Abstract. To analyze effects of imperfect property rights on economic growth, we consider economies where some fraction of capital can be owned only by local oligarchs, whose status is subject to political risk. Political risk decreases local capital and wages. Risk-averse oligarchs acquire safe foreign assets for insurance, thus increasing wages in other countries that protect outside investors. Reforms to decrease political risk or to protect more outsiders’ investments can decrease local oligarchs’ welfare by increasing wages. A severe depression occurs when a closed country opens to let its oligarchs invest abroad without protecting outside investors, as in 1990s Russia.

[JEL classification numbers: F43, O10, P14]
1. Introduction: a need for new models with property rights

The importance of imperfect property rights is widely recognized by observers of developing economies and economies in transition. But this basic insight has been difficult to apply in systematic economic analysis, because most standard economic models still assume perfect enforcement of property rights. Property rights may be imperfect in many ways, and so many different assumptions about the nature of these imperfections need to be explored.

In this paper, we offer a model where an individual’s ability to get property protected depends on his status in society. More specifically, we assume that protection of valuable property rights is limited to a small privileged subset of society ("the oligarchy"), and that each member of this privileged class faces some risk of losing his privileged status. We show how this assumption can be introduced into the framework of a Ramsey-type growth model, and we develop mathematical results that make such a model analytically tractable. This is a paper of pure theory, but the model easily yields some stark features of the experience of many developing economies and economies in transition: the flow of capital from poor countries to rich countries, the dissipation of economic rents in unproductive political activity, and the presence of powerful vested interests for maintaining an inefficient status quo.

The basic idea here, that property rights are protected only for members of a small privileged elite, is a simplification that does not describe the real situation anywhere in the world. But the standard economic assumption, that all individuals have equally perfect protection of property, is also a simplification that does not apply fully anywhere. Economists often speak of transactions costs, but rarely speak of ownership costs. Even models with imperfect property rights have regularly assumed that all individuals have equal opportunities to own assets and to participate in economic transactions. The assumption that an individual's economic options depend only on his or her wealth, and not any other aspect of social status, has been a pervasive characteristic of most economics analysis.

But economists should recognize that the fundamental dynamics of political competition can create a system where property-rights protection is restricted to a privileged class of politically connected individuals. Protection of property rights is a service provided by political leaders. Once we admit that this service might not be fully provided to everyone, it becomes a scarce resource to be allocated by those leaders. Under any political system, leaders need active
supporters to maintain their position, so contenders for power may rationally offer such scarce protection as a reward to their most active supporters. But both protection and political support require costly efforts that parties may not observe perfectly, limiting the circle of trust to a group of members small enough to actively monitor each other.\(^1\) Moreover, promises to exchange political support for economic protection often cannot be disclosed, and compliance with them cannot be verified without exposing confidential information. Hence, such promises are likely to be credible only among individuals who have reputations for honoring confidential agreements.

Thus, fundamental agency problems in transactions of economic protection and political support can naturally lead to a political-economic equilibrium that is characterized by oligarchic property rights, where certain kinds of property are protected only for a limited group of people who have privileged relationships with local political leaders.\(^2\) Because lack of trust can be a self-enforcing equilibrium, people who lack such a privileged relationship of trust with the ruling elite may find that this trust is difficult or impossible to buy for any price. An outsider who tried to buy the oligarchs' acceptance could simply find himself cheated.

Such systems of imperfect property rights may have different degrees of imperfection. Here we consider systems of oligarchic property rights that differ on two parametric dimensions.

The first dimension measures the risk that individual oligarchs may lose their good reputation and oligarchic status in the near future. To maintain trust among members of the oligarchy, it is essential that anyone who appears to have violated the terms of trust must lose his good status. With imperfect monitoring, appearances of such violations could occur with positive probability, even in an equilibrium where nobody actually chooses to violate any political agreements. Also, if political connections are established through a personal relationship between a political leader and a member of an oligarchic family, then events such as the death of the family member or the downfall of the leader can cause the loss of oligarchic privileges by the rest of the family. Thus, members of the privileged oligarchy must always face some risk that they may lose their privileged status. Our model includes a parameter \(\lambda\) to

\(^1\) Studies of the Sicilian Mafia agree that it could survive only when the chief “tendentiously maintained one-on-one relationships with the other members, … The Mafia therefore consists of a network of two-man relationships based on kinship, patronage, and friendship” (Catanzaro, 1988, pp. 42-43). See also Gambetta (1993).

\(^2\) Varese (2001) reports stark evidence of such exclusive protection, in his study of the Russian mafia in Perm. One interviewed businessman, a former colonel in the militia, relied on his connections with the police when he was threatened by an extortion racketeer. The police made no attempt to arrest the racketeer. Instead, they summoned him to the police office where he was told in a “civilized” manner that he “had knocked on the wrong door” in approaching a connected businessman. The racketeer acknowledged his mistake and departed amicably (p. 94).
measure this risk.

The second dimension on which oligarchic systems may differ is the fraction of capital that may be owned or financed by individuals outside of the oligarchy. When property protection depends on personal trust, it may be hard to credibly pledge tangible assets as collateral for loans from outside creditors, or to credibly promise a system of corporate governance that refrains from expropriating outside shareholders. Thus, there is strong reason to expect capital-market failure. De Soto (2000) has particularly attributed the failure of capitalism in poor countries to a weak collateral system that prevents property owners from inviting outside partners to finance some fraction of their capital. But our model allows that oligarchs might create systems for credibly protecting outsiders' claims to some portion of local property. Some forms of local capital might be easier for outsiders to securely hold, or oligarchs may be able to finance some portion of their local capital by selling secured debt to outside investors, to the extent that the local legal system can support reliable corporate governance. So our model includes a parameter β that measures the fraction of local capital that may securely be owned or financed by people who are outside the oligarchic elite.

The analytical framework is developed in Sections 2 through 5. Section 2 characterizes the optimal investment strategies for an individual oligarch, whose ownership of local assets is subject to a given political risk of expropriation. Section 3 develops a growth model of an economy where a given fraction of local capital must be owned by local oligarchs. The profits from distributing expropriated assets accrue to government offices, which are also controlled by local oligarchs. Section 4 analyzes the steady-state equilibrium of such an oligarchic economy. In Section 5, the analysis is extended to a multi-national general equilibrium model, where countries differ according to how well they protect property of oligarchs and of outside investors.

To probe the implications of our general model, we consider a series of simple examples in Sections 6 through 8. In Section 6, we analyze the steady state of a two-country model, and we show how a relatively small political risk in one country may seriously decrease capital and wages there, but may actually increase the wage in another country with better property rights. Sections 7 compares the dynamic equilibria that would follow from various political reforms in one country, starting from a given steady state, changing the degree of political risk or changing the fraction of capital that outsiders can own. The results of this section illustrate how the oligarchs may prefer to maintain a system of imperfect property rights, even though it limits the
security of their own holdings and their access to loanable funds. In Section 8, we analyze the effects of reforming a closed oligarchic economy where the oligarchs had been unable to acquire personal assets abroad, and we show how this model can account for some of the unanticipated problems that Russia experienced after its transition from Communism.

To simplify exposition, the basic model assumes that the oligarchs who lose their privileged status are expelled and are not replaced. In Section 9, we relax this assumption and consider the recruitment of new individuals into the oligarchy. We show that such recruitment may have only minor effects on the results of our analysis when the oligarchy is a small fraction of the overall population. In Section 10 we discuss related literature and conclusions.

2. The investment problem of an insecure oligarch

Our model of economic systems with oligarchic property rights must be founded on an analysis of the individual oligarch's problem of planning his investment and consumption decisions. The distinguishing feature of the oligarch's problem is that his privileged oligarchic status allows him to buy and own valuable assets in his home country that an outsider could not safely hold. These local assets yield a rate of return that is higher than the interest rate that is generally available to other investors in world financial markets, but the oligarch then bears a risk of losing these local assets if he loses his oligarchic status. In this section, we formulate a simple model of the oligarch's problem, as a variant of the standard Ramsey-type optimal investment problem.

We consider a simple economy in which there is a single consumption good that serves as numeraire. We assume that any investor gets logarithmic utility from his consumption over time, and future utility is discounted at a rate ρ.

Now consider an individual investor who is a member of the oligarchy in a country where valuable local assets can be owned only by such oligarchs, because outsiders' ownership claims would not be protected by the local government. Let $\pi(t)$ denote the net rate of profit that these assets will pay at any time t.

The individual oligarch is not perfectly secure in his privileged position, however. Oligarchs runs a risk of losing their oligarchic status that may be caused, for example, by a
sudden breaking of personal trust after perceived violation of the political support agreement, or by the downfall of the leader (or mafia chief) through whom the political trust relationship had been established. Also, if we interpret members of the oligarchy as dynastic families, then death or departure of the family member who had formed a close personal relationship with the political leader could also cause a loss of privileged oligarchic status.

We capture these political risks in our model by making each oligarch face a small independent probability of losing his oligarchic status over any short interval of time. When this happens, all his local assets are confiscated. The time \(\tilde{T} \) until such ostracism is assumed to be an independent exponential random variable with mean \(1/\lambda \) for each oligarch. That is, given an individual who has oligarch status at time 0, the probability of his still being an oligarch in good standing at time \(t > 0 \) is \(P(\tilde{T} > t) = e^{-\lambda t} \). For simplicity we assume that this political risk is the only risk that an oligarchic investor faces, and the net profit rate \(\pi(t) \) is perfectly predictable.

The oligarch, like any other investor, can also hold foreign bank accounts which yield a risk-free rate of interest \(r \) that is assumed to be constant over time and less than or equal to the utility-discount rate \(\rho \). (The inequality \(r \leq \rho \) is justified in Section 5.) Foreign bank accounts are located in countries where the property-rights system makes them safe against political risk. Thus, if an oligarch were ostracized at a time \(t \) when he holds a safe foreign bank account worth \(x(t) \), then he (or his family) could move abroad and live off the principal and interest from this account. When political risks are taken into account, the expected profit rate on local assets is \(\pi(t) - \lambda \), and if this were less than the risk-free rate \(r \) in foreign banks then the risk-averse oligarchs would not hold any local assets. So in equilibrium, we must always have

\[
\pi(t) \geq r + \lambda.
\]

The oligarch’s problem is to formulate a plan for his future investment and consumption which will depend, at any time \(t \), on how long he has kept his oligarchic status. He may plan that, if he still has oligarchic status at time \(t \) (that is, if \(t < \tilde{T} \)), then his wealth will be some amount \(\theta(t) \), of which he will hold some amount \(x(t) \) in safe foreign banks, and he will consume at some

3 In 1999 the Russian tycoon Boris Berezovsky played a key role in bringing the previously politically obscure Mr. Vladimir Putin to power. In the next year, Mr. Berezovsky publicly complained about some of Mr. Putin’s policies that appeared to violate their political support agreement. Mr. Berezovsky was ostracized, and lives in exile.

4 Accommodating assassinations and other forms of physical ostracism is straightforward by interpreting the oligarchs’ utility functions as dynastic utility functions.
rate c(t). On the other hand, if he has lost oligarchic status at time t then his wealth at time t will
be some random variable \(\tilde{\theta}(t) \) that implicitly depends on the actual time \(\tilde{T} \leq t \) when he was
expelled from the oligarchy. After losing oligarchic status, all his wealth must be held in foreign
banks, but his planned consumption can depend on his wealth according to some function
\(\bar{c}(\tilde{\theta}(t)) \). These functions \((\theta, x, c, \tilde{\theta}, \bar{c})\) are the decision variables in the oligarch’s problem:

\[
\text{(1) maximize } \text{EU} = \mathbb{E} \left[\int_0^{\tilde{T}} e^{-\rho t} \ln(c(t)) \, dt + \int_{\tilde{T}}^\infty e^{-\rho t} \ln(\bar{c}(\tilde{\theta}(t))) \, dt \right] \\
\text{subject to } \theta(0) = \theta_0, \\
\dot{\theta}(t) = \pi(t)(\theta(t) - x(t)) + rx(t) - c(t), \; \forall t \leq \tilde{T}, \\
0 \leq x(t) \leq \theta(t), \; \forall t \leq \tilde{T}, \\
\tilde{\theta}(\tilde{T}) = x(\tilde{T}), \\
\tilde{\theta}'(t) = r\tilde{\theta}(t) - \bar{c}(\tilde{\theta}(t)) \text{ and } \tilde{\theta}(t) \geq 0, \; \forall t \geq \tilde{T}.
\]

The first constraint says his initial wealth is some given amount \(\theta_0 \). By the second constraint, the
oligarch accumulates wealth at a rate equal to his profits from risky local assets \(\pi(t)(\theta(t) - x(t)) \),
plus his interest income from safe bank accounts \(rx(t) \), minus his consumption \(c(t) \). By the third
constraint, the oligarch’s safe foreign assets \(x(t) \) must be nonnegative and not more than his
wealth \(\theta(t) \), and so his wealth cannot become negative, which implicitly bounds his consumption.

