) > 0 ⇒ yi = λi

[∑
s

vi(zs
i ) Pr(s;A)− Ei(ei)

]
− ti(A, zi)

Xi(A, zi) = 0 ⇐ yi > λi

[∑
s

vi(zs
i ) Pr(s;A)− Ei(ei)

]
− ti(A, zi)

Similarly,

Xij(A, zi, zj) > 0 ⇒ Equality of the relevant second dual constraint

Xij(A, zi, zj) = 0 ⇐ Strict inequality of the relevant second dual constraint

X(A, (zk)) > 0 ⇒ Equality of the third dual constraint

X(A, (zk)) = 0 ⇐ Strict inequality of the third dual constraint

Before analyzing and interpreting the meaning of the dual constraints, I prove two lemmas that can be

shown by a direct application of the fundamental theorem of LP.

Lemma 1 At an optimal solution of linear programs,

yk = λk

∑
A

∑
zk

[∑
s∈SA

vk(zs
k)Pr(s;A)− Ek(ek)

]
Xi(A, zi)−

∑
A

∑
zk

tk(A, zk)Xi(A, zi)

0 =
∑
zi

ti(A, zi)Xi(A, zi) +
∑
zj

tj(A, zj)Xj(A, zj)−
∑
zi,zj

Tij(A, zi, zj)Xij(A, zi, zj) (under ICg)

0 =
∑

A3(i,j,ei,ej)

∑
zi

ti(A, zi)Xi(A, zi) +
∑

A3(i,j,ei,ej)

∑
zj

tj(A, zj)Xj(A, zj)

−
∑

A3(i,j,ei,ej)

∑
zi,zj

Tij(A, zi, zj)Xij(A, zi, zj) (under ICl)

0 =
∑
A

∑
(zk)

Tij(A, zi, zj)X(A, (zk))

Lemma 2 For any weight profile λ, there exists a dual solution, (yk, tk(A, zk)) such that∑
A

∑
zk

tk(A, zk)Xi(A, zi) = 0.
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2.3.2 Characterization of Decentralization

Historically, the main application of linear programming was revenue maximization with a linear production

function for some given inputs. It is well known that the dual linear programming of the revenue maximization

problem is ‘cost minimization problem’. The ‘cost minimization problem’ is not cost minimization problem

per se, since the control variables of the ‘cost minimization problem’ are prices rather than quantities.

However, the optimal prices of the ‘cost minimization problem’ are not meaningless since they measure the

producer’s willingness to pay for the (small enough) additional inputs. For a review of linear programming,

see appendices.

The planner’s problem can be interpreted as a revenue maximization problem. The inputs for the

planner’s problem are individuals. All other constraints can be interpreted as technological constraints. The

dual variables of the individual probability constraint measure the value of the individual, which has the

direct interpretation of the individual’s utility. The dual value of the second primal constraint measures

the value of assignment (A, zi) to individual i, which is the price of assignment (A, zi) to individual i. The

dual value of the third primal constraint measures the value of assignment (A, zi, zj) to firm (ij), which is

the price of assignment (A, zi, zj) to firm (ij). The dual variable of the fourth primal constraint measures

the value of the resource. In the sensitivity analysis of linear programming, the dual variable measures the

additional value of the resource. Therefore, the dual variable of the resource constraint is the price of the

commodity. Note that the notion of a market has to be introduced in order to define prices. Lastly, the

prices of incentives are derived from the last primal constraints, which will be discussed later.

Note that the prices of the second and the third primal constraints measure an assignment to individual

i and firm (ij). Since the price is indexed by i and (ij), the natural definition of prices would be Lindahl

prices.

2.3.3 Individual Choice: the first dual constraint

The dual variable of the first primal linear program, yi, is the value of individual i to the planner. The first

dual constraint is interpreted as individuals’ maximization.

Define prices using the optimal value of the dual linear program.

ti(A,∆zi) :=
∑
zi

ti(A, zi)Qi(zi|A,∆zi)

ti(j, ei, ej ,∆zi) :=
∑

A3(i,j,ei,ej)

∑
zi

ti(A, zi)Qi(A, zi|j, ei, ej ,∆zi)

ti(A,∆zi) is the price of a random contract that (1) realizes matching A with probability
P

zi
Qi(A,zi)P

Ã

P
zi

Qi(Ã,zi)
, and

(2) gives consumption zs
i at state (A, s) with probability

∑
z̃i:z̃s

i =zs
i

Qi(A,z̃i)P
z̃i

Qi(A,z̃i)
. ti(j, ei, ej ,∆zi) is the price
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of a random contract that (1) realizes matching (i, j, ei, ej) with probability
∑

A3(i,j,ei,ej)

P
zi

Qi(A,zi)P
A

P
zi

Qi(A,zi)
,

(2) gives consumption zs
i at state (A 3 (i, j, ei, ej), s) with probability

∑
z̃s

i :z̃i=zs
i

Qi(A,z̃i)P
z̃i

Qi(A,z̃i)
.

By summing up the first dual constraints with arbitrary Qi(A, zi), I get

yi ≥λi

∑
A

∑
zi

[∑
s∈SA

vi(zs
i )Pr(s;A)− Ei(ei)

]
Qi(A, zi)−

∑
A

∑
zi

ti(A, zi)Qi(A, zi) [INDV]

⇔ yi/λi ≥
∑
A

{∑
zi

[∑
s∈SA

vi(zs
i )Pr(s;A)− Ei(ei)

]
Qi(zi|A,∆zi)

}
Qi(A,∆zi)−

1
λi

∑
(A,∆zi)

ti(A,∆zi)Qi(A,∆zi)

⇔ yi/λi ≥
∑

j,ei,ej

 ∑
A3(i,j,ei,ej)

∑
zi

[∑
s

vi(zs
i ) Pr(s;A)− Ei(ei)

]
Qi(A, zi|j, ei, ej ,∆zi)

Qi(j, ei, ej ,∆zi)

− 1
λi

∑
(j,ei,ej ,∆zi)

ti(j, ei, ej ,∆zi)Qi(j, ei, ej ,∆zi)

Note that the summation over zk is meaningless if no random contract is used in the equilibrium. If

Qi(A, zi) = Xi(A, zi), then the inequalities are equalities by Complementary Slackness.

From Lemma 2, pick optimal dual variables such that
∑

A

∑
zk

tk(A, zk)Xi(A, zi) = 0. Then, I have∑
A

ti(A,∆zi)Xi(A,∆zi) =
∑

j,ei,ej

ti(j, ei, ej ,∆zi)Xi(j, ei, ej ,∆zi) = 0.

The meaning of the equality in Lemma 2 is that money expenditure on the lottery purchase is zero if the

purchase is the same as that of the planner’s solution. On top of that the purchased contracts are incentive

compatible by both Complementary Slackness and the primal constraints of the incentive compatibility

constraints.

It is shown that non-incentive compatible contracts are never sold by contract arbitrageurs.

Therefore, the above inequality [INDV] summarizes individual i’s optimization, since, if individual i has

chosen a different probability than that of the planner’s, the purchase of the different probability would be

infeasible or suboptimal. Also, yi/λi is interpreted as the ex-ante utility of i before realization of (A, s).

Moreover, 1/λi is i’s marginal utility of income. In other words, if individual i were given ε amount of money

in the beginning, he could have increased his expected utility by changing his purchase of the lotteries.

Remark: By proposition 4, I have ∑
A

∑
zi

tk(A, zi)Xi(A, zi) = 0

However,
∑

A3(i,j,ei,ej)

∑
zi

ti(A, zi)Xi(A, zi) is not zero in the economy with ICl in general. Therefore, in

the economy under ICl the payoff according to the outcome of the lottery draw is actually different for

individuals.

Under the economy with ICl, after contract (i, j, ei, ej ,∆zi,∆zj) is known, the realized utility is

yk

λk
+

1
λk

∑
A3(i,j,ei,ej)

∑
zk

∑
s∈SA

tk(A, zs
k)PrsA

Xk(A, zk)∑
z̃k

Xk(A, z̃k)
=

∑
A3(i,j,ei,ej)

∑
zk

[∑
s∈SA

vk(zs
k)− Ei(ei)

]
Xk(A, zk)∑
z̃k

Xk(A, z̃k)
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In general the second term of the left-hand side of the equality is not zero. In other words, ICl constrained

efficiency typically requires agents of the same type to obtain different utility levels when assigned to different

team. This result will be elaborated on in the section for the continuum model.

2.3.4 Contract Arbitrageurs’ optimization: the second dual constraints

The second dual constraint is the contract arbitrageurs’ optimization. There is no probability constraint

for contract arbitrageurs, i.e. arbitrageurs are a freely available input to the planner. The price of a

freely available input must be zero, so arbitrageurs get zero profit unlike individuals. Being freely available,

arbitrageurs are perfectly competitive. They specialize in writing contracts between i and j. The only way

for them to gain profit is to innovate a contract between i and j, and to sell a lottery on that contract.

The contract arbitrageur pays non-money commodity zi and zj to i and j, which are not necessarily

same to qij(s). Although they are risk neutral in terms of money, they get a payoff of negative infinity if

they do not fulfill the contract, i.e. if they fail to deliver the non-money good promised by the contract to

the members of the firm. Therefore, they have to insure themselves through an insurer.

In the equilibrium, there are two kinds of arbitrageurs: ex-ante active arbitrageurs and ex-ante inactive

arbitrageurs. Ex-ante active arbitrageur sells a positive amount of lotteries on the job assignment, while ex-

ante inactive arbitrageur sells zero amount of lotteries because her contract is not profitable. Not all ex-ante

active arbitrageurs are active ex-post. Some are ex-post active, and others are ex-post inactive depending on

the realization of A.

Define the insurance premium using the optimal value of the dual linear programming problem.

Tij(A,∆zi,∆zj) :=
∑
zi,zj

Tij(A, zi, zj)Qij(A, zi, zj)

Tij(ei, ej ,∆zi,∆zj) :=
∑

A3(i,j,ei,ej)

∑
zi,zj

Tij(A, zi, zj)Qij(A, zi, zj)

Tij(A,∆zi,∆zj) is the price of insurance that pays non-money commodity zs
i +zs

j −qij(sA) at the realization

of (A 3 (i, j, ei, ej), s) with probability
∑

z̃i,z̃j :z̃s
i =zs

i ,z̃s
j=zs

j

Qij(A,z̃i,z̃j)P
z̃i,z̃j

Qij(A,z̃i,z̃j)
in the economy with ICg. In the

economy with ICl Tij(ei, ej ,∆zi,∆zj) is the price of insurance that pays in a similar way.

The implications of the dual constraints slightly differ across the three economies: without moral hazard

problem, with ICg, and with ICl. I analyze them one by one.

The economy without moral hazard problem: By summing up the second dual constraints with

arbitrary Qij(A, zi, zj), I get

0 ≥
∑

A3(i,j,ei,ej)

[ti(A, zi) + ti(A, zj)− Tij(A, zi, zj)]Qij(A, zi, zj) [ARB NoIC]
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If Qij(A, zi, zj) = Xij(A, zi, zj), the inequality becomes an equality. Therefore, inequality [ARB NoIC]

summarizes contract arbitrageur (ij)’s optimization, since she would not gain more even if she has chosen a

different probability than that of the planner’s.

The ex-ante active contract arbitrageurs spend all non-money commodities by paying non-money wage

zi and zj , by receiving zi + zj − qij(s), and by production qij(s). Therefore, the ex-ante active contract

arbitrageur hedges all the risk. This is a natural result since contract arbitrageurs are infinitely risk averse

in non-money commodities.

The economy with ICg: By summing up the second dual constraints with arbitrary Qij(A, zi, zj), I get

0 ≥
∑

A3(i,j,ei,ej)

[ti(A,∆zi) + ti(A,∆zj)− Tij(A,∆zi,∆zj)]Qij(A,∆zi,∆zj) [ARB ICg]

−
∑

A3(i,j,ei,ej)

∑
zi,zj

∑
e′i

αi(e′i|A, zj)DGi(e′i|A, zi) +
∑
e′j

αj(e′j |A, zi)DGj(e′j |A, zj)

Qij(A, zi, zj)

If Qij(A, zi, zj) = Xij(A, zi, zj), the inequality becomes an equality. Moreover, the second line is zero by

Lemma 1.

The last two terms are the shadow values of the incentive compatibility constraints. In other words,

the seller’s profit internalizes the shadow value of the incentive compatibility constraints. If Xij(A, zi, zj) is

the same as the planner’s solution, the arbitrageur would get zero profit. If the arbitrageur sells a different

amount of the lotteries than the planner’s solution, the profit (including the incentive cost represented by

the shadow value) would be smaller than zero. Of course, the shadow values of the incentive compatibility

constraints are imaginary. A justifying story is that, if the arbitrageur sells a non-incentive compatible

lottery, the profit is negative infinity. Even if the arbitrageur sells an incentive compatible contract lottery,

the profit would not go up by the following proposition.

Lemma 3 If (A,∆zi,∆zj) is incentive compatible in the economy with ICg,

0 ≥
∑

A3(i,j,ei,ej)

∑
∆zi,∆zj

[ti(A,∆zi) + ti(A,∆zj)− Tij(A,∆zi,∆zj)]Qij(A,∆zi,∆zj)

Therefore, inequality [ARB ICg] summarizes contract arbitrageur (ij)’s optimization, since she would

not gain more even if she chose a different probability than that of the planner.