The fourth constraint says that, when he is expelled from the oligarchy at \(\tilde{T} \), he will take into
exile only what he was holding in safe foreign assets. The fifth constraint says that, after
expulsion from the oligarchy, he will only get interest income \(r\tilde{\theta}(t) \) to counter his consumption
expense \(\bar{c}(\tilde{\theta}(t)) \), which is bounded by the requirement that his wealth cannot become negative.

The following lemma characterizes the optimal solution to this optimal planning problem.

Lemma. The optimal solution to (1) satisfies, for all \(t \geq 0 \),

\[
\text{(2) } c(t) = \rho \theta(t) \quad \text{and} \quad \bar{c}(\tilde{\theta}(t)) = \rho \tilde{\theta}(t), \\
\text{(3) } x(t) = \theta(t)\lambda/(\pi(t) - r), \\
\text{(4) } \theta'(t) = (\pi(t) - \rho - \lambda)\theta(t).
\]

The optimal expected discounted utility for an oligarch with initial wealth \(\theta_0 \) is
\begin{equation}
\int_0^\infty \left\{ \ln(\theta_0 e^{\varphi(t)}) + \lambda \ln(\theta_0 e^{\varphi(t)} + (\pi(t) - r)) \right\} e^{-(\rho + \lambda)t} dt,
\end{equation}

where \(\varphi(t) = \int_0^t (\pi(s) - \lambda - \rho) ds \).

See Appendix 1 for a derivation of these standard dynamic optimization results. Notice that (2) says that, with logarithmic utility, any investor always consumes at a rate equal to his current wealth multiplied by the discount factor. Equation (3) says that the fraction of wealth that an oligarch should hold in safe banks accounts is always \(\lambda / (\pi(t) - r) \), the political risk rate divided by the difference between the risky local profit rate and the risk-free interest rate. Equation (4) says that, while he retains his oligarchic status, his wealth grows at rate \((\pi(t) - \rho - \lambda) \).

In welfare analysis, the numerical value of the expected discounted logarithmic utility in (5) may be difficult to interpret. We can more intuitively measure oligarchs' welfare by their constant-equivalent consumption, the guaranteed permanent consumption rate which would yield the same expected discounted utility. Consuming at rate \(\hat{c} \) forever would yield discounted utility
\[
\int_0^\infty \ln(\hat{c}) e^{-\rho t} dt = \ln(\hat{c}) / \rho.
\]
So for an oligarch with initial wealth \(\theta_0 = 1 \), the expected utility in (5) is as good as getting a guaranteed constant equivalent consumption \(\hat{c} \) such that
\begin{equation}
\ln(\hat{c}) / \rho = \int_0^\infty \left\{ \ln(e^{\varphi(t)}) + \lambda \ln(e^{\varphi(t)} + (\pi(t) - r)) \right\} e^{-(\rho + \lambda)t} dt
\end{equation}
where \(\varphi(t) \) is as in (5). With any other initial wealth \(\theta_0 \), an oligarch's optimal expected discounted utility is increased by \(\ln(\theta_0) / \rho \), which is as good as getting the constant equivalent consumption \(\hat{c}\theta_0 \).

3. Equilibrium in a dynamic economy

We now develop a dynamic equilibrium model of the local region where such oligarchs can invest. We assume that there are two kinds of assets in this region: local capital and government offices (protection rings). Both are subject to the same \(\lambda \) political risk.

In this simple growth model, suppose that the consumption good is produced from capital and labor according to the standard Cobb-Douglas production function:
\begin{equation}
Y = AL^\alpha K^{1-\alpha},
\end{equation}
where \(Y \) is the flow of output and \(A > 0 \) and \(\alpha \in (0, 1) \) are some given constants. For simplicity,
the supply of labor L is assumed constant and inelastic. The total supply of local capital at any
time t is denoted by $K(t)$. Assuming labor mobility within a country, workers must be paid a
wage rate $w(t)$ that is equal to the marginal product of labor
\begin{equation}
 w(t) = \frac{\partial Y}{\partial L} = \alpha A(K(t)/L)^{1-\alpha},
\end{equation}
and so the gross profit rate $R(t)$ that can be earned by each unit of capital at time t is
\begin{equation}
 R(t) = \frac{(Y(t) - w(t)L)/K(t) = (1 - \alpha)A(L/K(t))^{\alpha}}{= (1 - \alpha)A(L/K(t))^{\alpha}}.
\end{equation}

We assume that new capital can be made directly from the consumption good on a unit-
per-unit basis, and capital depreciates at some given rate δ. Capital is mobile and can be sold
abroad, so that its equilibrium price is always 1 in terms of the consumption-good numeraire.

We want to discuss two different dimensions on which imperfect property rights might
vary: in the degree of political risk faced by oligarchs, and in the fraction of capital that must be
owned and financed by local oligarchs. The first of these dimensions is represented in our model
by the political-risk parameter λ that has already been introduced. The second dimension can be
introduced by allowing oligarchs to invite outside partners to finance some fraction of their local
capital. To be specific, let us suppose that an oligarch may finance part of his local capital by
borrowing from outside creditors, with his local capital serving as collateral, but only up to a
given fraction β of his local capital. This fraction β represents the portion of local capital to
which people outside the local oligarchy can be given some secure rights, at least temporarily,
under the local legal system. An oligarch who defaulted on his debts to outside creditors might
conceal a fraction $1 - \beta$ of his local capital from them, but the creditors could take at least
temporary control of the fraction β and sell it to other oligarchs.\[^{5}\] Equivalently, we could
suppose that outsiders can own local capital as long as they have the active protection of a
sponsoring partner in the oligarchy, but the norms of the oligarchy would allow such a
sponsoring oligarch to take a $1 - \beta$ fraction of the partnership’s capital if he ever ceased protecting
it against expropriation by others in the oligarchy.

This enforcement of outsider creditor's claims depends on the oligarch's debts being
recognized as legitimate by others in the oligarchy, which might not hold after the debtor has
been expelled from the oligarchy. So let us assume that, when an oligarch's assets are

\[^{5}\text{Collateralized debts need not be necessarily owed to foreign investors. It is essential, however, that collateralized}
\text{loans are made through safe bank accounts, because otherwise an oligarch would not be able to collect on the loans}
\text{he is making to other oligarchs in case he is ostracized.}\]
expropriated, his outside creditors' or partners' claims to the β fraction of his local capital are also expropriated. With the given risk-free interest rate r in world financial markets, well-diversified investors should be willing to hold small shares in any oligarch's idiosyncratic political risk provided that he pays the interest rate $r+\lambda$, to cover the expected expropriation cost λ per unit time. Since the rate of net profit $\pi(t)$ on local assets is always greater than $r+\lambda$ in equilibrium, each local oligarch will always choose to mortgage the maximal β fraction of his local capital investments. That is, every unit of local capital will take an investment $1-\beta$ from its owner and will return him the net income stream $R(t) - \delta - \beta(r+\lambda)$. Thus, the net profit rate on oligarchs' investments in local capital is

$$
\pi(t) = \frac{R(t) - \delta - \beta(r + \lambda)}{1 - \beta} = \frac{(1-a)A(L/K(t))^{\alpha} - \delta - \beta(r + \lambda)}{1 - \beta}.
$$

Expropriated capital that has been taken from former oligarchs is reallocated through the political sector in our model. We assume that government officials sell the newly expropriated capital to other oligarchs. This income stream from expropriated capital gives a value to government offices, and oligarchs can buy or sell these offices like capital. But also like local capital, government offices would be expropriated from an individual who loses his oligarchic status. The profits from reselling these expropriated offices accrue to other government officials.

Let $G(t)$ denote the total value of all government offices at any time t. Then the aggregate income for government officials from their offices is $\lambda(K(t) + G(t))$. We think of the number of oligarchs as being a small fraction of the population, but large in numerical terms. Thus, the flow of expropriated wealth to government officials can be considered as a continuous income flow, subject only to the personal political risk of the recipients.

Because an oligarch’s investment in a government office involves the same personal expropriation risk as his investment in local capital, these political and economic investments must be perfect substitutes for each other. So the net rate of return from investments in government offices must always be exactly the same as the rate $\pi(t)$ for investments in local capital. In contrast to capital, however, government offices cannot be sold abroad, and so their value may change over time. Thus, for oligarchs to be indifferent between investing in local capital and government office at any time t, the following condition must hold

$$
\pi(t)G(t) = \lambda(K(t) + G(t)) + G'(t),
$$
where $G'(t)$ is rate of capital gain in the value of government offices.

At any time t, let $X(t)$ denote the total safe foreign bank deposits held by oligarchs from this country. Let $\Theta(t)$ denote the total wealth of all the oligarchs, so that

$$\Theta(t) = X(t) + (1 - \beta)K(t) + G(t). \tag{12}$$

From equation (3) in the Lemma, we know that each oligarch holds the same fraction of wealth in safe deposits $x(t)/\theta(t) = \lambda/(\pi(t) - r)$. Thus, aggregating over all oligarchs, we get

$$X(t) = \lambda \Theta(t)/(\pi(t) - r). \tag{13}$$

At any time t, the total oligarchic wealth $\Theta(t)$ is just the sum of the wealths $\theta(t)$ of all individual oligarchs. In equation (4), we saw that the growth rate of any individual oligarch's wealth is $(\pi(t) - \rho - \lambda)\theta(t)$ at any time t, as long as he retains his status in the oligarchy. But individuals are losing oligarchic status over time at the rate λ, and so $\lambda \Theta(t)$ must be subtracted from each individual's expected contribution to the aggregate $\Theta'(t)$. (When an oligarch is ostracized, his personal loss is only $\theta(t) - x(t)$, but he takes his remaining wealth $x(t)$ with him out of the aggregate wealth of all oligarchs.) That is, when an oligarch has wealth $\theta(t)$, his expected individual contribution to total oligarchic wealth grows at the rate

$$(\pi(t) - \rho - \lambda)\theta(t) - \lambda \theta(t) = (\pi(t) - \rho - 2\lambda)\theta(t).$$

Aggregating the expected contribution of all individuals, the growth of total oligarchic wealth is

$$\Theta'(t) = (\pi(t) - \rho - 2\lambda)\Theta(t). \tag{14}$$

At time 0, the oligarchs have some initial endowment of economic assets $(1 - \beta)K$ and X, which have an exogenous value in the global market, but the value of their political assets G is determined endogenously by transactions within the oligarchy. So our model's initial conditions must specify the aggregate value of the oligarchs' economic assets, which we denote by H_0

$$H_0 = (1 - \beta)K(0) + X(0). \tag{15}$$

$G(0)$, the remaining component of $\Theta(0)$, is determined in equilibrium from equation (11).

So the dynamic behavior of (Θ, K, X, G, π) in this economy is characterized by equations (10)-(15), given the parameters $(L, A, \alpha, \delta, \rho, r, \lambda, \beta, H_0)$. The authors have provided a spreadsheet file that numerically solves this dynamic model. A sketch of its computational

6 Here $X(t)$ includes any part of the mortgaged loans $\beta K(t)$ that may be owed to other oligarchs.

7 Available at http://home.uchicago.edu/~rmyerson/research/oligarch.xls
approach may be instructive.

Given the model’s parameters, we can define a function $\kappa(\Theta,G)$ that solves equations (10), (12), and (13) for K. This $\kappa(\Theta,G)$ satisfies

$$\Theta - G = (1 - \beta)\kappa(\Theta,G) + \frac{\lambda (1 - \beta) \Theta}{(1 - \alpha) A (L/\kappa(\Theta,G))^\alpha - \delta - r - \beta \lambda}.$$

With any $\Theta > G$, a unique solution $\kappa(\Theta,G)$ can be found between 0 and $(\Theta - G)/(1 - \beta)$.