The economy with ICl: By summing up the second dual constraints with arbitrary Qij(A, zi, zj), I get

0 ≥ [ti(j, ei, ej ,∆zi) + tj(i, ei, ej ,∆zj)− Tij(ei, ej ,∆zi,∆zj)]Qij(ei, ej ,∆zi,∆zj) [ARB ICl]

−
∑

A3(i,j,ei,ej)

∑
zi,zj

∑
e′i

αi(e′i|j, ei, ej , zj)DGi(e′i|A, zi) +
∑
e′j

αj(e′j |i, ei, ej , zi)DGj(e′j |A, zj)

Qij(A, zi, zj)

If Qij(A, zi, zj) = Xij(A, zi, zj), the inequality becomes an equality. Moreover, the second line is zero. The

interpretation of the last two terms are similar to that of the economy with ICg.
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Lemma 4 If (i, j, ei, ej ,∆zi,∆zj) is incentive compatible in the economy with ICl, then

0 ≥
∑

∆zi,∆zj

[ti(j, ei, ej ,∆zi) + tj(i, ei, ej ,∆zj)− Tij(ei, ej ,∆zi,∆zj)]Qij(ei, ej ,∆zi,∆zj)

Therefore, inequality [ARB ICl] summarizes contract arbitrageur (ij)’s optimization, since she would not

gain more even if she chose a different probability than that of the planner.

2.3.5 Insurer’s Choice: the third dual constraints

The third dual constraint is the insurer’s optimization. Again, there is no probability constraint for insurers,

i.e. insurers are considered to be perfectly competitive. The third constraint is

0 ≥
∑

(ij)∈A

Tij(A, zi, zj) + p(A, s, (zk))

 ∑
(ij)∈A

qij(s)−
∑

k

zs
k

 [INSR]

The insurer behaves differently from ordinary insurers. Insurers are committed to taking care of all the

risk involved in the economy. Without commitment, they could have sold more insurance to some firms if

the insurance premium exceeds the expected payment to them, and none to the others if not.

The last term is the shadow value of the resource constraint. In other words, the insurer’s profit internal-

izes the shadow value of the resource constraint. If X(A, (zk)) is the same as the planner’s solution, then the

insurer gets zero profit. If the insurer sells insurance that is different from the planner’s solution, then the

profit (including the incentive cost represented by the shadow value) would be smaller than zero. Of course,

the shadow value of the resource constraints are imaginary. A justifying story is that, if the insurer sells

insurance that does not satisfy the resource constraint (hence, the insurer cannot deliver what is promised in

the insurance contract), the disutility of the insurer is infinite. Even if the insurer sells insurance satisfying

the resource constraint, but different from that of the planner’s solution, the profit would not go up by the

following proposition.

Lemma 5 If Q(A, (zk)) is the probability that resource constraints are satisfied for all the realizations, then

0 ≥
∑

(i,j)∈A

Tij(A, zi, zj)Q(A, (zk))

Therefore, inequality [INSR] summarizes the insurer’s optimization, since she would not gain more even if

she chose a different probability than that of the planner.

Example 2 Suppose there are only two possible teams in the economy with ICg, (i, j, ei, ej) and (k, h, ek, eh).

In general,

Tij(A,∆zi,∆zj)Xij(A,∆zi,∆zj) 6=
∑

z

∑
s

p(A, s, z)[zs
i + zs

j − qij(s)]Xij(A, zi, zj)

Tkh(A,∆zk,∆zh)Xkh(A,∆zk,∆zh) 6=
∑

z

∑
s

p(A, s, z)[zs
k + zs

h − qkh(s)]Xkh(A, zk, zh)
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In other words, the insurance premium Ti(A,∆zi,∆zj) does not correctly reflect the expected value of the

payment from the insurer to the insured. Say Ti(A,∆zi,∆zj) >
∑

z

∑
s p(A, s, z)[zs

i +zs
j−qij(s)]Xij(A, zi, zj).

If the insurer has access to a contingent claims market where she can purchase contingent claims zs
i +zs

j−qij(s)

at price
∑

z

∑
s p(A, s, z)[zs

i + zs
j − qij(s)]Xij(A, zi, zj), she would not sell insurance to (kh), but only to (ij).

In other words, unless the risk premium correctly reflects the expected value of future payments, commitment

of the insurer is critical in proving the welfare theorems.

One might wonder if it would be possible to pick a weight profile λ so that the insurance premium reflects

the expected value of the payment from insurance. However, the number of possible matching structures is

in general larger than that of individuals, so it would not be feasible to adjust λ in order to make all the

insurance premiums reflect the true values of the insurance.

Discussion on the equality of insurance premium and the expected value of future payment is revisited

when I compare finite and continuum economies in terms of the convergence of the former to the latter.

2.3.6 Public randomization device: How to Exercise Random Contracts

Lastly, a public randomization device is required in order to fully decentralize the planner’s solution. For a

realized uncertainty sA, firms pay randomized payoff zs
i with probability Xi(A, zi)/

∑
z̃i

Xi(A, z̃i). Moreover,

all the firms’ exercise of random contracts are correlated by the primal constraints.

Xij(A, zi, zj)−
∑

z−i,z−j

X(A, (zk)) = 0 , Xi(A, zi)−
∑
zj

Xij(A, zi, zj) = 0

In other words, even after the realization of state sA, firms exercise random contracts by observing the public

randomization device. If the randomization device realizes (zk)k∈I∪J with probability X(A, (zk))/
∑

(z̃k) X(A, (z̃k))

when (A, sA) is realized, firms pay zs
k, i.e. coordinated exercise of contracts.

If it is assumed that a reputable institution announces the outcome of the public randomization device,

the story of public randomization can be justified. However, the information that the institution has to

process is enormous. So the story might not conform to the true spirit of welfare theorems or Arrow-Debreu,

in which small economic entities observe a very small set of information (prices) compared to the size of the

economy (allocations). Moreover, in order for the insurer to bid for the license, she needs to know many

details of the economy.

There are two ways to deal with the existence of a public randomization device: one is the lack of

commitment and the other is competition. In the model, firms serve as a commitment technology in the

sense that individuals joining a firm are committed to the consumption paid by the firms; hence, they are

committed not to participate in the spot market after the realization of all uncertainty (A, sA, and the

realization of the randomization device). If I assume away the assumption of the commitment technology of

firms, spot prices would serve as a public randomization device. The illustration is given in section 6.4. The
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other way to go around the existence of the randomization device is competition. The model here has a finite

number of individuals. In section 3, I propose a continuum model and show convergence of the finite model

to the continuum model, in which the economy-wide public randomization device can be ‘decentralized’ into

firm-specific randomization devices; hence, the public randomization device is eliminated.

2.4 Comment on Combined Welfare Theorems

In the classical private good exchange economy, only one point on the contract curve can be decentralized

without money transfers among individuals. However, Theorem 1 shows that all the efficient allocations of

my model can be decentralized. The difference comes from the fact that commodity price p(A, (zk), s) is

non-linear in the sense that it is a function of (zk). In the classical exchange economy, price is not a function

of allocation even though price is determined to clear the commodity market.

The non-linearity of the price is illustrated by the linear programming formulation. Makowski and Ostroy

(1996) consider the classical exchange economy and write down the resource constraint as∑
i

∑
z

zxi(z) = 0

xi(z) is the individual measure that is in the objective function in the planner’s problem and in the re-

source constraint at the same time. Therefore, xi(z) directly connects the utility function and the resource

constraint; hence, the formulation enabled them to reflect the concavity of the utility function in price, i.e.

linear price. On the other hand, in the finite model of this paper, analogues of the resource constraint of the

classical exchange economy are the probability consistency constraints and the resource constraint, which

are

Xi(A, zi)−
∑
zj

Xij(A, zi, zj) = 0, Xij(A, zi, zj)−
∑

z−i,z−j

X(A, (zk)) = 0

∑
k

zsA

k −
∑

(i,j)∈A

qij(s)

X(A, (zk)) = 0,∀sA ∈ SA, A, (zk)

It is impossible to write down the resource constraint using measures on individuals’ or active contracts’

behavior. Therefore, an economy-wide measure X(A, (zk)) is used. Since the dual value of the resource

constraints represent the price of the commodities in the linear programming formulation, the commodity

price becomes a function of allocation – non-linear price. Also, the existence of the economy-wide measure

means that the corresponding dual constraint has to be interpreted as an economic agent’s maximization

problem. The fact that X(A, (zk)) describes the details of allocations in the economy is the main reason

that the economic agent ‘insurer’ has to take care of all the risks in the economy.

Through measure X(A, (zk)), unlike Makowski and Ostroy (1996), here individual constraints become
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redundant. Formally, ∑
A

∑
zi

Xi(A, zi) = 1 implies
∑
A

∑
zj

Xj(A, zj) = 1

since ∑
A

∑
zi

Xi(A, zi) =
∑
A

∑
zi

∑
z−i

X(A, (zk)) =
∑
A

∑
zj

∑
z−j

X(A, (zk)) =
∑
A

∑
zj

Xj(A, zj).

It is well known that redundant constraints in linear program make it possible to give arbitrary dual

values to the constraints with the sum of the dual values being constant. Since individual probabilities

are redundant in the linear programming formulation, the planner can give arbitrary dual values of the

individual probability constraints, which are the payoffs to the individuals. Therefore, the planner’s problem

with arbitrary weight can be decentralized.

In summary, the existence of the economy-wide measure, non-linearity of commodity prices, and the

redundancy of individuals’ probability constraints are equivalent. The economy-wide measure forces the

decentralized economy to have an insurer for efficiency, and the redundancy of the individuals’ probability

constraints makes it possible to decentralize the entire utility frontier. Considering that the insurer’s role

is essentially to cross-subsidize because the insurer has to take care of all the risks in the economy, the

combined welfare theorem is not surprising.

Ostroy and Song (2005) characterize best correlated equilibria (in the sense that the weighted sum of

utilities are maximized) as Lindahl equilibria where sellers of correlated equilibria constrained by the incentive

compatibility condition are introduced to the game. The finite model in this paper can be interpreted as

an extended version of correlated equilibria (see Myerson (1991)) of games in which each team does not

observe the suggested team structure of others. The uncertainty of the entire matching structure relaxes the

incentive compatibility constraints more. The result of the combined welfare theorems is also presented in

Ostroy and Song (2005).

3 A Matching Problem with Moral Hazard: Continuum Economy

A version of the contractual matching model with continuum individuals is proposed. In section 4, the

relationship between the models in section 2 and 3 is discussed.

Having continuums of individuals means that uncertainty is ‘certain’ in the sense that gross uncertainty

does not exist due to the law of large numbers. So, I assume that the contract is only a function of

idiosyncratic shock. However, the assumption is not without question. In the finite model, the contract is a

function of economy-wide shocks. So, the logical extension of the contractual form in the continuum model is

that the contract is a function of the distribution of realized shocks. This discrepancy between the intuitive

contractual form (a function of idiosyncratic shock) and the contractual form logically extended from the

finite model is discussed and reconciled.
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Also, the linear programming formulation of the resource constraint by the firms’ probabilities is possible

because of the assumption of the contractual form and the law of large numbers. In the finite model,

the formulation of the resource constraint is possible only thorugh X(A, (zk)), but not by Xij(A, zi, zj).

However, since gross uncertainty is absent in the continuum model, the firms’ probabilities could be used

for the formulation of the resource constraint. The consequence of this formulation is a tighter link between

consumption and the value of firm. Insurance premium fails to reflect the expected value of payments from

the insurance in the finite model, but it is recovered in this continuum model.

3.1 Planner’s Problem

The planner’s problem is formulated as a linear program.

Assignments of Matching and Efforts: There are two kinds of continuum individual with finite types,

I and J . A typical type in I, J , or I ∪ J is denoted by i, j, or k. Each individual can work only when each

is matched with someone from the other population. When i and j are matched, it is said that firm (ij) is

formed. When they are matched, they contract upon their efforts, which are denoted by (ei, ej) ∈ E2. When

individual i is not matched with anybody, it is denoted that individual i is matched to ∅.

Matching: I write (i, j, ei, ej) if i and j are matched with efforts (ei, ej). If i is not matched with anybody,

I write (i, ∅).

Technology, state, and matching: The state of firm (i, j, ei, ej) is denoted by s ∈ S = {1, . . . , S}. s is

realized with probability ϕ(s; ei, ej). In other words, the realization of state s is effected by efforts (ei, ej).

The output for individual firm (i, j, ei, ej) at state s is q(s).

Commodities, Allocation, and Utility function: There are L non-money commodities and one money

commodity. Let ∆zs
i be a randomized assignment of consumption at state s. Let ∆zi := (∆zs

i )s∈S be a

randomized assignment of consumption for all states. If there is no randomness in consumption, zi is defined

by zi := (zs
i )s∈S .

Assignment/Allocation is formally defined.

Definition 4 Assignment/Allocation (i, j, ei, ej ,∆zi,∆zj) specifies [Assignment] which individuals (i, j)

are matched with which efforts (ei, ej), and [Allocation] what the randomized consumption at the realization

of state s of firm (i, j, ei, ej) are.

Let xi(zi|j, ei, ej ,∆zi) be the marginal probability of zi for random contract (i, j, ei, ej ,∆zi,∆zj). The

expected utility of i is denoted by
∑

s∈S

∑
zs

i
vi(zs

i )ϕ(s; ei, ej)xi(zi|ei, ej) − Ei(ei) where Ei(ei) represents

the utility cost of effort ei. vi(·) is strictly increasing, strictly concave, and differentiable.

Notation of a few probabilities and measures: Let us define a few measures and/or probabilities to

better understand the economy.
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xij(ei, ej , zi, zj): fraction of firm (i, j, ei, ej) in the economy where i and j consume zi and zj

xi(j, ei, ej , zi): fraction/probability of type i that is matched to j with (ei, ej), and consumes zi

xi(∅, zi): fraction/probability of type i that is not matched with anybody, and consumes zi

xi(zi|j, ei, ej ,∆zi): fraction/probability of type i consuming zi conditional on matching (i, j, ei, ej) with

random consumption ∆zi, xi(j, ei, ej , zi)/
∑

z̃i
xi(j, ei, ej , z̃i)

Note that xi(j, ei, ej , zi) and xi(zi|j, ei, ej ,∆zi) can be interpreted as probabilities because of the assumption

of a continuum of individuals of a type.

For individual i, random matching with efforts and consumption is described by probability xi(j, ei, ej , zi).

For example, if xi(j, ei, ej , zi) = xi(j, ei, ej , z
′
i) = xi(j, e′i, e

′
j , z

′′
i ) = xi(j′, e′′i , e′′j , z′′′i ) = xi(∅, z′′′′i ) = 1/5, indi-

vidual i is matched to j with (ei, ej) and probability 2/5, to j with (e′i, e
′
j) and probability 1/5, to j′ with

(e′′i , e′′j ) and probability 1/5, or with nobody with probability 1/5. In the case that (i, j, ei, ej) is realized, i

consumes zi or z′i each with probability 1/2. In the case that individual i is matched to j (or j′) with (e′i, e
′
j)

(or (e′′i , e′′j )), individual i consumes z′′i (or z′′′i ) with certainty. If i is not matched with anybody, i consumes

z′′′′i .

xi(j, ei, ej , zi) is a marginal fraction of xij(ei, ej , zi, zj) by xi(j, ei, ej , zi) =
∑

zj
xij(ei, ej , zi, zj). As in

section 2, the measures/fractions are considered as if there is only a finite support.

Choice of Information Structure: The choice of information structure does not matter in the continuum

model, since wage is a function of only idiosyncratic shock.

3.1.1 Linear Programming Formulation of Planner’s Problem

Objective Function: The following is the expected utility for individual i.

Ui(Xi(·, ·)) :=
∑

j,ei,ej

∑
zi

[∑
s∈S

vi(zs
i )ϕ(s; ei, ej)− Ei(ei)

]
xi(j, ei, ej , zi) +

∑
zi

vi(zi)xi(∅, zi)

since xi(j, zk, ei, ej) is the probability that the planner puts individual i in matching (i, j, ei, ej) with con-

sumption zi. ∑
i

λiUi(xi(·)) +
∑

j

λjUj(xj(·))

Probability constraints: Sum of probabilities xi(·) equal to 1.∑
j,ei,ej

∑
zi

xi(j, ei, ej , zi) +
∑
zi

xi(∅, zi) = 1,∀i ∈ I ∪ J

Matching constraints: xi(j, ei, ej , zi) cannot be arbitrary. Let xij(ei, ej , zi, zj) be the fraction that i and

j are matched with efforts (ei, ej) and consumption zi and zj . Then the following must hold.

xi(j, ei, ej , zi) =
∑
zj

xij(ei, ej , zi, zj),∀i, j, ei, ej , zi
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Resource Constraint: Since all the uncertainty is washed out by the law of large numbers, the resource

constraint can be written as∑
i,j

∑
ei,ej

∑
zi,zj

∑
s

[zs
i + zs

j − q(s)]ϕ(s; ei, ej)xij(ei, ej , zi, zj) +
∑

k∈I∪J

∑
zk

zkxk(∅, zk) ≤ 0

Incentive Compatibility Constraints:

DGi(e′i|j, ei, ej , zi) :=

[∑
s

vi(zs
i )ϕ(s; e′i, ej)− Ei(e′i)

]
−

[∑
s

vi(zs
i )ϕ(s; ei, ej)− Ei(ei)

]
,

then the incentive compatibility condition is∑
zi

DGi(e′i|ei, ej , zi)xij(ei, ej , zi, zj) ≤ 0

In summary, the planner’s problem with weight profile (λk)k∈I∪J is

(P ) max
∑

i

λiUi(xi(·)) +
∑

j

λjUj(xj(·))

s.t.
∑

j,ei,ej

∑
zi

xi(j, ei, ej , zi) +
∑
zi

xi(∅, zi) = 1,∀i, similarly for j

xi(j, ei, ej , zi)−
∑
zj

xij(ei, ej , zi, zj) = 0,∀i, j, ei, ej , zi∑
i,j

∑
ei,ej

∑
zi,zj

∑
s

[zs
i + zs

j − q(s)]ϕ(s; ei, ej)xij(ei, ej , zi, zj) +
∑

k∈I∪J

∑
zk

zkxk(∅, zk) ≤ 0

∑
zi

DGi(e′i|ei, ej , zi)xij(ei, ej , zi, zj) ≤ 0

xi(j, ei, ej , zi), xi(∅, zi), xij(ei, ej , zi, zj) ≥ 0

Assumption 4 The domain of the planner’s problem is not empty.

Proposition 5 A solution of the planner’s problem exists.

Proof. From the assumption on vi(·), the non-emptiness of the domain, and Carathéodory’s Theorem on

convex hull, a maximum exists.

Note that the solution of the planner’s problem is incentive-constrained efficient by definition.

Definition 5 A random assignment of firms and consumption is incentive constrained efficient if the as-

signment solves the planner’s problem.

3.2 Decentralization of Efficient Assignment

The dual linear programming of the planner’s program specifies a market environment where the decentral-

ized economy replicates the optimal solution of the planner. The answer includes commodities, prices of the
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commodities, timing of relevant markets for the commodities, necessary commitment, technologies such as

randomization devices, and arbitrageurs of the commodities. Detailed derivation of the market environment

for the decentralization is provided in section 3.3, and I state market environment here without derivation.

Commodities and Prices: Lottery commodities on contracts specify who are matched, what the random

payoffs are, and what the efforts are. Prices of the lotteries are individual-specific, i.e. Lindahl prices denoted

by τi(j, ei, ej ,∆zi) for (i, j, ei, ej ,∆zi).

Players of the economy: Besides the individuals in the planner’s problem, perfectly competitive contract

arbitrageurs are derived from the dual linear program.

Contract arbitrageurs are expected money maximizers. They specialize in contract writing. They max-

imize expected money income by selling lotteries on matching (i, j, ei, ej) to individuals, and by innovating

a contract. Although they are risk neutral in terms of money, they get a payoff of negative infinity if they

do not fulfill the contract. Since their supplies are unlimited, they end up with zero profit in equilibrium.

Markets and Timing of Markets: There are a market for lotteries on contracts and an ex-post market

of commodities. The timing is described below.

The 0th stage (ex-ante phase): Individuals and contract arbitrageurs trade lotteries on contract (i, j, ei, ej ,∆zi).

Contract arbitrageurs trade in a contingent claims market to hedge the risk from non-money com-

modities.

The 1st stage (interim phase): Matchings are realized by a public randomization device.

The 2nd stage: i and j choose efforts.

The 3rd stage: Idiosyncratic shocks are realized, the contracts are exercised, the unmatched and contract

arbitrageurs trade, and individuals consume. The ex-post market is cleared by the delivery of contract

arbitrageurs’ contingent claims and the spot trade of the unmatched.

Commitment: In the 3rd stage, agents who are matched do not trade.

Existence of randomization devices: In order to exercise random contracts, randomization devices are

required. However, unlike in section 2, there is no need to have a centralized public randomization device for

the exercise of contract. Instead, it is sufficient for each firm (i, j, ei, ej) to possess a randomization device

that they use for its own contract.

Definition 6 (Definition of Equilibrium) 1. Individual Optimization: Individuals trade lotteries on

contract (i, j, ei, ej ,∆zi) at per-unit probability price of τi(j, ei, ej ,∆zi). Once contract (i, j, ei, ej ,∆zi,∆zj)

is realized, individuals i and j choose efforts. After the realization of idiosyncratic shocks and the ran-

domization devices, contracts are exercised, and individuals consume. Formally, individuals’ problems
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are

max
e′i

max
ξi(·)

X
j,ei,ej

(X
zi

"X
s

vi(z
s
i )ϕ(s; e′i, ej)− Ei(e

′
i)

#
xi(zi|j, ei, ej ,∆zi)

)
ξi(j, ei, ej ,∆zi) +

X
zi

vi(zi)ξi(∅, zi)

s.t.
X

(j,ei,ej ,∆zi)

τi(j, ei, ej ,∆zi)ξi(j, ei, ej ,∆zi) + p
X
zi

ziξi(∅, zi) = 0

2. Contract-arbitrageur’s Optimization: Unlimitedly supplied contract-arbitrageurs trade lotteries at

the price of τi(j, ei, ej ,∆zi). Once the contract arbitrageur’s contract is picked by the randomization

device, she takes charge of the firm. Formally, the contract arbitrageurs’ problems are

max
ξij(ei,ej ,∆zi,∆zj)

X
ei,ej

X
∆zi,∆zj

[τi(j, ei, ej ,∆zi) + τi(j, ei, ej ,∆zj)− Tij(ei, ej ,∆zi,∆zj)] ξij(ei, ej ,∆zi,∆zj)

s.t. (i, j, ei, ej ,∆zi) is incentive compatible.

where Tij(ei, ej ,∆zi,∆zj) = p
X
zi,zj

(X
s

[zs
i + zs

j − q(s)]ϕ(s; ei, ej)

)
ξij(zi, zj |ei, ej)

3. Clearance of Commodity Market: The commodity market clears.X
i,j

X
ei,ej

X
zi,zj

X
s

[zs
i + zs

j − q(s)]ϕ(s; ei, ej)xij(ei, ej , zi, zj) +
X

k∈I∪J

zkxk(∅, zk) ≤ 0

4. Matching Market Clearance (Consistency): Matching market clears in the sense that lottery pur-

chases are consistent across the population.

xi(j, ei, ej ,∆zi) =
X
∆zj

xij(ei, ej ,∆zi,∆zj)

Theorem 2 (Welfare Theorems) [The first welfare theorem] A price-taking equilibrium with a lottery

trade and randomization devices is constrained efficient. [The second welfare theorem] There exists a

weight profile λ such that the planner’s assignment of matching and allocation of consumption (constrained

by the incentive compatibility constraint) can be decentralized by a lottery trade and the public randomization

devices. [Characterization] Contract arbitrageurs get zero profit.

Discussion follows after the proof.

3.3 Characterization of Equilibria and Proof of Theorem 2

The dual linear programming of the planner’s linear program is derived. From the dual constraints (the

constraints of the dual linear program), a proper definition of price-taking equilibrium is derived.
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3.3.1 Dual Linear Programming

Let dual variables corresponding to each constraint of the planner’s linear program be yi, τi(j, ei, ej , zi),

τj(i, ei, ej , zj), p, and αi(e′i|j, ei, ej , zj). Then the following is the dual linear program.

(D) min
∑

i

yi +
∑

j

yj

s.t. yi ≥ λi

[∑
s

vi(zs
i )ϕ(s; ei, ej)− Ei(ei)

]
− τi(j, ei, ej , zi)

yi ≥ λivi(zi)− pzi

0 ≥ τi(j, ei, ej , zi) + τj(i, ei, ej , zj) + p
∑

s

[q(s)− zs
i − zs

j ]ϕ(s; ei, ej)

−
∑
e′i

αi(e′i|j, ei, ej , zj)DGi(e′i|ei, ej , zi)−
∑
e′j

αj(e′j |i, ei, ej , zi)Dj(e′j |ei, ej , zj)

p, αi(e′i|j, ei, ej , zi) ≥ 0

Proposition 6 (Fundamental Theorem of Linear Programming) (1) There exists a solution for the

primal linear program. (2) There exists a solution for the dual linear program. (3) The values of the primal

and dual programs are the same.

Proposition 7 (Complementary Slackness)

xi(j, ei, ej , zi)

{
yi −

[
λi

(∑
s

vi(zs
i )ϕ(s; ei, ej)− Ei(ei)

)
− τi(j, ei, ej , zi)

]}
= 0

xi(∅, zi) {yi − λivi(zi)− pzi} = 0

xij(ei, ej , zi, zj)

{
τi(j, ei, ej , zi) + τj(i, ei, ej , zj) + p

∑
s

[q(s)− zs
i − zs

j ]ϕ(s; ei, ej)

−
∑
e′i

αi(e′i|j, ei, ej , zj)DGi(e′i|ei, ej , zi)−
∑
e′j

αj(e′j |i, ei, ej , zj)Dj(e′j |ei, ej , zj)

 = 0

Before analyzing and interpreting the meaning of dual constraints, I prove two lemmas that can be shown

by a direct application of the fundamental theorem of LP.

Lemma 6 At the optimal solution of linear program,

yi = λi

∑
j,ei,ej

∑
zi

[∑
s

vi(zs
i )ϕ(s; ei, ej)− Ei(ei)

]
xi(j, ei, ej , zi) + λi

∑
zi

vi(zi)xi(∅, zi)

−
∑

j,ei,ej

∑
zi

τi(j, ei, ej , zi)xi(j, ei, ej , zi)− p
∑
zi

zixi(∅, zi)

0 =
∑
zi

τi(j, ei, ej , zi)xi(j, ei, ej , zi) +
∑
zj

τj(i, ei, ej , zj)xj(i, ei, ej , zj)

+ p
∑
zi,zj

∑
s

[q(s)− zs
i − zs

j ]ϕ(s; ei, ej)xij(ei, ej , zi, zj)
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Lemma 7 There exist a weight profile λ := (λk) ≥ 0 such that∑
j,ei,ej

∑
zi

τi(j, ei, ej , zi)xi(j, ei, ej , zi) + p
∑
zi

zixi(∅, zi) = 0,∀i ∈ I ∪ J.

I assume the following.

Assumption 5 There exists λ � 0 satisfying Lemma 7.

Mas-Collel (1985) found a sufficient condition for the existence of λ � 0 in the classical exchange economy.

A similar condition is derived and it replaces Assumption 5 in appendices.

3.3.2 Characterization of Decentralization

The planner’s problem can be interpreted as a revenue maximization problem as in section 2.

3.3.3 Individual Choice: the first dual constraint

The dual variable of the first constraint of the primal linear program, yi, is the value of individual i to the

planner. Define prices using the optimal values of the dual linear program.