Our computational algorithm begins with an estimate of $G(t)$ for all t (which could initially be $G(t)=0$). With this estimate, $\Theta(t)$ can be computed for all t from 0 to some distant time T by the differential equation (14), with $K(t) = \kappa(\Theta(t),G(t))$, and with $\pi(t)$ computed from $K(t)$ by equation (10). If T is large enough, then K and G should be approximately constant after T, in which case equation (11) yields the boundary conditions

$$G(T) = \frac{\lambda K(T)}{\left(\pi(T) - \lambda\right)}.$$

Then we can compute a new estimate of $G(t)$ for all t between 0 and T by solving the differential equation (11) for G' backwards from time T. The algorithm can now be repeated using the new estimate of G. For reasonable parameter values, this algorithm converges quite rapidly.

4. The long-run steady state

In this section, we characterize the steady state of an economy with oligarchic property rights, given the political risk λ, collateralizability β, utility-discounting ρ, depreciation δ, labor supply L, production parameters (A, α), and risk-free interest rate r.

In a long-run steady state where the rate of return to capital is a stable constant, the capital/labor ratio $K(t)/L$ must also be a constant, by equation (9). With a constant labor supply, capital K must be constant too. The value of government offices is based on their expropriation of capital, and so G must be constant in the steady state. With a constant net profit rate π, the fraction of deposits in oligarchs' wealth X/Θ must also be constant, by equation (13), and so total oligarchic wealth Θ must be constant, by equation (12). Thus, the growth equation (14) implies that the steady-state net profit rate for oligarchs' local investments must be

$$\pi^* = 2\lambda + \rho.$$

8 If the labor supply $L(t)$ grew at some given exponential rate n, then π^* would be $2\lambda + \rho + n$.

12
By equation (10), the gross profit rate or rental rate for local capital in the steady state must be

\[R^* = (1 - \beta)\pi^* + \beta(r + \lambda) + \delta = 2\lambda + \rho + \delta - \beta(\lambda + \rho - r). \]

The steady-state supply of local capital can then be determined from equation (9)

\[K^* = \frac{L(A(1 - \alpha)/R^*)^{1/\alpha}}{\rho\lambda}, \]

and the corresponding wage rate is

\[w^* = \alpha A(K^* / L)^{1 - \alpha}. \]

From equation (11) with \(G' = 0 \), the steady-state value of government offices must be

\[G^* = \lambda K^* / (\pi^* - \lambda) = \lambda K^* / (\lambda + \rho). \]

From equations (12) and (13), the safe foreign bank accounts held by local oligarchs in the steady state must be

\[X^* = \frac{\lambda[(1 - \beta)K^* + G^*]}{(\pi^* - r - \lambda)} = \frac{\lambda(2\lambda + \rho - \beta(\lambda + \rho))K^*}{(\lambda + \rho - r)(\lambda + \rho)}. \]

Finally, the total wealth of all oligarchs in the steady state is

\[\Theta^* = X^* + (1 - \beta)K^* + G^*, \]

so that substituting into (21), we get \(X^* = \lambda\Theta^* / (2\lambda + \rho - r) \). Since \(r \leq \rho \), the oligarchs in steady state will hold up to half of their wealth in safe foreign assets \(X^* \).

By equations (17)-(19), a decrease in the political risk parameter \(\lambda \) would cause a decrease in the returns to capital \(R^* \), which in turn will imply an increase in the capital/labor ratio \(K^* / L \) and an increase in the wage rate \(w^* \). Thus, workers would benefit from better protection of oligarchic property rights. Wealth flows from owners of capital to government officials at the expected rate \(\lambda K \), and so it might seem that the effects of this expropriation are just the same as a tax of rate \(\lambda \) on capital, but that is true only for the extreme case of \(\beta = 1 \), when the expropriation risk is fully diversifiable in financial markets. In general, because the coefficient of \(\lambda \) in the formula (17) for \(R^* \) is \(2 - \beta \), the adverse impact of \(\lambda \) on steady-state capital and wages is actually comparable to a higher capital tax rate of \((2 - \beta)\lambda \). This difference is due to the greater impact of undiversifiable political risks on risk-averse oligarchs' investment decisions.

Increasing the fraction \(\beta \) of capital that can be financed by outside investors would decrease the steady-state gross profit rate \(R^* \) in proportion to the quantity \(\lambda + \rho - r \). With the inequalities \(\lambda \geq 0 \) and \(\rho \geq r \), a relaxation of the borrowing constraint (increasing \(\beta \)) causes a
decrease in R^*, which in turn increases the capital/labor ratio K^*/L and increases the wage rate w^*. Thus, workers would benefit from increasing the local capitalists' ability to borrow against their capital. Only in the case where local capital ownership is perfectly secure ($\lambda = 0$) and the global risk-free interest rate is equal to the investors' personal discount rates ($r = \rho$), would the steady-state returns to local capital R^* be equal to $\delta + \rho$ regardless of β, making local capital K^* and wages w^* independent of the ability of outside investors to securely finance local capital.

This independence result in this special case of $\lambda = 0$ and $r = \rho$ should not lead anyone to underestimate the general importance of creating strong corporate governance structures to protect outside investors. These results are summarized in the following proposition.

Proposition 1. The steady-state gross profit rate on capital depends on political risk λ and collateralizability β according to the formula $R^* = 2\lambda + \rho + \delta - \beta(\lambda + \rho - r)$. Steady-state capital K^* and wages w^* are decreasing functions of R^*, and so workers would benefit from a decrease of λ or an increase of β.

We can evaluate the welfare of the oligarchs in the steady state of our model. Substituting $\pi^* = 2\lambda + \rho$ into equation (4), we find that each individual oligarch's wealth must grow at rate $\theta' = \lambda \theta$ in the steady state, with his local and foreign assets growing at the same λ rate. This positive growth rate for individual oligarchs is just what is needed to compensate for the flow of others exiting from the local oligarchy. So an individual oligarch with the initial wealth θ_0 would at any time t consume $\theta_0 e^{\lambda t}$ and hold safe deposits in the amount of $x_0 e^{\lambda t}$, where

$$x_0 = \lambda \theta_0 / (\pi^* - r) = \theta_0 \lambda / (2\lambda + \rho - r).$$

From (5)-(6), oligarchs' constant-equivalent consumption per unit of initial wealth is \hat{c}^* such that

$$\ln(\hat{c}^* \theta_0) / \rho = \int_0^\infty \left[\ln(\theta_0 e^{\lambda t}) + \lambda \ln(\theta_0 e^{\lambda t}) / \rho + \lambda (r - \rho) / \rho^2 \right] e^{-(\rho + \lambda)t} dt$$

$$= \ln(\theta_0) / \rho + \left[\lambda + \lambda \ln(\lambda / (2\lambda + \rho - r)) + \lambda (r - \rho) / \rho \right] / (\rho(\rho + \lambda)).$$

So in the steady state, an oligarch's constant-equivalent consumption per unit of initial wealth is

$$\hat{c}^* = \rho \exp \left(\lambda + \lambda \ln(\lambda / (2\lambda + \rho - r)) + \lambda (r - \rho) / \rho \right) = \rho \left(\frac{\lambda e^{r/\rho}}{2\lambda + \rho - r} \right)^{\lambda / (\rho + \lambda)}.$$

Multiplying \hat{c}^* by the wealth of any group of oligarchs yields the guaranteed permanent
constant-equivalent consumption that would be needed to make them as well off as they expect to be in their privileged oligarchic position. In the steady state, the constant-equivalent consumption for the class of all current oligarchs is

\[
C^* = \hat{c}^* \Theta^*.
\]

This quantity \(C^*\) is our basic measure of aggregate oligarchic welfare in the steady state.

Proposition 1 tells us that equation (17) for \(R^*\) is central to the welfare-relevant implications of our model. The effects of changing some assumptions in our model can be evaluated by seeing how this formula for \(R^*\) would change. In other versions of this paper, we have explored the assumption that the \(\beta\)-secured debt of an ostracized oligarch would be protected from expropriation. Under this assumption, \(R^*\) would be

\[
2\lambda + \rho + \delta - \beta(2\lambda + \rho - r),
\]

and so protection of former oligarchs' debt would increase the effect of \(\beta\) on capital and wages.

We may consider how two alternative assumptions about the disposal of expropriated property would have changed the nature of this steady state. One alternative assumption would be that the oligarchs compete for expropriated capital by wasteful political activities that could be modeled as equivalent to publicly burning quantities of the consumption good. In an equilibrium of this alternative model, such rent-seeking competition would dissipate the value of all expropriated capital, and there would be no value of government offices. But equations (16)-(19) would not change, and so the steady-state values of \(\pi^*\), \(R^*\), \(K^*\), and \(w^*\) would remain the same as in our model.

A second alternative assumption would be that expropriated capital is allocated to oligarchs in proportion to the capital that they control (as if political power in the oligarchy flowed directly from control of capital, rather than from control of government offices). This assumption would change the relationship between \(R\), the economic rents from capital, and \(\pi\), the oligarchs' rate of profit from holding capital, by adding the expropriation rate \(\lambda\) in the numerators of equation (10), and so the formula for \(R^*\) in equation (17) would become

\[
(1-\beta)\pi^* + \beta(r + \lambda) + \delta - \lambda = \lambda + \rho + \delta - \beta(\lambda + \rho - r).
\]

Notice that the 2 coefficient of \(\lambda\) in equation (17) has vanished here. So identifying political power with economic capital would add incentives for economic investment, which would decrease \(R^*\) and increase \(K^*\) and \(w^*\) in comparison to our model, where political power is identified with government offices that are a separate form of investment for oligarchs.
Finally, we may compare the adverse effects of an oligarchy to the effects of a local capital monopolist described by Lucas (1990). In Lucas's model, the capital monopolist has the power to supply all local capital K by borrowing at the world interest rate r, but the capital is then rented at the rate R to firms that pay the competitive wage. The steady-state income of such a capital monopolist is then $(R - r - \delta)K$, where R depends on K according to (9), which implies $\partial R/\partial K = -\alpha R/K$. To maximize the capital monopolist's income, he would choose K so that

$$R = (r + \delta)/(1 - \alpha).$$

Compared to such a capital monopolist, perfect property rights ($\lambda=0$, $\beta=1$) would yield lower R^*. But with $\beta=0$, our oligarchs would have higher R^* (and so lower capital and wages) when political risk is high enough to satisfy

$$\lambda \geq 0.5((r + \alpha\delta)/(1 - \alpha) - \rho).$$

5. Global general equilibrium with oligarchic property rights

Property rights imperfections that impoverish one country may enrich another. To analyze the redistributive consequences of political risk, let us now consider a multi-national extension, including both the sources and recipients of capital flight.

Let J denote the set of countries in the world. For simplicity, let us assume that the basic technological and personal-preference parameters of our model (α, A, δ, ρ) are the same in all countries. Let L_j denote the given fixed labor supply in country j. The openness and security of property rights in each country j are measured by the parameters β_j and λ_j where β_j is the fraction of local capital that can be owned or financed by outside investors, and λ_j measures the political risk of the privileged insiders who must own the balance of the local capital stock. The risk-free interest rate r in global capital markets now becomes an endogenous variable and must be determined in equilibrium. For any given r, however, the steady-state prices and assets in each country j are characterized by equations (16)-(22) in the previous section. In particular, the gross profit rate, capital stock, and safe foreign holdings of local oligarchs in country j are

$$(1 - \beta_j)(2\lambda_j + \rho) + \beta_j(r + \lambda_j) + \delta,$$

$$K_j = L_j\left(A(1 - \alpha)/R_j\right)^{1/\alpha},$$

$$X_j = K_j\lambda_j\left(2\lambda_j + \rho - \beta_j(\lambda_j + \rho)\right)/\left((\lambda_j + \rho)(\lambda_j + \rho - r)\right).$$

Let Ω_j denote the total assets held in global financial markets by people who are
These expatriates' assets earn interest at rate \(r \), but they consume out of their assets at rate \(\rho \), and so their assets will decay at the rate \((\rho - r)\Omega_j \). At the same time, newly ostracized oligarchs bring their safe holdings into \(\Omega_j \) at the rate \(\lambda_j X_j \), where \(X_j \) denotes the safe financial assets held by oligarchs of country \(j \). In the steady state, we must have

\[
0 = \Omega_j' = \lambda_j X_j - (\rho - r)\Omega_j, \quad \text{and so}
\]

\[
\Omega_j = \lambda_j X_j / (\rho - r).
\]

The market-clearing global interest rate \(r \) can now be determined from the equation

\[
\sum_{j \in J} (X_j + \Omega_j) = \sum_{j \in J} \beta_j K_j.
\]

The left-hand side of (26) is the global demand for safe financial securities, while the right-hand side is the global supply. The gross profit rate on local capital in each country \(j \) must be positive \(R_j > 0 \). So the equilibrium world interest rate \(r \) must satisfy

\[
r > -\left(\delta + 2\lambda_j + \rho - \beta_j (\lambda_j + \rho)\right)/\beta_j
\]

for every country \(j \) where \(\beta_j > 0 \). Indeed, as \(r \) approaches this lower bound, \(R_j \) approaches zero, so that the steady-state demand for capital and the steady-state supply of global securities \(\beta_j K_j \) from this country become infinite. The interest rate \(r \) must also be less than \(\rho \), because the \(\Omega_j \) demand for global securities by former oligarchs goes to infinity as \(r \) approaches this upper bound. We can always find an equilibrium interest rate \(r \) somewhere between these bounds.