τi(j, ei, ej ,∆zi) :=
∑
zi

τi(j, ei, ej , zi)ξi(zi|j, ei, ej ,∆zi)

τi(j, ei, ej ,∆zi) is the price of a random contract that (i) realizes matching (i, j, ei, ej) with probability∑
zi

ξi(j,ei,ej ,zi)P
j̃,zi,ẽi,ẽj

ξi(j̃,ẽi,ẽj ,zi)
and (ii) gives consumption zs

i at state s with probability
∑

z̃s
i :z̃i=zs

i

ξi(j,ei,ej ,z̃i)P
z̃i

ξi(j,ei,ej ,z̃i)
.

By summing up the first dual constraints with arbitrary ξi(j, ei, ej , zi),

yi ≥λi

X
j,ei,ej

X
zi

"X
s∈S

vi(z
s
i )ϕ(s; ei, ej)− Ei(ei)

#
ξi(j, ei, ej , zi) + λi

X
zi

vi(zi)ξi(∅, zi) [indv]

−
X

j,ei,ej

X
zi

τi(j, ei, ej , zi)ξi(j, ei, ej , zi)− p
X
zi

ziξi(∅, zi)

⇔ yi/λi ≥
X

j,ei,ej ,∆zi

(X
zi

"X
s∈S

vi(z
s
i )ϕ(s; ei, ej)− Ei(ei)

#
ξi(zi|j, ei, ej ,∆zi)

)
ξi(j, ei, ej ,∆zi) + λi

X
zi

vi(zi)ξi(∅, zi)

− 1

λi

24 X
(j,ei,ej ,∆zi)

τi(j, ei, ej ,∆zi)ξi(j, ei, ej ,∆zi) + p
X
zi

ziξi(∅, zi)
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Again, if ξi(j, ei, ej , zi) = xi(j, ei, ej , zi), the inequalities become equalities.

From Lemma 7, pick λ such that
∑

j,ei,ej

∑
zi

τi(j, ei, ej , zi)xi(j, ei, ej , zi) + p
∑

zi
zixi(∅, zi) = 0. Then,∑

j,ei,ej ,∆zi

ti(j, ei, ej ,∆zi)xi(j, ei, ej ,∆zi) + p
∑
zi

zixi(∅, zi) = 0.

The meaning of the equality in Lemma 2 is that money expenditure on the lottery purchase is zero if the

purchase is the same as that of the planner’s solution. Therefore, the above inequality [indv] summarizes
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individual i’s optimization, since, if individual i has chosen a different probability than that of the planner’s,

the purchase of the different probability would be infeasible or suboptimal. Also, yi/λi is interpreted as the

ex-ante utility of i before realization of (i, j, ei, ej). Moreover, 1/λi is i’s marginal utility of income. In other

words, if individual i were given ε amount of money in the beginning, he could have increased his expected

utility by changing his purchase of lotteries.

The utility after contract (i, j, ei, ej ,∆zi) is realized is

yi

λi
+

1
λi

ti(j, ei, ej ,∆zi)xi(j, ei, ej ,∆zi) =
∑
zi

[∑
s∈S

vi(zs
i )ϕ(s; ei, ej)− Ei(ei)

]
In general the second term of the left-hand side of the equality is not zero. Constrained efficiency typically

requires agents of the same type to obtain different utility levels when assigned to different teams.

3.3.4 Contract Arbitrageurs’ Choice: the second dual constraints

The second dual constraint is the contract arbitrageurs’ optimization. There is no probability constraint for

arbitrageurs, i.e. arbitrageurs are a freely available input to the planner. Being freely available, arbitrageurs

are considered to be perfectly competitive.

The contract arbitrageur pays non-money commodity zi and zj to i and j, which are not necessarily

same as qij(s). To fill the gap between zi +zj and qij(s), the contract arbitrageur will trade in the contingent

claims market.

By summing up the second dual constraints with arbitrary ξij(ei, ej , zi, zj),

0 ≥
∑
zi

τi(j, ei, ej , zi)ξi(j, ei, ej , zi) +
∑
zj

τj(i, ei, ej , zj)ξj(i, ei, ej , zj)

− p
∑
zi,zj

∑
s

[zs
i + zs

j − qij(s)]ϕ(s; ei, ej)ξij(ei, ej , zi, zj) [arb]

−
∑
zi,zj

∑
e′i

αi(e′i|ei, ej , zj)DGi(e′i|ei, ej , zi) +
∑
e′j

αj(e′j |ei, ej , zi)DGj(e′j |ei, ej , zj)

 ξij(ei, ej , zi, zj)

⇒ 0 ≥τi(ei, ej ,∆zi)ξi(j, ei, ej ,∆zi) + τi(ei, ej ,∆zj)ξj(i, ei, ej ,∆zj)

− p
∑
zi,zj

{∑
s

[zs
i + zs

j − qij(s)]ϕ(s; ei, ej)ξij(zi, zj |ei, ej ,∆zi,∆zj)

}
ξij(ei, ej ,∆zi,∆zj)

−
∑
zi,zj

∑
e′i

αi(e′i|ei, ej , zj)DGi(e′i|ei, ej , zi) +
∑
e′j

αj(e′j |ei, ej , zi)DGj(e′j |ei, ej , zj)

 ξij(ei, ej , zi, zj)

If ξij(ei, ej , zi, zj) = xij(ei, ej , zi, zj), the inequality becomes an equality. Moreover, the last line is zero by

Lemma 6.

The last line reflects the shadow value of the incentive compatibility constraints. The interpretation is

same to that of section 2.3.4, so it is omitted here.

36



Lemma 8 If (i, j, ei, ej ,∆zi,∆zj) is incentive compatible, then

0 ≥ τi(ei, ej ,∆zi)ξi(j, ei, ej ,∆zi) + τi(ei, ej ,∆zj)ξj(i, ei, ej ,∆zj)

−p
∑
zi,zj

{∑
s

[zs
i + zs

j − qij(s)]ϕ(s; ei, ej)ξij(zi, zj |ei, ej ,∆zi,∆zj)

}
ξij(ei, ej ,∆zi,∆zj)

Therefore, inequality [arb] summarizes contract arbitrageur (ij)’s optimization, since she would not

gain more even if she chose a different probability than that of the planner. To summarize, the contract

arbitrageur purchase non-money commodity zs
i + zs

j − qij(s) in the contingent claims market ϕ(s; ei, ej)p.

3.3.5 The randomization devices: How to Exercise Random Contracts

Unlike the finite model, contracts are not correlated since the wage function depend only on idiosyncratic

shock, which makes it possible not to have an economy-wide randomization device. Instead, each firm

possesses its own randomization device for the exercise of random contracts, and all of the devices are

independent.

3.4 Comment on the Welfare Theorems

The combined welfare theorem in the finite model was possible because of the redundancy of the individuals’

probability constraints. The probability constraint of one individual implied all other probability constraints;

hence, decentralization was possible for the entire utility frontier. In the continuum model, there is no such

extreme redundancy. However, a redundancy still exists in some cases. Considering that a firm consists of

two individual (i.e. a firm is a public good), a possible redundancy is not surprising.

The following is an extreme case similar to the combined welfare theorem in the finite model.

Example 3 I = {i} and J = {j}. Suppose the planner’s solution is such that individuals are always

matched with certain contracts. Individual i’s probability constraint implies j’s probability constraint since∑
ei,ej

∑
zi

xi(j, zi, ei, ej) =
∑
ei,ej

∑
zj

∑
zi

xij(zi, zj , ei, ej) =
∑
ei,ej

∑
zj

xj(i, zj , ei, ej)

Therefore, the entire utility frontier can be decentralized. Formally, for any weight (λi, λj), suppose

∑
ei,ej

∑
zi

ti(j, zi, ei, ej)xi(j, zi, ei, ej) 6= 0 and
∑
ei,ej

∑
zi

ti(j, zi, ei, ej)xi(j, zi, ei, ej) 6= 0

Define

ŷi := yi +
∑
ẽi,ẽj

∑
z̃i

ti(j, z̃i, ẽi, ẽj)xi(j, z̃i, ẽi, ẽj)

t̂i(j, zi, ei, ej) := ti(j, zi, ei, ej)−
∑
ẽi,ẽj

∑
z̃i

ti(j, z̃i, ẽi, ẽj)xi(j, z̃i, ẽi, ẽj)
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and similarly for ŷj and t̂j(·). Then, all the dual constraints are satisfied with the newly defined dual values,

and they are also optimal for the dual linear program. Therefore, it is shown that the entire utility frontier

can be decentralized.

In a larger economy, the redundancy is not as extreme as in Example 3 even when the redundancy exists.

Example 4 I = {1, . . . , N} and J = {1, . . . , N}. The individual probability constraints of I \ {i} and J

imply the probability constraint of i. Formally,∑
j,ei,ej

∑
zi

xi(j, zi, ei, ej) =
∑

j,ei,ej

∑
zi,zj

xij(zi, zj , ei, ej) =
∑

j

∑
ei,ej

∑
zj

xj(i, zj , ei, ej) for i

1 ≥
∑

j,eĩ,ej

∑
zĩ

xĩ(j, zĩ, eĩ, ej) =
∑

j,eĩ,ej

∑
zĩ,zj

xĩj(zĩ, zj , eĩ, ej) =
∑

j

∑
eĩ,ej

∑
zj

xj (̃i, zj , eĩ, ej) for ĩ ∈ I \ {i}

Adding up the last terms, I get ∑
j

∑
ĩ∈I,eĩ,ej

∑
zj

xj (̃i, zj , eĩ, ej) ≤ N

Therefore, the following has to be true for i.∑
j,ei,ej

∑
zi

xi(j, zi, ei, ej) ≤ 1

Again redundancy of the constraints of the primal linear program implies multiple dual solutions. Multiple

dual solutions mean that T (λ) defined in the proof of Lemma 7 is not a singleton in general. Therefore, there

are multiple λ satisfying Lemma 7 since T (·) is upper-semi continuous.

Example 3 shares a picture similar to a double auction model with one buyer and one seller. Suppose

there are one type of buyer with valuation of unity and one type of seller with cost of production being zero.

Equilibrium price p could be anything in [0, 1]. The utility frontier is represented by {(yb, ys)|yb + ys = 1},

and any point can be decentralized by a certain price p ∈ [0, 1].

Example 4 shares a picture similar to a double auction model with many buyers and many sellers.

Suppose the set of buyer types is {1, 0.6, 0}, and the set of seller types is {0, 0.4, 1}. The utility frontier

is represented by {(yb1, yb.6, yb0, ys0, ys.4, ys1)|
∑

b yb +
∑

s ys = 1.2}. It is not possible to decentralize the

entire utility frontier. Only {(yb1, yb.6, yb0, ys0, ys.4, ys1)|yb1 = 1 − p, yb.6 = 0.6 − p, yb1 = 0, ys0 = p, ys.4 =

p− 0.4, ys1 = 0, p ∈ [0.4, 0.6]} can be decentralized.

However, cases similar to the above two examples generically do not happen. Each example has one mass

of each type, and all individuals are matched. If there is a positive fraction of a type that is unmatched,

then the redundancy of individual probability constraints cannot be derived. Alternatively, suppose that an

economy is picked with a mass of each type randomly drawn from independent uniform distribution [0.5, 1.5].

Generically, not all individuals would be matched. In that case, the redundancy of individual probability

cannot be derived either.
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3.5 Efficiency and Lotteries

The realized utility after the realization of contract (i, j, ei, ej ,∆zi) is

yi

λi
+

1
λi

ti(j, ei, ej ,∆zi)xi(j, ei, ej ,∆zi) =
∑
zi

[∑
s∈S

vi(zs
i )ϕ(s; ei, ej)− Ei(ei)

]

In general the second term of the left-hand side of the equality is not zero. Therefore, if non-degenrate

lotteries are used, individual k’s payoffs are different across realizations of (i, j, ei, ej∆zi). However, each

individual’s expected utility is yk/λk. Therefore, efficiency typically requires agents of the same type to

obtain different utilities when assigned to different matching.

Proposition 8 1. In general, trades of lotteries are necessary for constrained efficiency.

2. Therefore, efficiency typically requires individuals of the same type to obtain different expected utility

when assigned to different firms.

3. Compensating wage differentials which equalize the utilities of individuals in different firms are gener-

ally incompatible with efficiency.

Similar results in a different setting are reported in Bennardo and Piccolo (2005) that study a general

equilibrium model where agents’ preferences, productivity and labor endowments depend on their health

status. Among their results are (i) efficiency typically requires agents of the same type to obtain different

expected utilities if assigned to different occupations, (ii) competitive equilibria are first-best if lottery

contracts are enforceable, buy typically not if only assets with deterministic payoffs are traded, and (iii)

compensating wage differentials which equalize the utilities of workers in different jobs are incompatible with

ex-ante efficiency. The above result in this paper is another confirmation of their result in a team formation

environment.

The essential reason that the lotteries are used is due to the indivisibility nature of a team. The

lotteries are beneficial in continuum models when same type individuals get different utilities depending on

the realization of their different occupations. Without the difference of utilities, lotteries are degenerate.

Ellickson, Grodal, Scotchmer, Zame (1999, 2001) (henceforth, EGSZ) consider an economy where a lottery

market is not allowed. Therefore, even though when the same type individuals work in different occupation,

their utilities have to be the same for the existence of equilibrium. On the other hand, Cole and Prescott

(1997) consider an economy where lotteries can be traded. Through the lottery and expected utility functions,

the economy can improve efficiency. The following simple example shows the basic difference of the two

models.

Example 5 There are two ex-ante identical individuals. The only way they can produce is to form a team,

in which one becomes principal and the other becomes agent. The output of non-money commodities from
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the team is 4. The utility functions are given by

Agent : ln(x + 1)− ln 2 , Principal : ln(x + 1)

The allocation that gives the same utilities to ex-ante identical principal and agent is that the agent gets 3

and the principal gets 1. Since they are ex-ante identical the welfare can be measured by the sum of their

utilities, which is ln 4.

On the other hand, they can agree on a lottery by which one becomes the principal with consumption 2,

and the other becomes the agent with consumption 2. The welfare of this economy is 2(ln 3− 1
2 ln 2), which

is larger than ln 4.

The first allocation of the planner in the example is congruent to that of EGSZ (1999, 2001), while the

second lottery allocation of the planner is congruent to that of Cole and Prescott (1997) and this paper.

One might think that the economy of EGSZ does not utilize the gains from playing lotteries, and the

economy of Cole and Prescott does. However, I argue that they just have different data of economies. The

data of EGSZ is preference over bundles, and the data of Cole and Prescott is preference over risks.

There are many ways to represent a preference over bundles with a utility function. For example, the

following utility function represents the same preference over occupations and consumption to that of the

above example.

Agent : 1− e−
x−1
2 , Principal : 1− e−x

Therefore, the equilibrium not using lotteries is the same. However, the equilibrium using lotteries is different.

In the equilibrium, lottery with the new utility function is that the ex-ante identical individual becomes

Principal who consumes 1.4621 with half probability, or becomes Agent who consumes 2.5379 with half

probability, since d
dx

(
1− e−

x−1
2

)
|x=2.5379 = d

dx (1− e−x) |x=1.4621.

It is well known that expected utility (preference over risk) is unique up to affine transformation.2 In

other words, once a utility function (not preference) is given, preference over risk is given. EGSZ (1999, 2001)

consider economies in which the data is preference over bundles, while Cole and Prescott (1997) consider

an economy in which the data is preference over risky assets. Makowski and Ostroy (2003) and Rahman

(2005a) follow the second criterion of efficiency in terms of utilities from non-money commodities, but quasi-

linearity of utilities makes the market for lotteries on matching vanish since money is used to compensate

the difference of utilities from non-money commodities when same type individuals are assigned to different

occupations.
2Non-unique representation of preference over risk due to affine transformation is not important. Suppose that

vi(z) is replaced with avi(z)+ b in the economy. The constant term b does not change anything except that the value

of the planner’s objective function shifts up. Since decentralization is obtained by adjusting λ, following the method

of Shapley (1969), the effect of a is neutralized in the process of finding the right λ.

40



3.6 Non-linearity and Linearity of Prices for Lotteries: Arbitrage Opportunity

As is in Cole and Prescott (1997), the lottery commodity space can be linearized by the infinite dimensional

vector space of non-negative measures on a compact set. Formally, individual i’s feasible set is the set of

non-negative measure defined on J×E2×R|S|, M[J×E2×R|S|]. The proper price of a lottery is a continuous

function(al) defined on M[J × E2 × R|S|] with weak-∗ topology.

The linearity of price in the infinite dimensional space is necessary when decentralization is considered.

Without linearity of the lottery price, there could be an arbitrage opportunity in the lottery trading. For

example, an arbitrageur can create a new lottery by going long and short for some lotteries. In order for

the arbitrage to be unsuccessful in the equilibrium, the price of lottery has to be linearly decomposed in the

infinite linear space.

Even though the price of the lottery is linear in the space of probabilities, the price is not linear in

the space of commodities in the sense that the price of the lottery cannot be linearly decomposed into

commodity prices. By the same logic in the previous paragraph, there would exist an arbitrage opportunity

without the exclusive nature of contracts. In other words, exclusiveness of contracts is another requirement

for decentralization derived from the dual linear program.

4 Convergence of the Finite Model to the Continuum One

In the finite model, contracts depend on the economy-wide shock. To the best of my knowledge, continuum

models without a global shock have assumed that contracts depend only upon an idiosyncratic shock. In

the continuum model, the uncertainty outside of a firm is not ‘uncertain’ anymore since all uncertainty wash

out because of the continuum assumption. However, it is not clear how the discrepancy of the contractual

forms in the finite and continuum models could be connected.

4.1 Elimination of the Public Randomization Device

In the finite economy in section 2, the contract is a function of the shocks of all teams present in the economy.

When I consider convergence of the finite model to the continuum, the natural extension of the contractual

form for the continuum model is a function of the distribution of realized shocks. For example, suppose that

there is only one ex-ante identical team of [0, 1] in the continuum economy. Suppose each team can have only

two states ‘bad:=0’ and ‘good:=1’ with probability 1/3 and 2/3. The wage function is w : F → RL where

F = {f : [0, 1] → {0, 1}|m(f−1[{0}]) = 1/3,m(f−1[{1}) = 2/3} where m(·) is Lebesque measure.3 In other

words, the general form of wage w(·) is a function of the distribution of realized shocks. More simply, let the

3f is not a measurable function in general with Lesbeque measure defined on [0, 1]. Therefore, F is not even

defined. But, Uhlig (1996) shows how to deal with this kind of non-measuarability.
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name of a team be t ∈ [0, 1). A possible contractual form is w(st, st+0.1) where st is the idiosyncratic shock

of team t and st+0.1 is the shock of team t + 0.1 (modulus 1). The potential gain of this contractual form is

to relax the incentive compatibility condition by using the randomness outside of firm t. (See Mookherjee

(1984)). However, section 3 focuses on a special form of contracts that are assumed to be a function of only

the idiosyncratic shock.

I, however, prove that the restriction on the contractual form is without loss of generality. Formally, let

V C be the value of the continuum model from the solution of the planner. Let V F (1) be the value of the finite

model. Let V F (n) be the value of the n-times replicated finite model divided by n. If V C = limn→∞ V F (n)

can be shown, the restriction on the contractual form is without loss of generality when the interest is on

efficiency.

Since contractual forms in the finite economy are more general than those in the continuum, the relaxation

of incentive compatibility constraints in the limit of the finite economy will be no worse than that in the

continuum. Therefore

lim
n→∞

V F (n) ≥ V C

I show that the inequality turns out to be an equality.

Theorem 3 The continuum model with contracts depending only on the idiosyncratic shock is a limit of the

finite model with contracts depending on the economy-wide shock.

Proof. Assume the converse, limn→∞ V F (n) > V C , which means that there is a large number N such that V F (N) >

V C . In terms of V F (N), for a given A, let s and s̃ be such that

qij(s) = qij(s̃),
X

(i,j)∈A

qij(s) =
X

(i,j)∈A

qij(s̃) but a = zsi 6= zs̃i = b in Xi(A, zi)

Suppose that there are no such s and s̃ for other k 6= i, and there are only two such s and s̃ for i, which is a

special case. The proof for the general case is in the appendices.

Define X̃(A, (z′k)), and X̃(A, (z′′k )) such that

z′i
t

= z′′i
t

= zti if t 6= s, s̃

z′i
t

= a, z′′i
t

= b if t = s, s̃

z′k = z′′k = zk if k 6= i

X̃(A, (z′k)) =
PrsA

PrsA + Prs̃A
, X̃(A, (z′k)) =

Prs̃A
PrsA + Prs̃A

X(A, (zk))

Then the following is derived.

X̃(A, (z′k)) + X̃(A, (z′′k )) = X(A, (zk))

Also the definitions of X̃i(A, z
′
i), X̃i(A, z

′′
i ), X̃ij(A, z

′
i, zj), and X̃ij(A, z

′
i, zj) are followed so that the probability

clearing constraints hold for the new variables.

X̃i(A, z
′
i) + X̃i(A, z

′′
i ) = Xi(A, zi), X̃ij(A, z

′
i, zj) + X̃ij(A, z

′′
i , zj) = Xij(A, zi, zj)
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Now, the probabilities are defined to satisfy probability clearing conditions. Also, the incentive compatibility

constraints and the value of the primal are the same by the following equalities.

vi(a)[PrsA + Prs̃A]X̃i(A, z
′
i) + vi(b)[PrsA + Prs̃A]X̃i(A, z

′′
i ) = [vi(a)PrsA + vi(b)Prs

′
A ]Xi(A, zi)

vi(a)[PrsA + Prs̃A]X̃ij(A, z
′
i, zj) + vi(b)[PrsA + Prs̃A]X̃ij(A, z

′′
i , zj) = [vi(a)PrsA + vi(b)Prs̃A]Xij(A, zi, zj)

vi(a)[PrsA′ + Prs̃A′ ]X̃ij(A, z
′
i, zj) + vi(b)[PrsA′ + Prs̃A′ ]X̃ij(A, z

′′
i , zj) = [vi(a)PrsA′ + vi(b)Prs̃A′ ]Xij(A, zi, zj)

where A′ is the same as A except that (i, j, e′i, ej) ∈ A′ instead of (i, j, e′i, ej) ∈ A.

Although the resource constraint is not satisfied in general, the following expected resource constraint holds.24X
k

z′k
s −

X
(i,j)∈A

qij(s)

35 X̃(A, (z′k))PrsA +

24X
k

z′k
s̃ −

X
(i,j)∈A

qij(s̃)

35 X̃(A, (z′k))Prs̃A

+

24X
k

z′′k
s −

X
(i,j)∈A

qij(s)

35 X̃(A, (z′′k ))PrsA +

24X
k

z′′k
s̃ −

X
(i,j)∈A

qij(s̃)

35 X̃(A, (z′′k ))Prs̃A = 0

Now interpret the model as the continuum version of V F (N). Decompose the continuum economy into a continuum

of identical infinitesimal sub-economies. For each infinitesimal sub-economy, assign the randomized team structure

and consumption by the new assignment X̃(·) described above. For each sub-economy, the resource constraint does

not hold, but by transferring resources across sub-economies, the resource constraint holds as a whole economy.

Apparently, the assignment X̃(·) could be suboptimal for the continuum economy. Therefore,

V C = V C(N) ≥ V F (N)

where the value of the planner’s problem in this continuum economy is V C(N). Now a contradiction is derived since

V F (N) > V C was assumed.

Therefore, it is without loss of generality to consider the contractual form depending only on idiosyncratic

shock in the continuum model. Uhlig (1996) raises a similar question. He asks what would be a limit model

of a finite model where the allocation is dependent on the economy-wide shock. This paper is an answer to

the question in a specific economy.

Even though the proof is done by contradiction, it has the flavor of a constructive proof. In the proof, if

there are different assignments of consumption at state s and s̃ for individual i in team (i, j), by increasing

the randomness of contracts in each state s and s̃, the dependency of assignments on the economy-wide

shock is reduced to that of an idiosyncratic shock sij . In doing so, the randomness of contracts inside firms

becomes more involved. In other words, the randomness of contracts inside firms in the continuum model is

not only for the relaxation of incentive compatibility, but also for the simplicity of contracts. Even though

the contract becomes complicated because the random contract depends on the firm’s randomization device,

observability of the economy-wide shock becomes unnecessary. Considering that the spirit of the price-taking

equilibrium is that an economic entity (an individual in the exchange economy, or a team in this paper) can

decide one’s action by observing only local information such as price (instead of the entire economy), this

simplification is more faithful to the spirit of decentralization.
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Since the dependency of contracts on others’ shock is eliminated, the public randomization device cor-

relating exercises of contracts is not necessary anymore in the continuum model. Therefore, a corollary of

Theorem 3 is followed.

Corollary 1 In the continuum model as a limit of the finite model, the (centralized) public randomization

device for the exercise of contracts is unnecessary. Each firm has its own randomization device, and their

devices are independent.

4.2 Comparison of Welfare Theorems: Decentralizable Utility Frontier

Theorem 1 states that the entire utility frontier can be decentralized in the finite economy, while Theorem

2 states that is not the case in the continuum economy. The difference seems to contradict Theorem 3 that

the continuum model is a limit of the finite model.

In the proof of Lemma 2, prices are shifted up or down uniformly so that (1) individuals’ expenditures

become zero, (2) individuals’ choices are not effected, and (3) contract arbitrageurs’ and the insurer’s choices

are not effected. However, in doing so, no attention was given to the relationship between the insurance

premium and the expected payments from the insurance. For example, the following equality was not

considered in the economy with ICg.

Tij(A,∆zi,∆zj) =
∑
(zk)

∑
s∈SA

p(A, s, (zk))[zs
i + zs

j − qij(s)] Pr(s;A)
X(A, (zk))∑

(z̃k) X(A, (z̃k))

where the left-hand side is the insurance premium and the right-hand side is the expected value of the

payment from the insurance.

It is generically impossible to pick λ to satisfy the equalities for all the insurance purchased in equilibrium,

since there are too many equalities to be satisfied and the number of control variables is only |I|+ |J |−1, the

effective number of (λi). For example, suppose I = {1, 2}, J = {1, 2}, and there are four ways of assignments

A1, A2, A3, A4. Note that matching specifies efforts too. Then, the number of the equalities that has to be

satisfied is 4, while the number of the control variables is 3. Therefore, the equalities would be impossible

in general.

4.3 Cream-skimming and Cross-subsidy of the Insurer

The roles of an insurer in the finite economy are (1) to pool risk in the economy as much as incentive com-

patibility constraints permit and (2) to cross-subidize across teams. Those two roles require the commitment

of the insurer not to ‘cream-skim’. Cream-skimming in this paper differs from the same word in the litera-

ture on insurance market under asymmetric information. Cream-skimming in Rothschild and Stiglitz (1976)

describes a behavior of an insurer trying to seek less risky individuals under the adverse selection problem.
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There is no adverse selection problem in the model. I define cream-skimming behavior to be when an insurer

tries to sell more insurance to some teams because the premium of that particular insurance is larger than

the expected payments of that insurance.

In the finite economy, there is typically a contract arbitrageur (i, j, ei, ej) who is active in the equilibrium

with contract (∆zi,∆zj) such that

Tij(A,∆zi,∆zj) >
∑
(zk)

∑
s∈SA

p(A, s, (zk))[zs
i + zs

j − qij(s)] Pr(s;A)
X(A, (zk))∑

(z̃k) X(A, (z̃k))
.