Proposition 2. In a steady-state global equilibrium where some countries have oligarchic property rights with positive political risk \(\lambda_j \), the global risk-free interest rate \(r \) must be strictly less than individuals' rate of time preference \(\rho \).

6. A Simple Two-Country Example

In the next three sections, we show the power of our model by analyzing some numerical examples. We begin in this section by computing the steady state for a simple general equilibrium model with two countries.

\(^{9}\) The equilibrium real interest rate in our model may well turn out to be negative, for example if there are legal restrictions against investing in safe foreign assets for oligarchs in some large countries.
In our examples here, we consider a standard set of values for the basic parameters \((\alpha, \delta, \rho, A)\). To be specific, let \(\alpha = 2/3\) be labor's share of income, let \(\delta = 0.04\) be the depreciation rate, and let \(\rho = 0.05\) be the personal discount rate. We let \(A = 0.8469\) be the production rate with unit inputs of capital and labor, because this constant with the other parameters would make the equilibrium wage rate be equal to 1 if all countries had perfect enforcement of property rights. That is, with these parameters, if the world had no political risk anywhere, so that \(\lambda = 0\), then a steady-state equilibrium would have interest rate \(\bar{r} = \rho = 0.05\), gross profit rate \(\bar{R} = \rho + \delta = 0.09\), capital/labor ratio \(\bar{K}/L = (A(1-\alpha)/\bar{R})^{1/\alpha} = 5.56\), and wage rate \(\bar{w} = \alpha A(\bar{K}/L)^{1-\alpha} = 1\).

Instead of this ideal world, let us now consider a simple world that is divided in two countries with equal population \(L_1 = L_2 = 1\). In country 1, there is no political risk, and capital ownership can be securely protected as long as politically connected individuals have at least a 40% ownership share, so \(\lambda_1 = 0\) and \(\beta_1 = 0.6\). Country 2 is run by an oligarchy with positive political risk rate \(\lambda_2 = 0.02\), and outsiders cannot securely hold any local assets, so \(\beta_2 = 0\). This expropriation rate should seem small, in that it implies that any oligarch has an expected time until expropriation of \(1/\lambda_2 = 50\) years.

For this two-country world, the global risk-free interest rate in a steady-state equilibrium is \(r = 0.0301\). With this interest rate, the equilibrium capital and wages in countries 1 and 2 are

\[
K_1 = 6.88, \quad w_1 = 1.07, \quad K_2 = 3.20, \quad w_2 = 0.83.
\]

So 68% of the world's capital is in country 1. But 60% of country 1's capital has been financed by the current and former elite of country 2, with \(X_2 = 2.06\) and \(\Omega_2 = 2.07\). The wage rate in country 1 is 29% higher than in country 2. Furthermore, \(w_1\) is actually 7% higher than the equilibrium wage that workers would get in an ideal world without any political risk (\(\bar{w} = 1\)). If we added a small third country with perfect property rights \((\lambda_3 = 0, \beta_3 = 1, L_3 \approx 0)\), then workers there would enjoy an even higher steady-state wage \(w_3 = 1.13\) which is 36% more than the wage in country 2 and is 13% more than the wage in an ideal world without political risk. Thus, the political risk in country 2 actually increases the welfare of workers in countries where owners of capital are better protected. More generally, Proposition 2 has the following corollary.

Proposition 3. In a global steady state, if any country has positive political risk \(\lambda_i > 0\),
then any other country that has no political risk and is open to outsiders' investment
\((\lambda_j = 0, \beta_j > 0)\) will have \(R_j = \rho + \delta - \beta_j (\rho - r) < \rho + \delta\) and so will have capital and wages that
are strictly greater than they would be if all countries had perfect property rights.

In our example, we can measure the oligarchs' welfare by their constant-equivalent consumption. Given \(r\) and \(\lambda\), equation (23) implies that their constant-equivalent consumption per unit wealth is \(\hat{c}_2 = 0.0433\). Multiplying this \(\hat{c}_2\) by the total wealth of all oligarchs, we find that the total constant-equivalent consumption for all oligarchs is

\[
C_2 = \hat{c}_2 [(1 - \beta_2)K_2 + X_2 + G_2] = 0.0434 \times [(1-0)\times 3.20 + 2.06 + 0.91] = 0.268.
\]

This constant-equivalent consumption is somewhat less than the aggregate consumption of all oligarchs (\(\rho \Theta_2 = 0.309\)) because it takes account of the oligarchs' political risks. For comparison, notice that the aggregate rate of consumption of all workers in country 2 is equal to their wage rate 0.832, because we have \(L_2 = 1\). The workers and oligarchs in country 1 consume respectively \(w_1L_1 = 1.07\) and \(\rho \Theta_1 = 0.138\), while ostracized former oligarchs and their heirs have aggregate consumption \(\rho \Omega_2 = 0.103\) in this steady state.

Figure 1 shows the steady-state effects of a change in \(\lambda_2\), the political risk rate in country 2. Greater political risks in country 2 obviously hurt workers in country 2, but it can be seen from Figure 1 that the effects on workers in country 1 are ambiguous. As long as \(\lambda_2\) is not too high (\(\lambda_2 < 0.13\) in this example), a small increase in \(\lambda_2\) would increase capital flight from country 2, which would decrease world interest rates (down to \(r = 0.0166\) when \(\lambda_2 = 0.13\)), and thus would increase steady-state capital and wages in country 1. But when \(\lambda_2\) becomes very high (\(\lambda_2 > 0.13\)), the principal effect would be to further impoverish country 2, decreasing the funds that its oligarchs invest abroad. This leads to less, not more capital flight (in absolute terms) from country 2 to country 1, increasing world interest rates, and decreasing steady-state capital and wages in country 1.

[Insert Figures 1 and 2 about here]

Effects of a change in \(\beta_2\), the degree of protection for outside investors in country 2 are, on the other hand, unambiguous. Figure 2 shows those effects, given the fixed political risk rate \(\lambda_2 = 0.02\). Greater protection for outside investors in country 2 would yield higher wages in
country 2, but it would also increase world interest rates in the steady state and thus would
decrease capital and wages in country 1. As β_2 increases to 1, the world interest rate increases to
$r = 0.0468$, the wage rate in country 1 decreases to $w_1 = 1.01$, and the wage rate in country 2
increases to $w_2 = 0.92$. Thus, globalization would help workers in the poor country, but it would
reduce the steady-state wealth of the oligarchs who dominate the poor country, and it would also
be against the interests of workers in the rich country.

Oligarchs’ preferences over different systems of property rights are not necessarily fully
revealed by aggregate consumption plotted in Figures 1 and 2. First, aggregate consumption is
not a complete measure of welfare for the oligarchs, because it does not take account of their
political risks. But for the cases considered in Figures 1 and 2, the oligarchs’ constant-equivalent
consumption would differ only slightly from the aggregate consumption rates shown in those
figures. A more serious problem comes from the fact that changing the system of property rights
would not make the economy jump from one steady state to another, so that the analysis of a
change must consider its full dynamic effects.

For example, suppose that the world economy was in the steady state for our basic
equation, with $\lambda_2 = 0.02$ and $\beta_2 = 0$, and then a political reform was proposed in country 2 that
would decrease the expropriation rate to $\lambda_2 = 0.01$. Figure 1 shows that this reform would
eventually lead to a new steady state in which the oligarchs have higher aggregate consumption.
Furthermore, because the oligarchs would have less political risk in this new steady state, their
constant-equivalent consumption would be increased even more. But this change would not
occur instantly. In the steady state with $\lambda_2 = 0.01$, the oligarchs’ total economic assets would be
$K_2 + X_2 = 4.11 + 2.12 = 6.23$, which is 18% larger than their total economic assets in the old steady
state with $\lambda_2 = 0.02$ (where $K_2 + X_2 = 3.20 + 2.06 = 5.26$). Thus, to reach the new steady state, the
oligarchs would need to save over many years, to accumulate this increased wealth.

In Section 3, we saw how to analyze such a dynamically evolving economy, for the case
of a small country whose changing economic aggregates would not affect the global interest rate.
To apply this dynamic analysis here, we must revise the above example by subdividing "country
2" into many small countries, each of which has the same property-rights parameters. Then the
methods of Section 3 can be applied to analyze a change of the property-rights parameters (λ, β)
in any one of these small countries. In the next section, we consider the dynamic effects of such
local property-rights changes in one small country.

7. Dynamic effects of changing political risk and collateralizability in a country

To examine the dynamic effects of changing the property-rights system in one country, let us consider an example with the standard parameter values from the previous section: \(\alpha = \frac{2}{3}, \, \delta = 0.04, \, \rho = 0.05, \, A = 0.8469, \, L = 1, \, r = 0.03. \) In this environment, we can show that the steady state with \(\lambda = 0.02, \, \beta = 0 \) has a political stability in the following sense: Starting from this steady state, a political reform that makes a small permanent change of \(\lambda \) or \(\beta \) would lead to a new dynamic equilibrium in which the oligarchs' total welfare \(C \) would be smaller than before the change. Also, from a steady state with the standard parameter values (28) and any other \((\lambda, \beta)\) in a neighborhood of \(\lambda = 0.02 \) and \(\beta = 0 \), a small change toward \(\lambda = 0.02 \) and \(\beta = 0 \) would increase the oligarchs' welfare. This result can be verified by a first-order perturbation analysis of the dynamic process following a small change of the \((\lambda, \beta)\) parameters, as we discuss in Appendix 2 below.

In the stable steady state with the standard parameter values (28) and \(\lambda = 0.02 \) and \(\beta = 0 \), we get the following steady-state values from equations (16)-(24):

\[
K^* = 3.20, \, X^* = 2.06, \, G^* = 0.91, \, w^* = 0.83, \, \pi^* = 0.09
\]

and the aggregate constant-equivalent consumption for all oligarchs is

\[
C^* = \hat{c}^* (K^* + X^* + G^*) = 0.0434 \times (3.20 + 2.06 + 0.91) = 0.268.
\]

In this steady state, the oligarchs' total economic wealth is \(H^* = K^* + X^* = 5.26 \).

Now let us illustrate the effects of perturbing this steady state by a small change of political risk \(\lambda \). Suppose that, starting from this steady state, at time \(t = 0 \) there is an unanticipated political reform that permanently decreases the political risk to \(\lambda = 0.01 \). As soon as they recognize the change to \(\lambda = 0.01 \), the oligarchs will want to invest more in local capital \(K \). In the dynamic equilibrium, as shown in Figures 3a and 3b, this initial investment at time 0 causes an immediate 22% increase the local capital stock to \(K(0) = 3.91 \), which is paid for by an equal decrease in the oligarchs' foreign bank accounts \(X \). The competitive wage at time 0 jumps by about 7%, to \(w(0) = 0.89 \), and the net profit rate on local investments drops from \(\pi^* = 0.09 \) to

10 We let the world interest rate be \(r = 0.03 \) here, which is close to the equilibrium value in our two-country example.

11 To state the result with more accuracy, the stable value is \(\lambda = 0.019734 \). See Appendix 2 for derivation.
\[\pi(0) = 0.074\]. The decreased expropriation rate also lowers the value of government offices \(G(0)\) by 30%. Then, in the decades after the reform, local capital stock gradually increases towards its new steady-state value of \(K(\infty) = 4.11\), which yields a competitive wage rate of \(w(\infty) = 0.90\) and a local net profit rate of \(\pi(\infty) = 0.07\).