Therefore, as soon as the insurer breaks her promise to take care of all the risk involved in the economy,

she can gain positive profit by selling insurance only to firm (i, j, ei, ej). So, the commitment to no cream-

skimming and/or exclusion of a cream-skimming insurer are necessary. However, if the equivalence of the

insurance premium and the expected payments were possible, then there is no room for the insurer to cream-

skim. Since the difference between the premium and the expected payments of insurance is the amount of

the cross-subsidy, the conditions of no cross-subsidy and no profit from cream-skimming are equivalent.

In the continuum economy, the role of the insurer is redundant because the ex-post market can do the

work of the insurer. Market price and expected payments of (i, j, ei, ej ,∆zi,∆zj) are identical to

p
∑
zi,zj

{∑
s

[zs
i + zs

j − qij(s)]ϕ(s; ei, ej)ξij(zi, zj |ei, ej ,∆zi,∆zj)

}
.

In other words, there is no cross-subsidy; hence, there is no profit from cream-skimming.

Proposition 9 1. Cross-subsidies across firms vanish in the continuum economy.

2. Cream-skimming is not possible in the continuum model.

Similar phenomena are reported in other literatures. For example, Ellickson, Grodal, Scotchmer, and

Zame (2001) find that equilibrium may not exist in their model since club memberships are indivisible and

choices of club memberships must be coordinated across the population. However, for large finite club

economies, an approximate core can be approximately decentralized. Another example in a much more

different context is Ju (2005) which studies risk sharing problems in a finite number of states. He shows

that there is no strategy-proof mechanism under aggregate uncertainty, while there is a mechanism without

aggregate uncertainty. My model shares a similar phenomenon in the sense that, since there is aggregate

uncertainty on the matching structure in the finite economy, decentralization is impossible without the

insurer avoiding cream-skimming. However, in the continuum model where there is no aggregate uncertainty

on the matching structure, decentralization is possible without the insurer.
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4.4 Linearity and Non-linearity of Commodity Price: Arrow-Debreu and Lin-

dahl Prices

In the finite economy, commodity price p(A, s, (zk)) is non-linear in the sense that the price function has

an argument of allocation (zk). In the continuum economy, the commodity price p is linear. The difference

comes from how the resource constraint is written: economy-wide measure X(A, s, (zk)) is used to describe

the resource constraint in the finite economy, while individual measures xi(·) are used to describe the resource

constraint. Because the individual probabilities are used to describe the resource constraint in the continuum

economy, tighter link between all the teams’ optimization and resource constraint is possible in the continuum

economy, while each team’s optimization is connected only through insurer to the resource constraint in the

finite economy. This characteristic of the finite economy makes the transaction of each team not anonymous

(an Lindahl price of the insurance premium) since each team could access the commodity market only

through an insurer. However, each team accesses the commodity market directly in the continuum economy,

so that the commodity prices could be Arrow-Debreu ones.

5 Team model

Only teams composed of two members have been considered so far. The framework studied in the previous

sections can be easily extended to study team models. I present only the setups. All results are derived in

similar ways, so they are omitted.

5.1 Finite model

Population and Efforts: A typical individual is denoted by i ∈ N . Team, T , is an element in 2N \ {∅}.

The efforts vector is denoted by eT = (ei)i∈T ∈ ET .

Team Contractual Matching Function: The team contractual matching function is

A : N → {(T, eT )|T ∈ 2N \ {∅}, eT ∈ E |T |} ∪ {∅}

s.t. A(i) = (T, eT ) → A(j) = (T, eT ),∀j ∈ T

If i is not matched to anybody, A(i) = ∅. For the simplicity of notation, it is often written (T, eT ) ∈ A if

A(i) = (T, eT ),∀i ∈ T . I sometimes write T ∈ A when T is formed in matching A with a certain eT . Define set

A to be the set of all the team contractual matching functions, and let A(T,eT ) = {A|A(i) = (T, eT ),∀i ∈ T}.

The team structure realized in the economy is a partition of N .

Technology, state, and matching: The state of team T is denoted by sT ∈ S = {1, . . . , S}. For a given

matching function A, the state of the economy is sA = (sT )T∈A. sA is realized with probability Pr(sA;A).
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The output for individual firm at state sT is q(sT ).

Commodities, Allocation, and Utility Function: There are L non-money commodities and one money

commodity.

Definition 7 Assignment/Allocation (T, (zi)i∈T , eT ) specifies [Assignment] who are involved (i ∈ T ) with

which efforts (eT ) and [Allocations] what are the (possibly randomized) payoffs at the realization of the

state of economy, (A, s) where A ∈ A(T,eT ) and s ∈ SA

The expected utility of i for given matching A is denoted by
∑

s∈SA
vi(zs

i )Pr(s;A)−Ei(ei) where Ei(ei)

represents the monetary cost of effort ei. vi(·) is strictly increasing, strictly concave, and differentiable.

Timing: The timing is similarly defined as in section 2.

Notations of a few probabilities: Identically defined as in section 2.

Choice of Information Structure: Two information structures are identically defined as in section 2.

Assumption 6 (Local Information Structure) Once T is formed with a contract implementing (eT ),

individuals do NOT observe how others are matched.

Assumption 7 (Global Information Structure) Once T is formed with contract (zi)i∈T implementing

eT , individuals DO observe how others are matched.

Allowing random contracts, the local incentive compatibility constraint (ICl) is∑
A3(T,eT )

∑
zT

DGi(e′i|A, zi)XT (A, zT ) ≤ 0 [ICl]

where deviation gain DGi(e′i|A, zi) is defined as

DGi(e′i|A, zi) :=

[∑
s∈SA

vi(zs
i )Pr(s;A|e′i)− Ei(e′i)

]
−

[∑
s∈SA

vi(zs
i )Pr(s;A)− Ei(ei)

]

The global incentive compatibility constraint (ICg) is∑
zT

DGi(e′i|A, zi)XT (A, zT ) ≤ 0 [ICg]

No private access to contingent market: It is assumed the same way as in section 2.
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5.2 Primal and Dual Linear Programming for Finite Economy

The primal linear program is the following.

(P ) max
∑

i

∑
A

∑
zi

λi

[∑
s∈SA

vi(zs
i )Pr(s;A)− Ei(ei)

]
Xi(A, zi)

s.t.
∑
A

∑
zi

Xi(A, zi) = 1,∀i ∈ N

Xi(A, zi)−
∑
z−i

XT (A, zT ) = 0,∀zi, A

XT (A, zT )−
∑
z−T

X(A, (zi)) = 0,∀T, zT , A

[∑
i

zs
i −

∑
T∈A

qT (s)

]
X(A, (zi)) ≤ 0,∀s ∈ SA, A∑

zi

DGi(e′i|A, eT , zi)XT (A, zT ) ≤ 0,∀i ∈ T, zT , A

Xi(A, zi), XT (A, zT ), X(A, (zk)) ≥ 0

The dual linear program is the following.

(D) min
∑

i

yi

s.t. yi ≥ λi

[∑
s∈SA

vi(zs
i )Pr(s;A)− Ei(ei)

]
− ti(A, zi)

0 ≥
∑
i∈T

ti(A, zi)− tT (A, zT )−
∑
i∈T

∑
e′i

αi(e′i|A, (zj)j∈T\{i})DGi(e′i|A, zi)

0 ≥
∑
T∈A

tT (A, zT ) + p(A, s, (zk))

[∑
T∈A

qT (s)−
∑

k

zk

]
αi(·), p(·) ≥ 0

5.3 Continuum Model

The continuum model of team matching is almost identical to that of section 3.

Population and Efforts: A typical individual is denoted by i ∈ N . Team, T , is an element in 2N \ {∅}.

The efforts vector is eT = (ei)i∈T ∈ ET .

Assignment of Matching and Efforts: Matching is denoted by (T, eT ), where T ∈ N and eT = (ei)i∈T

Technology, state, and matching: The state of team T is sT ∈ S = {1, . . . , S} realized with probability

ϕ(s; eT ). The output of firm T is qT (s).

Notation of a few probabilities

xT (eT , zT ): the fraction of firm (T, eT ) in the economy where i ∈ T consumes zi
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xi(T, eT , zi): the fraction/probability of type i that belongs to team T with eT , and consumes zi

xi(zi|T, eT ,∆zi): the fraction of type i consuming zi conditional on matching (T, eT ) with random consump-

tion ∆zi

Commodities, Assignment/Allocation, and Utility Function: There are L non-money commodities

and one money commodity. Assignment/allocation is the following.

Definition 8 Assignment/allocation (T, (zi)i∈T , eT ) specifies [Assignment] who are involved (i ∈ T ) with

which efforts (eT ) and [Allocation] what are the randomized payoffs at the realization of state of economy,

s.

The expected utility of i for given matching (T, eT ) is denoted by
∑

s∈S vi(zs
i )ϕ(s; eT )− Ei(ei).

5.4 Primal and Dual Linear Programming for Continuum Economy

The primal linear program is the following.

(P ) max
∑

i

∑
T3i

∑
zi

λi

[∑
s

vi(zs
i )ϕ(s; eT )− Ei(ei)

]
xi(T, eT , zi) +

∑
i

∑
zi

vi(zi)xi(∅, zi)

s.t.
∑
T3i

∑
eT

∑
zi

xi(T, eT , zi) +
∑
zi

xi(∅, zi) = 1,∀i ∈ N

xi(T, eT , zi)−
∑
z−i

xT (eT , zT ) = 0,∀i, T, zi, eT∑
T

∑
eT

∑
zT

∑
s

[
∑
i∈T

zs
i − qs

T ]ϕ(s; eT )xT (eT , zT ) +
∑

i

∑
zi

zixi(∅, zi) ≤ 0∑
zi

DGi(e′i|T, eT , zi)xT (eT , zT ) ≤ 0,∀i ∈ T, zT , eT

xi(T, eT , zi), xT (eT , zT ) ≥ 0

The dual linear program is the following.

(D) min
∑

i

yi

s.t. yi ≥ λi

[∑
s

vi(zs
i )ϕ(s; eT )− Ei(ei)

]
− ti(T, eT , zi),∀i, T, zi, eT

yi ≥ λivi(zi)− pzi

0 ≥
∑
i∈T

ti(T, eT , zi)− p
∑

s

[
∑
i∈T

zs
i − q(s)]ϕ(s; eT )−

∑
i∈T

∑
e′i

αi(e′i|T, eT , zT\{i})DGi(e′i|T, eT , zi)

αi(·), p ≥ 0
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6 More Extensions

6.1 Global shock

With some simple modifications, the models can include a global shock. In the finite model, let θ represent

a global shock. By the realization of the global shock, the probability of the realization of sA would change.

In summary, if we replace Pr(s;A) in section 2 with Pr(s;A, θ) Pr(θ), the analysis can be carried out in a

similar manner. DGi(e′i|A, zi) is defined as

DGi(e′i|A, zi) :=

 ∑
θ∈Θ,s∈SA

vi(zs
i ) Pr(s;A|e′i, θ) Pr(θ)− Ei(e′i)

−
 ∑

θ∈Θ,s∈SA

vi(zs
i ) Pr(s;A, θ) Pr(θ)− Ei(ei)

 .

In the continuum model, similar modifications can be made: ϕ(s; ei, ej) is replaced by ϕ(s; ei, ej , θ)ϕ(θ).

Therefore, DGi(e′i|j, ei, ej , zi) is defined as

DGi(e′i|j, ei, ej , zi) :=

∑
θ,s

vi(zs
i )ϕ(s; e′i, ej , θ)ϕ(θ)− Ei(e′i)

−
∑

θ,s

vi(zs
i )ϕ(s; ei, ej , θ)ϕ(θ)− Ei(ei)

 .

6.2 Correlated Equilibrium of Games inside Firms

In the contracts in section 2 and 3, randomization was only over the consumption vector. But, the exten-

sion to a random contract over effort can be modeled as in Rahman (2005a). The incentive compatibility

constraints for the finite economy with ICl are replaced by∑
ei,ej

∑
A3(i,j,ei,ej)

∑
zi

DGi(e′i|A, zi, zj)Xij(A, zi, zj) ≤ 0

The incentive compatibility constraints for other economies can be similarly defined.

6.3 Restriction of Non-random Contracts

In the contracts studied in section 2 and 3, randomization over consumption was assumed to be possible. If

random contracts are not allowed, the incentive compatibility constraints are∑
A3(i,j,ei,ej)

DGi(e′i|A, zi, zj)Xij(A, zi, zj) ≤ 0

in the finite economy with ICg.

Since the randomization has the role of relaxing the incentive compatibility constraints, the efficiency of

the economy would be lower when random contracts are not allowed.

However, the complexity of the lottery trade market would be reduced. In the economy in section 2 with

ICg, a contract is a point in set A×∆(RL×|S|). With the non-random contracts assumption, a contract is a

point in set A× RL×|S|. The description of contract is simpler in the economy with non-random contracts.
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6.4 Existence of Spot Market: Spot Prices as a randomization device

In section 2, one role of the firm is the commitment technology to certain consumption levels. In other words,

by joining a firm individuals are committed to avoiding spot market transactions after the realization of all

uncertainties (A, sA, and the realization of the public randomization device). However, the restriction on

spot market trades in contracts is rarely observed in reality. Thus, it is more realistic in certain applications

to not assume the commitment technology. Moreover, it turns out that the possibility of spot market trades

may simplify the role of the randomization device.

I analyze how the contract could be decentralized in a way that conforms to the spirit of Arrow-Debreu

better.