[Insert Figures 3a and 3b about here]

When these dynamic effects are taken into account, it turns out that the total constant-equivalent consumption for all oligarchs at time 0 is lower than it was in the stable steady state. Specifically, with the new political risk \(\lambda = 0.01\) and the anticipated net profit rates \(\pi(t)\) for all \(t>0\) in this dynamic equilibrium, the oligarchs' constant-equivalent consumption per unit wealth at time 0 is \(\hat{c} = 0.0450\) by equation (6), which is 3.8% greater than in the old steady state (where \(\hat{c}^*\) was 0.0434). The decline in the value of government offices at time 0, however, has decreased the oligarchs' total wealth by 4.4%, and so the new aggregate constant-equivalent consumption \(C\) at time 0 in this dynamic equilibrium is

\[C = \hat{c} (K(0) + X(0) + G(0)) = 0.0450 \times (3.91 + 1.35 + 0.64) = 0.266,\]

which is less than the oligarchs' \(C^*\) in the old steady state. Thus, in this example, we find that the oligarchs would oppose a political reform that reduces their political risks and increases the security of their property rights. Of course any one oligarch would prefer that his own political risk should be reduced. But the equilibrium with systematically lower political risk for all oligarchs can actually make them worse off.

Now, starting from the same \(\lambda=0.02\) steady state, let us consider a permanent unforeseen change in the opposite direction, to an increased of political risk to \(\lambda = 0.03\), holding fixed \(\beta = 0\) and all other parameters in (28). The results of such a change would be qualitatively opposite to the changes that we found above. In the new riskier political regime, the oligarchs want to increase their safe foreign assets \(X\), which they do by exporting local capital \(K\). In the dynamic equilibrium, their initial disinvestment at time 0 causes an immediate 15% decrease in the local capital stock, to \(K(0) = 2.73\), which pays for an equal increase in the oligarchs' foreign bank accounts \(X\). The competitive wage at time 0 drops by about 5%, to \(w(0) = 0.79\), and the net profit rate on local investments jumps from \(\pi^* = 0.09\) to \(\pi(0) = 0.105\). The increased expropriation rate also raises the value of government offices \(G(0)\) by 14%. Then, in the decades
after the change, local capital stock gradually declines toward its new steady-state value \(K(\infty) = 2.58 \), which yields wages \(w(\infty) = 0.77 \) and local net profit rate \(\pi(\infty) = 0.11 \).

When these dynamic effects are taken into account, it turns out that the total constant-equivalent consumption for all oligarchs at time 0 is lower than it was in the original stable steady state. Specifically, with the new political risk \(\lambda = 0.03 \) and the anticipated net profit rates \(\pi(t) \) for all \(t > 0 \) in this dynamic equilibrium, the oligarchs' constant-equivalent consumption per unit wealth at time 0 is \(\hat{c} = 0.0423 \) by equation (6), which is 2.5% less than in the old steady state (where \(\hat{c}^* = 0.0434 \)). The increase in the value of government offices at time 0 has increased the oligarchs' total wealth by only 2.0%, and so the new aggregate constant-equivalent consumption \(C \) at time 0 in this dynamic equilibrium is

\[
C = \hat{c}(K(0) + X(0) + G(0)) = 0.0423 \times (2.73 + 2.53 + 1.04) = 0.266,
\]

Again, this amount is slightly less than their total constant-equivalent consumption \((C^* = 0.267) \) in the old \(\lambda = 0.02 \) steady state, and so the aggregate welfare of the oligarchs is lower.

Now let us illustrate the effects of an increase in the collateralizability parameter \(\beta \), which measures the fraction of local capital that can be owned or financed by outsiders. Any individual oligarch would generally prefer to extend his own local investments by leverage from global financial markets. But in equilibrium, the credit from an increase of \(\beta \) may cause a growth of the local capital stock that increases wages and decreases local profits, and the oligarchs' total welfare may actually be decreased as a result.

For example, Figures 5a and 5b illustrate the effects of an unanticipated political reform that increases the collateralizability of local capital to \(\beta = 0.33 \), starting from the stable steady state with \(\lambda = 0.02 \), \(\beta = 0 \), and our other standard parameter values (28). Right after this reform, the oligarchs borrow massively abroad to finance a 27% increase in local capital, which increases wages by 8% and decreases the local net profit rate to \(\pi(0) = 0.081 \) (from the prior \(\pi^* = 0.09 \)). This decline in the profit rate \(\pi \) occurs even though the financial leverage now allows the oligarchs to profit from 50% more capital per unit of their own investment, because the net expected profit rate \(R - \delta - r - \lambda \) per unit capital is almost halved after the change (from 0.04 in the old steady state to 0.0208 immediately after the reform). The reform also causes the total value of government offices to increase substantially (given our assumption here that government officials can also benefit from expropriating capital financed by outsiders). Then, in
the decades after the reform, the oligarchs' total wealth and the local capital stock gradually decline, and the oligarchs' net profit rate on their leveraged local investments slowly rises back toward the original steady-state $\pi^* = 0.09$. So the post-reform depression of net profit rates is transient, but it changes the oligarchs' total constant-equivalent consumption after the reform to

$$C = \hat{c}[(1 - \beta)K(0) + X(0) + G(0)] = 0.0413 \times [(1-0.33) \times 4.07 + 2.53 + 1.21] = 0.267,$$

slightly less than their constant-equivalent consumption ($C^* = 0.268$) in the $\lambda = 0.02$ steady state.

These results can be summarized by the following proposition, which can be proven by formulas that are derived in Appendix 2, for the stable values $\lambda = 0.019734$ and $\beta = 0$ with (28).

Proposition 4. In some parametric cases, a country can have a steady-state equilibrium with positive political risk $\lambda > 0$ and no protection for outside investors $\beta = 0$ that is politically stable in the sense that that the oligarchs' welfare would be reduced by a small change of β or by a small change of λ in either direction. Furthermore, from a steady state where λ or β differs slightly from these politically stable values, a small parameter change toward these stable values would increase the oligarchs' welfare.

The political stability that we found for our example does not hold for very large changes in the property-rights parameters. If a radical political reform could guarantee a political risk of $\lambda = 0.0002$ or less (1/100 of the original political risk), then the oligarchs would actually be slightly better off than in the original steady state where $\lambda = 0.02$. Similarly, if a radical reform of corporate governance enabled the oligarchs to credibly offer 82% or more of their assets as secure collateral to outside lenders ($\beta \geq 0.82$), then the oligarchs would actually be slightly better off than the original steady state with $\beta = 0$. Of course, an even better outcome for the oligarchs would be to falsely convince outsiders that they can safely finance 82% of local capital, and then to expropriate all resulting local investments from such outsiders; so it may not be so easy to convince foreign investors that a reform of the oligarchy has actually increased β.

The analysis of oligarchs' welfare here assumed that all oligarchs hold local capital and government office in the same proportions. But in our model, we cannot determine how any individual oligarch should allocate his investments between these two local assets, because they are perfect substitutes as long as the parameters are held fixed. Going beyond the model, there
might be some advantage for each individual oligarch to specialize as either an industrialist or a politician, concentrating his local holdings either in local capital or in government offices. Then an increase in political risk λ would be better for the politicians than for the industrialists, because more expropriation could yield a windfall increase in the value of government offices.

In our example, in the steady state with $\lambda = 0.02$, the value of government offices was $G^* = 0.914$, and each oligarch held 0.5 units of wealth abroad for each unit of local wealth. So in this steady state, politicians would hold $X_{gov} = 0.914 \times 0.5 = 0.457$ units of wealth abroad, and their total constant-equivalent consumption would be

$$\hat{c}(G^* + X_{gov}) = 0.434 \times (0.914 + 0.457) = 0.0595.$$

Although the political change to $\lambda = 0.03$ has the effect of reducing the oligarchs' consumption-per-unit-wealth \hat{c} by about 3% (relative to the old steady state), it also increases the value of government offices by about 14%. So after the political change, the politicians' total constant-equivalent consumption would become

$$\hat{c}(G(0) + X_{gov}) = 0.423 \times (1.043 + 0.457) = 0.0634.$$

Thus, the political specialists in the oligarchy would prefer this increase in political risk, but their welfare gains here are less than the other oligarchs' losses.

A lower risk-free interest rate r in international capital markets would tend to make the oligarchs more favorable to better political security. For example, with lower global interest rate $r = 0.028$ but all other parameters as in (28), a politically stable steady state can be found with $\beta = 0$ and lower political risk $\lambda = 0.0166$.

Figures 5a and 5b offer another way of understanding the effects of the parameter changes that we have explored above. Once the parameters $(a, \delta, \rho, A, r, L, \lambda, \beta)$ have been specified, we can determine the dynamic equilibrium path from the oligarchs' economic wealth $H(t) = (1-\beta)K(t) + X(t)$ at any time t. For our baseline parameter values in (28) with $\lambda = 0.02$ and $\beta = 0$, the solid curves in Figure 4a shows how the aggregate capital stock K and the aggregate value of all government offices G would depend on the oligarchs' economic wealth H. These curves were computed by solving the dynamic model with these baseline parameter values twice, once starting from $H_0 = 1$, and once starting from $H_0 = 10$, and then plotting the trajectories $(H(t), K(t))$ and $(H(t), G(t))$ for all times t. The steady-state values on these curves are indicated
by the solid squares above $H^* = 5.26$. Similarly, the dependence of $\pi(t)$ on $H(t)$ with these baseline parameter values is indicated by the solid curve in Figure 5b.

The dashed curves in Figure 5a show how these (H,K) and (H,G) trajectories would shift when the political-risk parameter is changed to $\lambda = 0.01$, with all other parameters held fixed at their baseline values. For any level of the oligarchs' economic wealth H, the lower political risk λ decreases the value of the oligarchs' government offices G, and it increases the amount of capital K that they will hold. Similarly, the dashed curve in Figure 5b shows that, for any level of the oligarchs' economic wealth H, the lower political risk decreases the local profit rate π. Notice that each of these effects of decreasing λ tends to be larger at higher levels of H.

The dotted curves in Figures 5a and 5b show how these trajectories would shift when the collateralizability parameter is changed to $\beta = 0.33$, holding fixed $\lambda = 0.02$ and all our other baseline parameter values. The improved protection for outside creditors increases the local capital stock K, increases the value of government offices G, and decreases the net local profit rate π. In contrast with the decrease of political risk λ, the effects of increasing collateralizability β tend to be relatively larger at lower levels of the oligarchs' economic wealth.

When we start from the baseline steady state at $H^* = 5.26$, an unanticipated political reform that changes the λ or β parameter in one of these ways would create a dynamic equilibrium that follows the shifted trajectories shown in Figures 5a and 5b, starting from a jump onto the new trajectories at given initial value of the oligarchs' economic wealth $H(0) = 5.26$. After this initial jump, the economy gradually moves toward the new steady state (indicated in Figures 5ab by triangles on the dashed $\lambda = 0.01$ curves, by circles on the dotted $\beta = 0.33$ curves).

8. Dynamic effects of opening to allow capital flight

The end of Communism opened new opportunities for individuals in the former Soviet Union to make personal investments abroad. In this section, we show how our model can be used to analyze the economic consequences of such a political change.

We begin by formulating a simple model of an oligarchic country that is closed to both import and export of capital. That is, only oligarchs can own local capital here, but these oligarchs cannot invest abroad. The restriction against foreigners acquiring local capital is modeled by letting collateralizability β be equal to 0. The restriction against oligarchs investing
in safe foreign assets can be modeled in our framework by letting the risk-free interest rate \(r \) be very negative. When \(\beta = 0 \), our steady-state equations (16)-(20) yield values of \(\pi^*, R^*, K^*, G^* \), and \(w^* \) that do not depend on the interest rate \(r \). So in the steady state, the only effect of taking \(r \) to \(-\infty\) is that the oligarchs' safe foreign assets \(X^* \) go to 0. More intuitively, if the oligarchs have no way to hedge against their risk of expropriation, then the political risk rate will be effectively added into their rate of discounting the future, and so their consumption rate per unit wealth will increase from \(\rho \) to \(\rho + \lambda \). So for the oligarchs to maintain constant aggregate wealth after consumption and expropriation, the steady-state net return to local capital must still be \(\pi^* = 2\lambda + \rho \). The oligarchs' welfare is decreased by their inability to hold safe foreign assets, but workers' steady-state wages are not affected by restrictions against saving abroad.

However, comparing only long-run steady-state values does not reveal the full extent of the problem. The short-run effects of opening a closed oligarchic economy can be significant. To illustrate those, consider, once again, an example with our standard parameter values (28) and \(\lambda = 0.02 \). Suppose that the country has been closed and has reached its steady state with \(\beta = 0 \) and \(r = -\infty \). From this steady state, at time \(t = 0 \), there is an unexpected political reform that allows local oligarchs to freely invest abroad at the world interest rate \(r = 0.03 \).

For simplicity, suppose that the political risk \(\lambda = 0.02 \) remains the same after this political reform. Suppose also that the reform does not provide an effective legal framework to protect outside investors, so that collateralizability \(\beta \) remains equal to zero. This situation might be a reasonable approximation to what happened in the former Soviet Union after the collapse of communism. The dynamic equilibrium results for this model are shown in Figures 6.

From the old closed steady state the economy has inherited the same steady-state capital stock that it should have under the new regime, given that \(\lambda \) is unchanged. But the oligarchs initially have no wealth abroad, and so their urge to acquire safe foreign assets drives them to export capital. In the dynamic equilibrium, this capital flight causes a 27% drop in the local capital stock, from \(K^* = 3.20 \) to \(K(0) = 2.35 \), so that the oligarchs acquire \(X(0) = 0.85 \) in safe foreign deposits. The capital flight causes wages to fall 10%, from \(w^* = 0.83 \) to \(w(0) = 0.75 \) immediately after the transition, and the net profit rate for local capital jumps to \(\pi(0) = 0.12 \).

With these high profit rates, the oligarchs' total wealth slowly increases during the decades after
the reform, so that the local capital stock and wage rate gradually climb back to their steady-state values. But a decade after the reform, wages are still more than 5% below their pre-transition level. Anticipating the $\pi(t)$ path shown in Figure 6b, the oligarchs' total constant-equivalent consumption at time 0 is

$$C = \hat{c} (K(0) + X(0) + G(0)) = 0.05056 \times (2.348 + 0.852 + 0.627) = 0.1935.$$

These results can also be seen in Figures 5a and 5b, where the prior steady state values of K, G, and π are indicated by squares over the initial economic wealth $H = K^* = 3.20$. From these initial conditions, the dynamic equilibrium values of K, G, and π follow a vertical jump at time 0 to the trajectory for our baseline case with $\lambda=0.02$ and $\beta=0$, and then they gradually move along to these trajectories (the solid curves in Figures 5ab) toward the new steady state at $H^*=5.26$. In particular, the loss capital at time 0 is indicated by the fact that the initial square for K is above the solid trajectory for K in Figure 5a.

It is not surprising that a nation's economic performance may suffer from an opening that allows its capital to leave but does not allow foreign capital to enter. In our model, allowing foreigners to invest means raising the borrowing parameter β. From Figure 5a, we can see that the trajectory for K would be shifted above the closed-economy initial conditions if the post-transition collateralizability parameter were increased to $\beta=0.33$. With the ability to get financing for 33% of their local capital, oligarchs could immediately acquire enough safe foreign assets to be willing to continue holding their shares of the local capital stock inherited from the old regime. In fact, after a transition with $\beta=0.33$, wages would actually begin to rise above the closed steady state, 2.8% higher after the first decade, and 5.5% higher in the long run. Thus, institutions of corporate governance that allow even 33% financing of local capital could significantly improve the workers' welfare in this transition.

But numerical computations show that the oligarchs' total constant-equivalent consumption in this dynamic equilibrium with $\beta=0.33$ would be

$$C = \hat{c} [(1-\beta)K(0) + X(0) + G(0)] = 0.04754 \times [(1-0.33)\times3.228 + 1.037 + 0.872] = 0.1936.$$

This result suggests that the oligarchs would also be slightly better off with $\beta=0.33$ than with $\beta=0$ in this transition, but the tiny difference would hardly be enough to compensate the oligarchs if they bear any cost of creating the required institutions of corporate governance.
Proposition 5. A reform that allows oligarchs to acquire safe foreign assets that were previously unavailable can severely reduce local capital and wages, even if there was no change of political risk and the inherited capital stock was at its long-run steady-state value. Such a depression can be mitigated by increasing β to admit outsiders' investments.

9. Recruitment into the oligarchy

We have been considering a model where oligarchs lose their special privileges and become common citizens at random times. In the long run, the flow of people out of the oligarchy should be balanced by an opposite flow of common citizens being recruited into the oligarchy. In this section we consider a simple extension of our model with recruitment into the oligarchic class and show that it leaves the basic results of our analysis intact.

We assume that a person's initial entry into the oligarchic circle of trust requires chance personal connections that cannot be bought or hastened in any way. For simplicity, let any common citizen's waiting time to gain entry into the oligarchy be an exponential random variable with mean $1/\mu$, where μ is some small number. That is, in any short time interval of length ε, a common citizen's probability of gaining admission into the oligarchy is approximately $\mu \varepsilon$. With oligarchs exiting at rate λ, the steady-state ratio of common citizens per oligarch in the overall population would be λ/μ. So we should think of μ as being much smaller than λ, and we will be interested in the limit as $\mu \to 0$.

Our characterization of optimal consumption and investment strategies (2)-(4) can be carried over to this more general model. In an investment-consumption strategy that maximizes an individual's expected discounted logarithmic utility of consumption, the optimal consumption rate is always equal to $\rho \theta(t)$ when $\theta(t)$ is his current wealth. When the individual has oligarchic status, his optimal investment in the safe asset is $\lambda \theta(t)/(\pi(t) - \rho)$, when $\pi(t)$ is the local net profit rate. Thus, any individual oligarch's wealth grows at the rate $\theta'(t) = (\pi(t) - \rho - \lambda)\theta(t)$ as long as he retains his oligarchic status. On the other hand, a common citizen's wealth $\hat{\theta}(t)$ has negative growth rate $\hat{\theta}'(t) = (r - \rho)\hat{\theta}(t)$.

Now consider the dynamics of the aggregates $(\Theta(t), K(t), G(t), X(t), \Omega(t))$, where $\Omega(t)$ is the total wealth of all common citizens in the country, and the other quantities are as defined in Section 3. The equation (14) for the growth of oligarchic wealth must be revised to include the...
effects of commoners being randomly recruited into the oligarchy. With such recruitment at rate μ, the growth of aggregate oligarchic wealth becomes

$$\Theta'(t) = (\pi(t) - 2\lambda - \rho)\Theta(t) + \mu \Omega(t).$$

The commoners' aggregate wealth $\Omega(t)$ grows at rate

$$\Omega'(t) = (r - \rho - \mu)\Omega(t) + \lambda X(t) = (r - \rho - \mu)\Omega(t) + \Theta(t)\lambda^2/(\pi(t) - r).$$

Here $(r - \rho)\Omega(t)$ is the change of wealth of common citizens whose status stays the same continuously at time t, while $\mu \Omega(t)$ is the outflow of wealth taken into the oligarchic class by citizens who get promoted at time t, and $\lambda X(t) = \Theta(t)\lambda^2/(\pi(t) - r)$ is the inflow of wealth that ostracized oligarchs take with them as they become commoners. All other economic variables can be characterized by the same equations (10)-(13) that we found in Section 3. So the dynamic behavior of $(\Theta, K, X, G, \Omega, \pi)$ in this economy with recruitment at rate μ is characterized by equations (31)-(32) together with equations (10)-(13). The initial conditions at time 0 include the initial wealth of commoners Ω as well as the initial economic wealth of the oligarchs $H_0 = (1 - \beta)K(0) + X(0)$.

To evaluate welfare in this extended model, let the expected t-discounted future utility of an individual with wealth 1 at time t be denoted by $u(t)$ if he is an oligarch and $v(t)$ if he is a commoner. Because the optimal consumption and investment plan is always proportional to wealth, the expected t-discounted future utility of an individual with wealth $\theta(t)$ at time t is $u(t) + \ln(\theta(t))/\rho$ if he is currently an oligarch, $v(t) + \ln(\theta(t))/\rho$ if he is a commoner. Then $u(t)$ and $v(t)$ can be computed by the differential equations

$$-u'(t) = \max_{c, x} \ln(c) + [(1 - x)\pi(t) + x r - c]/\rho + \lambda[v(t) + \lambda \ln(x) - u(t)] - \rho u(t)$$

$$= \ln(\rho) + [\pi(t) - \lambda - \rho + \lambda \ln((\pi(t) - r))]/\rho + \lambda v(t) - (\rho + \lambda)u(t),$$

$$-v'(t) = \max_c \ln(c) + (r - c)/\rho + \mu(u(t) - v(t)) - \rho v(t)$$

$$= \ln(\rho) + (r - \rho)/\rho + \mu u(t) - (\mu + \rho)v(t).$$

In the long-run steady state where $\pi(t) = \pi^*$, the constant values of $u(t)$ and $v(t)$ are

$$u^* = \ln(\rho)/\rho + \{(\mu + \rho)[\pi^* - \lambda - \rho + \lambda \ln((\pi^* - r))]/\rho^2(\mu + \rho + \lambda)],$$

$$v^* = \ln(\rho)/\rho + \{\mu[\pi^* - \lambda - \rho + \lambda \ln((\pi^* - r))]/\rho^2(\mu + \rho + \lambda)] + (\rho + \lambda)(r - \rho)].$$
The oligarchs' constant-equivalent consumption per unit wealth satisfies $\ln(\hat{c}^*)/\rho = u^*$.

The steady-state condition $\Omega^* = 0$ implies that common citizens' aggregate wealth is

$$\Omega^* = \Theta^* \lambda^2 / [\pi^*(r)(\mu + \rho - r)].$$

Then the steady-state condition $\Theta' = 0$ implies that

$$\pi^* - 2\lambda - \rho + \mu \lambda^2 / [\pi^*(r)(\mu + \rho - r)] = 0.$$

Thus, with $\pi^* > \rho + \lambda$, the local net profit rate in the steady state must be

$$\pi^* = \lambda + (\rho + r) / 2 + 0.5 \sqrt{(\rho - r)(\rho - r + 4\lambda + 4\lambda^2 / (\mu + \rho - r))}.$$

The steady-state values of other economic variables ($R^*, K^*, w^*, G^*, X^*, \Theta^*$) can then be computed from this π^* as in Section 4, by equations (17)-(22).

In the steady state, new recruits add to oligarchic wealth at rate

$$\mu \Omega^* = \Theta^* \mu \lambda^2 / [\pi^*(r)(\mu + \rho - r)] = (2\lambda + \rho - \pi^*) \Theta^*.$$

But if $\mu / (\rho - r)$ goes to 0 then equation (38) becomes

$$\pi^* = \lambda + (\rho + r) / 2 + 0.5 \sqrt{(\rho - r)^2 + 4\lambda(\rho - r) + 4\lambda^2} = 2\lambda + \rho,$$

which is the steady-state net profit rate that we found in Section 4, and the inflow of wealth from new recruits (39) goes to 0. Thus, when μ is much smaller than $\rho - r$, the steady-state outcomes in this extended model look like our simpler model without recruitment.

Proposition 6. Consider a sequence of models with recruitment into the oligarchy at different rates μ such that $\mu / (\rho - r) \to 0$. Then $\mu \Omega^* \to 0$ and $\pi^* \to 2\lambda + \rho$, and so the equilibrium outcomes of these models approach the outcomes of our model without recruitment.

For example, consider again our baseline example with the standard parameter values (28), $\lambda = 0.02$, and $\beta = 0$. Now let us consider an extended version of this model with recruitment at rate $\mu = 0.0004$, so that there are $\lambda / \mu = 50$ commoners per oligarch. In the steady state, of this extended model, we get

$$K^* = 3.21, X^* = 2.07, G^* = 0.92, w^* = 0.83, \pi^* = 0.0899, \hat{c}^* = 0.0433.$$

These quantities are all within 1% of their values in the simpler model without recruitment. The aggregate wealth held by commoners in this steady state is $\Omega^* = 2.03$, which may seem substantial, but its effect on the other aggregates is small because the total flow of wealth that new recruits bring into the oligarchy is merely $\mu \Omega^* = 0.00081$. The effects of recruitment at this
rate μ on the dynamic-equilibrium examples that we considered above would be similarly small.

10. Discussion and related literature

We have studied oligarchic property rights that have two dimensions of imperfection: the degree of exclusion of outside investors, and the insiders’ level of political risk. Both imperfections are natural consequences of a system of property protection based on insider trust, and they negatively affect growth, the capital stock, and wages. But in a global general equilibrium where such imperfections differ across countries, a country that has better protection of property rights can become a safe haven for oligarchic investments, and so its workers’ welfare could actually be higher than if property were perfectly protected everywhere.