Modification of the Planner’s Problem: In order for the assignment of the planner not to be disturbed

by the individuals’ spot market transactions, the assignment of the planner should guarantee the lack of

gains from the trade among individuals. The lack of gains from trade is guaranteed when the gradients of

utility functions point the same direction, which is formalized as

〈∇vk(zs
k),∇vh(zs

h)〉 = ||∇vk(zs
k)|| · ||∇vh(zs

h)||,∀k, h ∈ I ∪ J

where 〈·, ·〉 is the inner product and || · || is the norm in RL.

Therefore, the planner’s problem has the following additional constraint.

[〈
∇vi(zs

i ),∇vj(zs
j )
〉
− ||∇vi(zs

i )|| · ||∇vj(zs
j )||
]
X(A, (zk)) = 0,∀i, j ∈ I ∪ J

The new third dual constraint is

0 ≥
∑

(i,j,ei,ej)∈A

Tij(A, zi, zj) +

 ∑
(i,j,ei,ej)∈A

qij(s)−
∑

i

zsA
i −

∑
j

zsA
j

 p(A, (zi), (zj), s)

−
∑

i,j∈I∪J

ηs
i,j(A, (zk))

[〈
∇vi(zs

i ),∇vj(zs
j )
〉
− ||∇vi(zs

i )|| · ||∇vj(zs
j )||
]

Again, by the fundamental theorem of linear programming, I get

Proposition 10 At an optimum, if X(A, (zk)) > 0, the following holds.

0 =
∑

(i,j,ei,ej)∈A

Tij(A, zi, zj)

The analysis is the same except that the insurer now takes the lack of gains from trade into consideration in

assessing the insurance premium. The solution of the planner guarantees that nobody gets gains from trade,

therefore nobody trades. Even though nobody trades, spot market prices are defined by

φ(s;A, (zk)) ∝ ∇vk(zs
k),∀k.
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Example 6 The economy has population I = {i}, J = {j}. Utility functions are uk(zk,1, zk,2) = (zk,1)δk,1(zk,2)δk,2

where δi,1/δi,2 6= δj,1/δj,2. The assignment of the planner puts the consumption on the contract curve of the

Edgeworth box in order to ensure the lack of gains from trade. Since δi,1/δi,2 6= δj,1/δj,2, the marginal rate

of substitution of good 1 and 2 (essentially the spot market price) are different on each point on the contract

curve.

Now suppose the planner’s solution has non-degenerate random contracts. After the realization of s,

the contract determines the allocation on the contract curve randomly. Since there is a one-to-one function

between the assignment and spot prices, if spot prices are observed before the exercise of the contract, the as-

sumption of the existence/observation of the randomization device can be replaced with that of the observation

of spot prices.

The example gives a sufficient picture as to how spot market prices can deliver enough information for

the exercise of contracts. Suppose all the individuals have strictly concave Cobb-Doulgals utility function

with different ratios of the parameters as was in the example. The spot market prices are different on all the

points on the contract curve. Instead of the public randomization device announcing (zk) after the realization

of A and s, it can announce the spot market price. The spot market price delivers sufficient information to

exercise the equilibrium contracts since there is a one-to-one mapping from the contract hyper-plane to set

of spot prices in RL by the assumption of different ratios of parameters in the utility functions.

Now suppose those parameters are independently drawn from a certain continuous distribution. The

probability that any two individuals have the same ratio of parameters is zero in the finite economy. There-

fore, I get the following proposition.

Proposition 11 Generically, the contract can be implemented with the announcement of spot market prices

by the insurer.

Even though the randomization device could be replaced by spot market prices, the interpretation that spot

market prices are realized before individuals are endowed, is not realistic. Typically, endowments and utility

functions determine prices, rather than prices determine the endowment in economic models.

7 Conclusion

Two contractual matching economies with moral hazard were studied: one with a finite number of individuals

and the other with continuums of individuals. Incentive-constrained efficient random assignments of teams,

efforts, and consumption were characterized by the planners’ problems. By exploiting the duality of linear

programming, necessary conditions for incentive-constrained efficient decentralizations were derived.

Contracts in the finite model are functions of economy-wide shocks. The logical limit of the finite model

is that contracts have to depend upon the distribution of the realized idiosyncratic shocks, but contracts
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in the studied continuum model are functions of idiosyncratic shock. This difference was reconciled by the

convergence theorem; hence, the continuum model as a limit of the finite model was justified.

In the finite economy, competitive contractual arbitrageurs, competitive insurers pooling risks in the

economy, and public randomization devices implementing matching and random contracts were found to be

necessary. Insurers needed to know the details of the economy in order to set the right insurance premiums,

and the public randomization device needed to accommodate and signal enormous amounts of information

for the allocation of resources.

In the continuum, insurers were eliminated. Therefore, undesirable characteristic of detailed knowledge

of the economy was eliminated. The elimination of insurers was made possible by the fact that no cross-

subsidies by the insurers were necessary.

The public randomization device implementing random contracts were replaced by independent random-

ization devices owned by individual firms in the continuum model. Therefore, the undesirable centralized

information processing technology is eliminated. The replacement of the public randomization device was

obtained by making randomness in contracts more involved; hence, it was shown that random contracts were

not only for the relaxation of incentive compatibility, but also for the simplicity of contracts in the sense

that less information was required in order to exercise contracts.

However, the public randomization device implementing matching of individuals could not be eliminated

in the continuum economy. Therefore, in both of the economies, (i) trades of lotteries were necessary for

constrained efficiency in general, (ii) efficiency typically required individuals of the same type to obtain

different expected utility when assigned to different firms, and (iii) compensating wage differentials which

equalized the utilities of same type individuals in different firms were generally incompatible with efficiency.

The essential reason that the randomization device implementing matching was required for efficiency

even in the continuum economy is due to the indivisibility nature of teams: a firm can hire only an integer

number of individuals.

The implication from the study is the following. In the finite economy, it is well-known that individuals

typically do not behave as price-takers since they perceive the possibility of influencing prices. Even when

they behave as price takers and trades of lotteries exist, it is less likely that efficiency would be achieved

because of the large informational role of insurers and the existence of the public randomization device im-

plementing random contracts. Therefore, I argue that government intervention could be desirable in a small

economy. Even in the continuum model, it is shown that the lottery market and the public randomization

device implementing random assignment of individuals to teams is required for efficiency. Considering that

such a market and the public randomization device are not observed in the real world, a kind of government

intervention on the job matching would be desirable when there is no adverse selection problem. However,

it is not clear how the result would change when adverse selection problem is introduced to the model.
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The other contribution of the paper is the usage of linear programming to model a finite ecconomy.

Once a planners problem is set without consideration of decentralized economy, dual linear program of the

planners problem characterizes an idealized environment for efficiency of the decentralized economy. Under

the characterized environment, the welfare theorems are automatically derived. Therefore, the roles of the

definition of equilibrium and the welfare theorems are reversed: welfare theorems become the assumption

and the description of equilibrium becomes the theorem.

A Proofs

A.1 Review of Finite Dimensional Linear Programming

Refer to http://www.sscnet.ucla.edu/04S/econ201c-1/LP.pdf

A.2 Infinite Dimensional Linear Programming

The formulation of the finite model is given. The formulation of the continuum model is omitted because the proof

is almost identical.

A.2.1 Basic Concepts and Notations

Let Z be a compact set in RL×|SA|

• C(Z): Banach space of continuous functions onR equipped with the supremum norm; i.e. ‖f‖ := supz∈R |f(z)|.

• M(Z): Banach space of countably additive Borel measures on R equipped with the total variation norm; i.e.

‖ν‖ = supπ

P
Ei
|ν(Ei)| over all finite measureable partitions π of R.

Let m ∈ M(Z) be the Lesbegue measure. Let R be a compact disc in RL×|SA|, R = {z ∈ RL×|SA||〈z, z〉 ≤ RL×|SA|}

with a slight abuse of notation.

• Xi(A), Xj(A) ∈ M(R)

• Xij(A) ∈ M(R2)

• X(A) ∈ M(R|I|+|J|)

For the notational simplicity, we also define Ui(zi;A) :=
P

s∈SA
vi(z

s
i ) Pr(s;A) − Ei(ei). Again, with a slight

abuse of notation, we define Ui(zi, e
′
i;A) :=

P
s∈SA

vi(z
s
i ) Pr(s;A|e′i)−Ei(e

′
i) when i is engaged in firm (i, j, ei, ej) in

matching A and deviating to e′i.

Let πs be the projection map from R onto {zsi : |zsi | ≤ R}, and δzi be the Direc’s delta function at zi.

〈f, x〉 =
R
fdx is well-defined with f ∈ C(Z) and x ∈ M(Z), and 〈·, ·〉 is a bilinear operation. We write

〈f, x〉ZE =
R

E
fdx for Borel set E ∈ B(Z). When E = Z, we write 〈f, x〉Z := 〈f, x〉ZZ
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Definition 9 The assignment ((Xi(A)), (Xj(A)), (Xij(A)), X(A)) is feasible ifX
A∈A

〈I , Xi(A)〉R ≤ 1,∀i ∈ I,
X
A∈A

〈I , Xj(A)〉R ≤ 1,∀j ∈ J

Xi(A)(E) = Xij(A)(E,R),∀i ∈ I,∀A ∈ A,∀E ∈ B(R)

Xj(A)(E) = Xij(A)(R,E),∀j ∈ J,∀A ∈ A,∀E ∈ B(R)

Xij(A)(Ei, Ej) = X(A)(Ei, Ej , R
|I|+|J|−2),∀(i, j) ∈ A,∀A ∈ A,∀Ei, Ej ∈ B(R)*

[
X

zsk −
X

(i,j)∈A

qij(s)], X(A)

+R|I|+|J|

×iEi

≤ 0,∀s ∈ S,∀Ei ∈ B(R)

X
A3(i,j,ei,ej)

˙ˆ
Ui(zi, e

′
i;A)− Ui(zi;A)

˜
, Xij(A)

¸R

Ej
≤ 0,∀Ej ∈ B(R)

Given the definition of feasible allocation, we can state:

Definition 10 The planner’s problem is to find (Xi(A), Xj(A), X(i, j, A)) to attain

g = sup
X

i

X
A

〈λiUi(·;A), Xi(A)〉R +
X

j

X
A

〈λjUi(·;A), Xj(A)〉R

s.t. (Xi(A), Xj(A), Xij(A), X(A)) is feasiible

A.2.2 Derivation of dual in Bilateral Contractual Matching Market

From the following equality, the result follows.

L =
X

i

X
A

λi〈Ui(·;A), Xi(A)〉+
X

i

X
A

λj〈Uj(·;A), Xj(A)〉

+
X

i

yi

 
1−

X
A

〈I , Xi(A)〉

!
+
X

j

yj

 
1−

X
A

〈I , Xj(A)〉

!

−
X

i

X
A

D
ti(A), Xi(A)− 〈I , Xij(A)〉R

ER

+
X

j

X
A

D
tj(A), Xj(A)− 〈I , Xij(A)〉R

ER

−
X
i,j

X
A3(i,j)

D
Tij(A), Xij(A)− 〈I , X(A)〉R

|I|+|J|−2
ER2

+
X
s

X
A

*
p(A, s),

24X
k

zk −
X

(i,j)∈A

qij(s)

35X(A)

+R|I|+|J|

−
X

i

X
j,ei,ej

X
A3(i,j,ei,ej)

X
e′i

D
αi(e

′
i|A, ·),

˙
DGi(e

′
i|A, ·), Xij(A)

¸R
ER

−
X

j

X
i,ei,ej

X
A3(i,j,ei,ej)

X
e′j

D
αj(e

′
j |A, ·),

˙
DGj(e

′
j |A, ·), Xij(A)

¸R
ER
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L =
X

i

yi +
X

j

yj

+
X

i

X
A

〈[λiUi(·;A)− yi − ti(A)] , Xi(A)〉R

+
X

j

X
A

〈[λjUj(·;A)− yj − tj(A)] , Xj(A)〉R

+
X
A

X
(i,j,ei,ej)∈A

〈ti(A) + tj(A)− Tij(A), Xij(A)〉R
2

−
X

(i,j,ei,ej)

X
e′i

* X
A3(i,j,ei,ej)

˙
αi(e

′
i|j, ei, ej), DGi(e

′
i|A)

¸R
, Xij(A)

+R2

−
X

(i,j,ei,ej)

X
e′j

* X
A3(i,j,ei,ej)

˙
αj(e

′
j |i, ei, ej), DGj(e

′
j |A)

¸R
, Xij(A)

+R2

−
X
A

X
s

* X
(i,j,ei,ej)∈A

Tij(A)− [
X

k

zk −
X

(i,j)∈A

qij(s)]p(A, s), X(A)

+R|I|+|J|

A.2.3 Proof of Proposition 3 (Fundamental Theorem of Linear Programming)

Proof is direct from applying Gretsky, Ostroy, and Zame (1992) to the described infinite dimensional linear program.

A.2.4 Finite Support of Allocation: Carathéodory Theorem on Convexification

The space of non-money commodities is finite-dimensional, E is assumed to be finite, and S is also finite. Therefore,

support of X(·, ·) is finite from Carathéodory Theorem on convexification.

A.3 Other Proofs

A.3.1 Proof of Proposition 4 (Complementary Slackness)

The results are direct application of Complementary Slackness of linear programming.

A.3.2 Proof of Lemma 1

Let Xk(·), Xij(·), and X(A, (zk)) be an optimal solution of the planner’s problem, by complementary slackness of

linear programming, 24yk −
X
s∈SA

vk(zsk) Pr(s;A)− E(ek) + tk(A, zk)

35Xk(A, zk) = 0

Summing it over A and zk proves the equality for the first line.

From complementary slackness of linear programming,24ti(A, zi) + tj(A, zj)− Tij(A, zi, zj)−
X
e′i

αi(e
′
i|A, zj)DGi(e

′
i|A, zi, zj)−

X
e′j

αj(e
′
j |A, zi)DGi(e

′
i|A, zi, zj)

35Xij(A, zi, zj) = 0
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Summing them over (zi, zj), X
zi

ti(A, zi)Xi(A, zi) +
X
zj

tj(A, zj)Xj(A, zj)−
X
zi,zj

Tij(A, zi, zj)Xij(A, zi, zj)

−
X
zj

X
zi

X
e′i

αi(e
′
i|A, zj)DGi(e

′
i|A, zi, zj)Xij(A, zi, zj)−

X
zi

X
zj

X
e′j

αj(e
′
j |A, zi)DGi(e

′
i|A, zi, zj)Xij(A, zi, zj) = 0

It is left to show the last two terms are zero. The second to the last term can be writtenX
zj

X
e′i

αi(e
′
i|A, zj)

X
zi

DGi(e
′
i|A, zi, zj)Xij(A, zi, zj) = 0

Again, from Proposition 4, αi(e
′
i|A, zj)

P
zi
DGi(e

′
i|A, zi, zj)Xij(A, zi, zj) = 0. Therefore, the desired result is shown.

The third statement can be proved in a similar manner.

For the last statement, the result follows directly from Proposition 4 since

[
X

(i,j)∈A

qij(s)−
X

i

zsA
i −

X
j

zsA
j ]p(A, (zi), (zj), s)X(A, (zk)) = 0

A.3.3 Proof of Lemma 2

Suppose not, i.e.
P

A

P
zk
tk(A, zk)Xk(A, zk) 6= 0 for some i. Define new variables

ŷk := yk +
X
Ã

X
z̃k

tk(Ã, z̃k)Xk(A, zk)

t̂k(A, zk) := tk(A, zk)−
X
Ã

X
z̃k

tk(Ã, z̃k)Xk(A, zk)

T̂ij(A, zi, zj) := Tij(A, zi, zj)−
X
Ã

X
z̃i

ti(Ã, z̃i)Xi(A, zi)−
X
Ã

X
z̃j

tj(Ã, z̃j)Xj(A, zj)

Then the first and the second dual constraints hold trivially. The following equalities prove that the third constraint

holds. X
(i,j,ei,ej)∈A

T̂ij(A, zi, zj) =
X

(i,j,ei,ej)∈A

Tij(A, zi, zj)

⇐⇒
X

k

X
A

X
zk

tk(A, zk)Xk(A, zk) = 0

⇐⇒
X
A

X
(zk)

X
(i,j,ei,ej)∈A

Tij(A, zi, zj)X(A, (zk)) = 0 by lemma 2

Therefore, the result follows.

A.3.4 Proof of Lemma 3

From [ARB ICg], it is enough to show

X
A3(i,j,ei,ej)

X
zi,zj

24X
e′i

αi(e
′
i|A, zj)DGi(e

′
i|A, zi) +

X
e′j

αj(e
′
j |A, zi)DGj(e

′
j |A, zj)

35Qij(A, zi, zj) ≤ 0,
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which is true since"X
zi

DGi(e
′
i|A, zi)Qij(A, zi, zj)

#
≤ 0 and

24X
zj

DGj(e
′
j |A, zj)Qij(A, zi, zj)

35 ≤ 0

from the incentive compatibility constraints.

A.3.5 Proof of Lemma 4

From (1), it is enough to show

X
A3(i,j,ei,ej)

X
zi,zj

24X
e′i

αi(e
′
i|A)DGi(e

′
i|A, zi) +

X
e′j

αj(e
′
j |A)DGj(e

′
i|A, zj)

35Qij(A, zi, zj) ≤ 0,

which is true since24 X
A3(i,j,ei,ej)

X
zi,zj

DGi(e
′
i|A, zi)Qij(A, zi, zj)

35 ≤ 0 and

24 X
A3(i,j,ei,ej)

X
zi,zj

DGj(e
′
j |A, zj)Qij(A, zi, zj)

35 ≤ 0

from the incentive compatibility constraints.

A.3.6 Proof of Lemma 5

Proof. ForQ(A, (zk)) such thatX(A, (zK)) > 0, it is trivial from proposition 3. ForQ(A, (zk)) such thatX(A, (zk)) =

0, it is enough to show

p(A, s, (zk))

24 X
(i,j)∈A

qij(s)−
X

k

zsk

35 ≥ 0,

which is trivially true.

A.3.7 Proof of Proposition 6 (Fundamental Theorem of Linear Programming)

Omitted. Refer to the proof of the finite model.

A.3.8 Proof of Proposition 7 (Complementary Slackness)

The results are direct application of Complementary Slackness of linear programming.

A.3.9 Proof of Lemma 6

It can be proved in the same manner as was done in the proof of Lemma 1.

A.3.10 Proof of Lemma 7

The proof is almost identical to that of Shapley (1969). Before getting into the proof, I prove a lemma.
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Lemma 9 yi ≥ 0

Proof. Replace the resource constraint of the planner byX
i,j

X
ei,ej

X
zi,zj

X
s

[zs
i + zs

j ]ϕ(s; ei, ej)xij(ei, ej , zi, zj) ≤
X
i,j

X
ei,ej

X
zi,zj

X
s

q(s)ϕ(s; ei, ej)xij(ei, ej , zi, zj)

Also let Ui(xi(·)) be

Ui(Xi(·, ·)) :=
X
zi

X
j,ei,ej

"X
s∈S

vi(z
s
i )ϕ(s; ei, ej)− Ei(ei)

#
xi(j, ei, ej , zi).

Then yi ≥ 0, since the probability constraint is an inequality constraintX
j,ei,ej

X
zi

xi(j, ei, ej , zi) ≤ 1,∀i ∈ I ∪ J

The solution of the new planner’s program is trivially in the domain of the original planner’s program. The planner’s

solution of the original program cannot be smaller than that of the new one. Therefore, the value of individual i

cannot go down. So yi ≥ 0 still holds.

Let Γ(λ) denote the planner’s linear program with weight λ, and Γ−1(λ) denote the dual linear program. Let

F (λ) denote the feasible set for Γ(λ), and let

ψ(λ) := −

24 X
j,ei,ej

X
zi

ti(j, ei, ej , zi)xi(j, ei, ej , zi)

35
i∈I∪J

− p
X
zi

zixi(∅, zi)

where xi(·) ∈ argmax Γ(λ), ti(·) ∈ argminΓ−1(λ)

The set of all such vectors, denoted by P (λ) is non-empty by proposition 6. If no constraints are redundant in

the primal, the relevant dual solution is unique. If there are redundant constraints, the relevant dual value could

be arbitrary subject to the sum of the dual values corresponding to the redundant constraints is a constant. Also,

λi = 0 implies ψi(λ) ≥ 0 from [indv] and yi ≥ 0. Therefore, P (λ) is convex and compact; hence, it varies upper-semi-

continuously with λ. If P (λ) contains a zero vector, then ψ(λ) is feasible (i.e. ψ(λ) ≡ 0), and we are through.

Define the set-valued function T by

T (λ) = λ+ P (λ) = {λ+ π|π ∈ P (λ)}.

Let A be a simplex in the hyperlane {α|
P

k∈I∪J αk = 1}, large enough to contain all sets T (λ), λ ∈ Λ = {λ ≥

0|
P
λk = 1}, as well as Λ itself; the upper-continuity of T makes this possible – i.e., makes T (Λ) compact. Extend

the definition of T to A by

T (α) = T (f(α)), where fk(α) =
max(0, αk)P
h max(0, αh)

According to Kakutani’s theorem, there is a “fixed point” α∗ satisfying α∗ ∈ T (α∗). Denote f(α∗) by λ∗. Suppose

first that α∗ 6= λ∗. Then α∗ ∈ A− Λ, and for some i, λ∗i = 0 > α∗i . But α∗ ∈ T (λ∗) = λ∗ + P (λ∗), hence π∗i < 0 for

some π∗ ∈ P (λ∗). Since ψi(λ
∗) ≥ 0, the feasible payoff vector ψ(λ∗)− π∗ ∈ F (λ∗) gives player i a positive amount.

But this is impossible without side payments, since all his payoffs in Γ(λ∗) are zero. I conclude that α∗ = λ∗; hence

that 0 ∈ P (λ∗); hence that

ψ(λ∗) ∈ F (λ∗)

Lemma 7 is shown.
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A.3.11 Discussion on Assumption 5

Lemma 7 does not state that there exist λ� 0. Without the existence of such λ, the analysis is not meaningful since

yi ≥ λi

"X
s

vi(zi)ϕ(s; ei, ej)− Ei(ei)

#
− ti(j, ei, ej , zi), yi ≥ λivi(zi)− pzi

describe individuals’ behavior. With λi = 0, the inequality does not represent individuals’ optimization. For the

existence of λ � 0, an assumption is needed. Definition 4.3.5 of a linked allocation from Mas-Colell (1985) is the

following.

4.3.5. Definition. The allocation x is linked if:

1. for each j, ∂huj(xj)x
h
j 6= 0 for some h;

2. for each produced h, ∂huj(xj)x
h
j 6= 0 for some j; and

3. the set of agents cannot be partitioned in two groups having no desired commodity in common. More formally,

it is not possible to label commodities and agents in such a way that for some 1 < r ≤ `, 1 < s ≤ r we have

that ∂huj(xj)x
h
j 6= 0 only if j ≥ s and h ≥ r or j < s and h < r.

The definition is modified with consideration that (1) ‘commodities’ in the continuum model is matching/consumption,

and that (2) commodities are individualized goods. The first constraint is modified into

1. for each i,
P

zi

ˆP
s vi(z

s
i )ϕ(s; ei, ej)− Ei(ei)

˜
xi(j, ei, ej , zi) 6= 0 for some (j, ei, ej).

The second constraint is modified into

2. for each (i, j, ei, ej) s.t.
P

zi,zj
xij(ei, ej , zi, zj) > 0,

P
zi

ˆP
s vi(z

s
i )ϕ(s; ei, ej)− Ei(ei)

˜
xi(j, ei, ej , zi) 6= 0.

The third constraint is meaningless in the context of the contractual matching market since (k, h) cannot consume

(i, j, ei, ej). The second modified condition implies the first, therefore the definition is modified into the following.

Definition 11 The allocation [xi(·)]i∈I∪J is linked if:

for each (i, j, ei, ej) such that
P

zi,zj
xij(ei, ej , zi, zj) > 0,

P
zi

ˆP
s vi(z

s
i )ϕ(s; ei, ej)− Ei(ei)

˜
xi(j, ei, ej , zi) 6= 0.

Sufficiency of the condition for the existence of λ� 0 is done in the same way as proposition 4.3.6. was done in Mas-

Collel (1985). The commodity space that Mas-Collel considered was of finite dimension, while that of the contractual

matching economy was of infinite dimension. However, from Carathéodory’s theorem on convex hull, the number of

purchased good is finite. Therefore, the proof by induction can be applied in the same way as in Mas-Collel.

A.3.12 Proof of Lemma 8

From inequality [arb], it is enough to show

0 ≤
X
zi,zj

24X
e′i

αi(e
′
i|ei, ej , zj)DGi(e

′
i|ei, ej , zi) +

X
e′j

αj(e
′
j |ei, ej , zi)DGj(e

′
j |ei, ej , zj)

35 ξij(ei, ej , zi, zj)

which is trivially true by the incentive compatibility constraints.
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A.3.13 Proof of Theorem 3

Suppose the converse, then

lim
n→∞

V F (n) > V C ,

which means that there is a large number N such that V F (N) > V C .

For given X(A, (zk)), let i ∈ N ′ ⊂ N be the set of individuals who have

qij(s) = constant, but zsi 6= zs
′

i for all s, s′ ∈ S̃i(⊂ S) in Xi(A, zi)

Let us order the elements in S̃i as {s1
i , s

2
i , . . . , s

mi
i , . . . , s

|S̃i|
i } = S̃i. Also, let ami

i := z
s
mi
i

i .

Define X̃(A, ((z′k)k/∈N′ , (z′k(τ))k∈N′) for τ ∈ {(mi)i∈N′ |mi ∈ Si} such that

z′k = zk if k ∈ N \N ′

z′i
t
(τ) = zi

t if i ∈ N ′, t /∈ Si

z′i
t
(τ) = zi

s
mi
i if i ∈ N ′, t ∈ Si

X̃(A, (z′k)k/∈N′ , (z′k(τ))k∈N′) =

Q
k Pr

s
mk
k

AP
τ

Q
k Pr

s
mk
k

A

X(A, (zk)), where τ = (mi)i∈N′

then X
τ

X̃(A, (z′k)k/∈N′ , (z′k(τ))k∈N′) = X(A, (zk))

Definitions of X̃i(A, z
′
i(τ)) and X̃ij(A, z

′
i(τ), z

′
j(τ)) are followed so that the probability clearing constraints hold for

the new variables as was in the simple case. Also as was in the last simple case, the value of the objective function

and the incentive compatibility constraints are satisfied with X(A, (zk(τ))) with τ ∈ {(mi)i∈N′ |mi ∈ Si}.

Although the resource constraint is not satisfied in general, the following expected resource constraint holds.X
τ

X
s∈S

24X
k

z′k(τ)
s −

X
(i,j)∈A

qij(s)

35 X̃(A, (z′k(τ)))PrsA = 0

Now interpret the model as the continuum version of V F (N). Decompose the continuum economy into continuum

of identical infinitesimal sub-economies. For each infinitesimal sub-economy, assign the randomized team structure

and consumption by the new assignment X̃(·) described above. For each sub-economy, the resource constraint does

not hold, but by transferring resources across sub-economies, the resource constraint as a whole economy holds. Ap-

parently, the assignment X̃(·) is not optimal for the continuum economy in general. Moreover, assignment/contracts

X̃(·) depend on idiosyncratic shock only now. Therefore,

V C = V C(N) ≥ V F (N)

where the value of the planner’s problem in this continuum economy is V C(N). Now a contradiction is derived since

V F (N) > V C had been assumed.
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