When a closed oligarchic country suddenly opens up to let its oligarchs invest abroad, without changing its political risk and borrowing constraints, we find that short-term effects of capital flight can lead to a severe depression with a long and slow recovery. Such effects may account for much of the economic decline in the former Soviet Union during the first decade of transition. But our analysis suggests that such a transitional depression could be avoided if the oligarchic economy also opened in the other direction, to admit some investment from outsiders.

We have shown how imperfect property rights can be politically stable because they benefit the oligarchs. For reasonable economic parameters, we found that oligarchs may prefer not to reduce their political risk below a certain level, and they may prefer to minimize the protection of outside investors. Thus, inefficient oligarchic property rights may persist unless democratic institutions become strong enough to challenge the system of oligarchic privilege.

In our framework, local oligarchies are exclusive clubs, each dominating its local government, and each constituted from within by a network of trust that connects its members. Oligarchic property rights hamper capital accumulation and economic growth by restricting ownership rights to this privileged elite, who bear political risk as a cost of owning local capital.

Other economists have recognized the importance of extending economic analysis to such problems of oligarchy. Acemoglu (2004) has developed a model for comparing the fiscal and regulatory distortions of democratic and oligarchic societies. Where we have viewed oligarchic connections as a prerequisite for being able to hold local capital, Acemoglu assumes that oligarchic status follows from owning capital. But he argues that, when such oligarchs control the government, they will favor public policies that create barriers to entry, so that the
oligarchy will effectively become the kind of closed club that we have assumed. Glaeser, Scheinkman, and Shleifer (2003) consider a model of imperfect property rights where people exogenously differ in their ability to punish a judge who violates a corrupt transaction. If most people cannot punish corrupt judges, then the few people who can effectively punish judges would be like our local oligarchs, with an exclusive ability to hold valuable local investments.

Polishchuk and Savvateev (2004) and Sonin (2003) have developed other theoretical frameworks to explain how the wealthier elite of a society might prefer imperfect protection of local property rights. In these models, individuals allocate their resources among production activities and private-protection activities, and the rich find a comparative advantage in private protection because the returns to scale in pure production are smaller. So the rich may gain from poor public protection which increases the benefits of their private-protection activities, but these benefits come from stealing the less-protected property of the poor. In our model, the imperfectly protected property is owned only by oligarchs, and the oligarchs' benefits from imperfect public protection are derived instead from its effect on the equilibrium wage rate.

Alesina and Tabellini (1989) have analyzed capital flight and borrowing in a simple model with political risk caused by rivalry between two groups. The costs of imperfect property rights have been emphasized in other recent models. Murphy, Shleifer, and Vishny (1991) analyze the impact of political rent-seeking on innovation and growth, while Ehrlich and Lui (1999) examine the trade-off between political capital and human capital accumulation. Tornell and Velasco (1991) and Tornell and Lane (1999) analyze imperfect property rights as a common-pool problem, where individuals are discouraged from investing by the prospect of being expropriated by others. Their one-factor model suggests that investors should get positive externalities from each other's investments, but such a conclusion would ignore the wage effects that are central to our equilibrium analysis.

The adverse effects of political risk and private protection on investment and capital flight are widely recognized as fundamental forces that affect the wealth and poverty of nations, and yet these effects often seem peripheral in economic analysis. The theoretical model that we have developed here is an attempt to put these effects where they belong, in the center of the economic analysis of growth and development.
APPENDIX 1: Characterizing an oligarch’s optimal strategy

The oligarch chooses \((\theta, x, \tilde{\theta}, \bar{\tau})\) to solve the constrained optimization problem:

\[
\text{maximize } EU = E \left[\int_0^T e^{-\rho t} \ln(c(t)) dt + \int_T^\infty e^{-\rho t} \ln(\bar{c}(\tilde{\theta}(t))) dt \right]
\]

subject to \(\theta(0) = \theta_0,\)
\(\theta'(t) = \pi(t)(\theta(t) - x(t)) + r x(t) - c(t), \ \forall t \leq T,\)
\(0 \leq x(t) \leq \theta(t), \ \forall t \leq T,\)
\(\tilde{\theta}(T) = x(T),\)
\(\tilde{\theta}'(t) = r \tilde{\theta}(t) - \bar{c}(\tilde{\theta}(t)) \text{ and } \tilde{\theta}(t) \geq 0, \ \forall t \geq T.\)

Lemma. The optimal solution to (1) satisfies, for all \(t \geq 0,\)

\[
(2) \quad c(t) = \rho \theta(t) \quad \text{and} \quad \bar{c}(\tilde{\theta}(t)) = \rho \tilde{\theta}(t),
\]

\[
(3) \quad x(t) = \theta(t) \lambda / (\pi(t) - r),
\]

\[
(4) \quad \theta'(t) = (\pi(t) - \rho - \lambda)\theta(t).
\]

The optimal expected discounted utility for an oligarch with initial wealth \(\theta_0\) is

\[
(5) \quad \int_0^\infty \left\{ \ln(\theta_0 e^{\phi(t)}) + \lambda \ln(\theta_0 e^{\phi(t)} \lambda / (\pi(t) - r)) / \rho + \lambda (r - \rho) / \rho^2 \right\} e^{-(\rho + \lambda t)} dt,
\]

where \(\phi(t) = \int_0^t (\pi(s) - \lambda - \rho) ds.\)

Proof. Notice first that any individual’s optimal strategy for consumption and investment will be linearly homogeneous in his wealth. Multiplying an individual’s current wealth by some constant \(m\) would cause his consumption at any future time to be multiplied by the same constant \(m,\) which would add \(\ln(m)\) to his utility at that time, and so would add \(\ln(m)/\rho\) to his expected present discounted value of all future utility. So at given time \(t,\) the expected discounted future utility of an individual with wealth \(\theta\) must be \(\ln(\theta)/\rho\) plus some term that depends his current social status (oligarch or not) but is independent of his wealth. Thus, when his wealth is \(\theta,\) any small addition to current wealth would increase his expected value of discounted future utility at the rate \(1/(\rho \theta).\)

Consider the effect of reducing wealth at time \(t\) by a small amount \(\varepsilon,\) by slightly
increasing consumption above the optimal c during a short period just before t. The first-order effect of this ε change is to increase current logarithmic utility by ε/c(t) and to decrease future discounted utility by ε/(ρθ(t)) or ε/(ρd(t)). The optimal consumption rates in (2) equate these marginal benefits and costs.

Equation (3) is derived from the condition that, in an optimal plan, an oligarch would never want to make any small additional short-term transfer of wealth between his holdings of foreign and local assets. If an oligarch were to withdraw a small unit of wealth from foreign investments and invest one more unit locally instead over a short period from t to t + ε, his wealth would increase by ε(π(t) - r), which yields a marginal utility benefit of ε(π(t) - r)/(ρθ(t)) if he is not expropriated. But there is a small probability λε that he will be expropriated between times t and t + ε, in which case the transfer would decrease his wealth in exile by one unit, yielding a marginal expected-utility cost of ελ/(ρx(t)). These marginal benefits and costs are in balance when (π(t) - r)/θ(t) = λ/x(t), which implies (3).

The second constraint in (1) with equations (2) and (3) together imply (4):

\[θ'(t) = π(t)θ(t) - (π(t) - r)x(t) - c(t) = π(t)θ(t) - λθ(t) - ρθ(t). \]

To compute the expected utility, first consider the possibility that the oligarch may be ostracized at time \(T = t \), when he holds safe assets worth \(x(t) = θ(t)λ/(π(t) - r) \). From this initial condition, by (2) and the fifth constraint in (1), his wealth at any time \(s ≥ t \) would be

\[̃θ(s) = x(t)e^{(r-\rho)(s-t)} = e^{(r-\rho)(s-t)}θ(t)λ/(π(t) - r) \]

So his t-discounted value of all future utility after such ostracism would be

\[V(t) = \int_0^∞ e^{-ρ(s-t)}LN(ρx(t)e^{(r-ρ)(s-t)})ds = LN(ρx(t))/ρ + (r - ρ)/ρ^2 \]

Now we can compute the oligarch's expected discounted utility at time 0. The plan to consume \(ρθ(t) \) if he is an oligarch at time t yields utility \(LN(ρθ(t)) \), which must be multiplied by the discount factor \(e^{-ρt} \) and by his probability \(e^{-λt} \) of retaining oligarchic status at time t. The possibility of losing oligarchic status at time t yields the t-discounted value \(V(t) \), which must then be multiplied by the time-t discount factor \(e^{-ρt} \) and by the probability density \(λe^{-λt} \) of ostracism at time t. So his initial expected discounted utility is
\[
\int_0^\infty \left\{ \ln(\rho \theta(t)) + \lambda \ln\left[\frac{\theta(t) \lambda}{(\pi(t) - r)} \right]/\rho + \lambda(r - \rho)/\rho^2 \right\} e^{-(\rho+\lambda)t} \, dt.
\]

Then (4) implies that \(\theta(t) = \theta_0 \, e^{\varphi(t)} \) where \(\varphi(t) = \int_0^t (\pi(s) - \lambda - \rho) \, ds \), which gives us (5).

APPENDIX 2: Computing the effects of small deviations from the steady state

In this Appendix, we show how to calculate first-order approximations of the effects of small deviations from steady state in our dynamic model from Section 3.

Throughout this Appendix, we suppose that the given initial conditions are very close to the steady state for the given parameter values \((\Lambda, \alpha, \delta, \rho, r, L, \lambda, \beta)\). It will be convenient to think of the dynamic model in Section 3 as a two-dimensional dynamic system where the state variables are total oligarchic wealth \(\Theta(t)\) and the total value of government offices \(G(t)\). Other variables may be viewed as functions of \((\Theta(t), G(t))\). In particular, the net profit rate \(\pi\) may be viewed as a function \(\pi(\Theta, G)\) that is determined by the equation (from (10), (12), and (13)):

\[
(40) \quad \Theta = \frac{\lambda \Theta}{\pi - r} + (1 - \beta)L \left[\frac{A(1 - \alpha)}{(1 - \beta)\pi + \beta(r + \lambda) + \delta} \right]^{1/\alpha} + G.
\]

We use here the identities (from (9), (10), (12), (13))

\[
R = (1 - \beta)\pi + \beta(r + \lambda) + \delta, \quad X = \lambda \Theta/(\pi - r), \quad \text{and} \quad K = L(A(1 - \alpha)/R)^{\gamma/\alpha}.
\]

Equation (40) can be implicitly differentiated to yield

\[
(41) \quad \frac{\partial \pi}{\partial G} = \frac{(\pi - r)\alpha R}{(\pi - r)(1 - \beta)^2 K + \alpha RX} > 0,
\]

\[
(42) \quad \frac{\partial \pi}{\partial \Theta} = -\frac{(\pi - r - \lambda)\alpha R}{(\pi - r)(1 - \beta)^2 K + \alpha RX} < 0 \quad \text{(since} \quad \pi > r + \lambda \quad \text{always})
\]

The differential equations for our dynamical system are, by equations (11)-(13),

\[
(43) \quad G' = \left(\pi + \lambda\beta/(1 - \beta) \right)G - \Theta\lambda/(\pi - r)/(1 - \beta),
\]

\[
(44) \quad \Theta' = (\pi - 2\lambda - \rho)\Theta.
\]

Differentiating (43)-(44) yields the linear approximation of our dynamical system:

\[
(45) \quad \frac{\partial G'}{\partial G} = \left(\pi + \lambda\beta/(1 - \beta) \right) + \left[G - \frac{\lambda^2 \Theta}{(1 - \beta)(\pi - r)^2} \right] \frac{\partial \pi}{\partial G}.
\]
\[
\frac{\partial G'}{\partial \Theta} = \left[\frac{G - \frac{\lambda^2 \Theta}{(1-\beta)(\pi - r)^2}}{\partial \Theta} - \lambda \left(\frac{1}{\pi - r} \right) \frac{1}{1-\beta} \right]
\]

\[
\frac{\partial \Theta'}{\partial G} = \Theta \frac{\partial \pi}{\partial G}
\]

\[
\frac{\partial \Theta'}{\partial \Theta} = \Theta \frac{\partial \pi}{\partial \Theta} + (\pi - 2\lambda - \rho) = \Theta \frac{\partial \pi}{\partial \Theta}
\]
at the steady state.

Now consider a dynamic equilibrium that begins at some initial condition \((\Theta(0), G(0))\) that is close to the steady state \((\Theta^*, G^*)\). For any \(t \geq 0\), we may write

\[
\Theta(t) = \Theta^* + \Delta \Theta(t), \quad G(t) = G^* + \Delta G(t), \quad \pi(t) = \pi^* + \Delta \pi(t).
\]

Assuming that the initial conditions are close enough to the steady state, the linear approximation of our dynamical system has a stable solution that converges to the steady state when \((\Delta \Theta(0), \Delta G(0))\) is an eigenvector corresponding to its stable eigenvalue. So let \(v\) denote the negative (stable) eigenvalue of the Jacobian of the dynamic system (45)-(48). Then \(v\) satisfies

\[
\begin{pmatrix}
\frac{\partial G'}{\partial G} - v \left(\frac{\partial \Theta'}{\partial \Theta} - v \right) - \frac{\partial \Theta'}{\partial G} \frac{\partial G'}{\partial \Theta} = 0,
\end{pmatrix}
\]

and

\[
v = 0.5 \left(\frac{\partial G'}{\partial G} + \frac{\partial \Theta'}{\partial \Theta} \right) - 0.5 \sqrt{\left(\frac{\partial G'}{\partial G} + \frac{\partial \Theta'}{\partial \Theta} \right)^2 - 4 \left(\frac{\partial G'}{\partial G} \frac{\partial \Theta'}{\partial \Theta} - \frac{\partial G'}{\partial \Theta} \frac{\partial \Theta'}{\partial G} \right)}.
\]

From (45)-(48) and (41)-(42) we find

\[
\frac{\partial G'}{\partial \Theta} - \frac{\partial G'}{\partial G} \frac{\partial \Theta'}{\partial G} = \Theta \left(\frac{\pi + \lambda \beta}{1 - \beta} \right) \frac{\partial \pi}{\partial G} + \frac{\lambda (\pi - \lambda)}{(1 - \beta)(\pi - r)} \frac{\partial \pi}{\partial G} = \Theta (\pi - \lambda) \frac{\partial \pi}{\partial G} < 0,
\]

and so \(v < 0\) is the unique negative eigenvalue of the dynamical system. The eigenvectors for \((\Delta \Theta(0), \Delta G(0))\) corresponding to this stable eigenvalue are along the line in the direction \((1 + \gamma, \gamma)\), where \(\gamma\) can be computed from either of the following equations:

\[
v(1 + \gamma) = \frac{\partial \Theta'}{\partial G}(1 + \gamma) + \frac{\partial \Theta'}{\partial \Theta} \gamma \quad \text{and} \quad \gamma v = \frac{\partial G'}{\partial \Theta}(1 + \gamma) + \frac{\partial G'}{\partial G} \gamma.
\]

Thus, \(\gamma\) is

\[
\gamma = \frac{\frac{\partial \Theta'}{\partial \Theta} - v}{v - \frac{\partial \Theta'}{\partial \Theta} - \frac{\partial \Theta'}{\partial G}} = \frac{\frac{\partial G'}{\partial \Theta}}{v - \frac{\partial G'}{\partial \Theta} - \frac{\partial G'}{\partial G}}.
\]
Let \(H(t) = \Theta(t) - G(t) \) denote the oligarchs' total economic wealth (excluding their
government offices) at any time \(t \). If their economic wealth at time 0 differs from its steady-state
value by some small amount \(\Delta H \), then we get a stable dynamic solution with \(\Delta\Theta'(t) = \nu \Delta\Theta(t) \)
and \(\Delta G'(t) = \nu \Delta G(t) \) when \(\Delta\Theta(0) = (1 + \gamma) \Delta H \) and \(\Delta G(0) = \gamma \Delta H \). Thus, for small changes in the
initial economic wealth \(H(0) \) from the steady state \(H^* = \Theta^* - G^* \), the initial values our dynamic
system will change from steady state according to

\[
\frac{\partial \Theta(0)}{\partial H(0)} = 1 + \gamma ,
\]

\[
\frac{\partial G(0)}{\partial H(0)} = \gamma ,
\]

\[
\frac{\partial \pi(0)}{\partial H(0)} = (1 + \gamma) \frac{\partial \pi}{\partial \Theta} + \gamma \frac{\partial \pi}{\partial G} .
\]

Thereafter, the dynamic system will decay toward the steady state at the proportional rate \(\nu \). In
particular, \(\pi'(t) = \nu \Delta \pi(t) \), where \(\nu < 0 \), and we can compute profit rates by the formula

\[
\pi(t) = \pi^* + \Delta \pi(0) e^{\nu t} = 2\lambda + \rho + \Delta \pi(0) e^{\nu t} .
\]

Consider an oligarch who starts with one unit of wealth \(\theta(0) = 1 \). His future wealth and
utility depend on the path of the dynamic equilibrium entirely through the net profits \(\pi(t) \) for all
\(t > 0 \). By equations (5) and (54), his time-\(t \) wealth \(\theta(t) \) can be computed by

\[
\ln(\theta(t)) = \int_0^t [\pi(t) - \lambda - \rho] dt = \int_0^t [\lambda + \Delta \pi(0) e^{\nu t}] dt = \lambda t + \Delta \pi(0) \left(e^{\nu t} - 1 \right) / \nu .
\]

The expected utility accumulation rate at time \(t \) (the integrand in (2)) is

\[
U(t) = \ln(\rho \theta(t)) + \frac{\lambda}{\rho} \ln \left(\frac{\lambda \rho \theta(t)}{\pi(t) - r} \right) + \frac{\lambda (r - \rho)}{\rho^2} .
\]

When we differentiate at the steady state (\(\Delta \pi(0) = 0 \)), we get

\[
\frac{\partial U(t)}{\partial \pi(0)} = \left(1 + \frac{\lambda}{\rho} \right) \left(\frac{e^{\nu t} - 1}{\nu} \right) - \frac{\lambda e^{\nu t}}{\rho (2\lambda + \rho - r)} .
\]

Integrating (57) over \(t \), we obtain the effect of a small change in \(\pi(0) \) near steady state on the
overall expected discounted utility of the oligarch

38
(58) \[
\frac{\partial EU}{\partial \pi(0)} = \int_0^\infty \frac{\partial U(t)}{\partial \pi(0)} e^{-(\rho + \lambda)t} dt = \\
= \left(1 + \frac{\lambda}{\rho}\right) \int_0^\infty \frac{e^{vt} - 1}{v} e^{-(\rho + \lambda)t} dt - \int_0^\infty \frac{\lambda e^{vt}}{\rho(2\lambda + \rho - r)} e^{-(\rho + \lambda)t} dt \\
= \frac{(\lambda + \rho - r)}{\rho(\lambda + \rho - v)(2\lambda + \rho - r)}.
\]

From the basic equation \(LN(\hat{c})/\rho = EU \), we find that small deviations from steady state affect the oligarchs' constant-equivalent consumption per unit wealth according to the formula

(59) \[
\frac{\partial \hat{c}}{\partial \pi(0)} = \frac{(\lambda + \rho - r)\hat{c}^*}{(\lambda + \rho - v)(2\lambda + \rho - r)}.
\]

From the steady state, a small change in the oligarchs' initial economic wealth \(H(0) \) would affect their total constant-equivalent consumption \(C \) according to

(60) \[
\frac{\partial C}{\partial H(0)} = \frac{\partial \hat{c}}{\partial \pi(0)} \frac{\partial \pi(0)}{\partial H(0)} \Theta^* + \frac{\partial \Theta(0)}{\partial H(0)} \hat{c}^*
\]

Now consider the effects of a small change in \(\lambda \), starting from the steady state. Differentiating (23) with respect to \(\lambda \), we find that the steady-state constant-equivalent consumption per unit wealth would vary with \(\lambda \) according to

(61) \[
\frac{\partial \hat{c}^*}{\partial \lambda} = \frac{\hat{c}^*}{(\lambda + \rho)^2} \left[\rho + \rho LN\left(\frac{\lambda}{2\lambda + \rho - r}\right) + \frac{(\rho - r)(r - \lambda)}{(2\lambda + \rho - r)} \right].
\]

Moreover, differentiating (16)-(22), we can see that the steady-state aggregates vary with \(\lambda \) by the following formulas:

\[
\frac{\partial \pi^*}{\partial \lambda} = 2, \quad \frac{\partial R^*}{\partial \lambda} = 2 - \beta, \\
\frac{\partial K^*}{\partial \lambda} = -\frac{(2 - \beta) K^*}{\alpha R^*}, \\
\frac{\partial G^*}{\partial \lambda} = \left(\frac{\lambda}{\rho + \lambda}\right) \frac{\partial K^*}{\partial \lambda} + \frac{\rho K^*}{(\rho + \lambda)^2}, \\
\frac{\partial X^*}{\partial \lambda} = \left(\frac{\lambda}{\lambda + \rho - r}\right) \left(\frac{\partial G^*}{\partial \lambda} + (1 - \beta) \frac{\partial K^*}{\partial \lambda}\right) + \left(\frac{1}{\lambda} - \frac{1}{\lambda + \rho - r}\right) X^*.
\]
So if we could jump directly to a new steady state when λ changes slightly, then the total constant-equivalent consumption C^* of all oligarchs in steady state would change according to

$$\frac{\partial C^*}{\partial \lambda} = \hat{c}^* \frac{\partial \Theta^*}{\partial \lambda} + \frac{\partial \hat{c}^*}{\partial \lambda} \Theta^*.$$

But a reform that changes political risk by some amount $\Delta \lambda$ would not lead immediately to the new steady state, because the oligarchs' initial economic wealth $H(0)$ would then not be equal to the amount H^* needed for the new steady state. So the effects of changing λ on the oligarchs' welfare in (67) can be decomposed into two parts:

$$\frac{\partial C^*}{\partial \lambda} = \frac{\partial C}{\partial \lambda} + \frac{\partial C}{\partial H(0)} \frac{\partial H^*}{\partial \lambda}.$$

The first part $\partial C/\partial \lambda$ is the effect of changing λ on the oligarchs' welfare in the dynamic equilibrium, given their initial economic wealth $H(0)$ from the old steady state. The second part is the effect on the oligarchs' welfare of changing their aggregate economic wealth to the level that is required for the new steady state (which would affect the welfare of an oligarch with any given wealth through the change in profit rates). The first part $\partial C/\partial \lambda$ is what actually interests us, but the second part can be computed from (60) and (63), and their sum is (65). So the effect of changing λ on the oligarchs' total constant-equivalent consumption in dynamic equilibrium is

$$\frac{\partial C}{\partial \lambda} = \frac{\partial C^*}{\partial \lambda} - \frac{\partial C}{\partial H(0)} \frac{\partial H^*}{\partial \lambda}.$$

This system of equations for computing $\partial C/\partial \lambda$ may seem complicated, but they are easily calculated in a computational spreadsheet that is available from the authors. Thus, for any given steady state, we can say whether the oligarchs would benefit from a small increase or decrease of political risk to $\lambda + \Delta \lambda$, depending on whether $\partial C/\partial \lambda$ in (67) is positive or negative. That is, starting from a given steady state, a small change $\Delta \lambda$ in the political risk parameter would increase the oligarchs' welfare if and only if $\Delta \lambda$ has the same sign as $\partial C/\partial \lambda$.

Consider again our standard baseline parameters (28) with $\beta = 0$ but different values of λ. We find that $\partial C/\partial \lambda = 0$ when $\lambda = 0.019734$. With any $\lambda > 0.019734$, we get $\partial C/\partial \lambda < 0$, which
implies that the oligarchs' total welfare could be increased by decreasing λ. With any λ in the interval $0.019734 > \lambda > 0.001969$, we find $\partial C / \partial \lambda > 0$, indicating that the oligarchs' total welfare would increase from increasing λ. In this sense, $\lambda = 0.019734$ is politically stable, because from a steady state with any λ in an interval around this value, the oligarchs could benefit by moving λ towards this value. In the very low end of political risks below 0.001969, the oligarchs would have some incentive to decrease λ down to 0.

A similar analysis can be done for changes in the collateralizability parameter β. Differentiating the steady-state equations (16)-(23) with respect to β, we get

$$\frac{\partial \hat{c}^*}{\partial \beta} = 0, \quad \frac{\partial \pi^*}{\partial \beta} = 0, \quad \frac{\partial R^*}{\partial \beta} = -(\lambda + \rho - r),$$

(68)

$$\frac{\partial K^*}{\partial \beta} = \frac{(\lambda + \rho - r)K^*}{\alpha R^*},$$

(69)

$$\frac{\partial G^*}{\partial \beta} = \left(\frac{\lambda}{\rho + \lambda}\right) \frac{\partial K^*}{\partial \beta},$$

(70)

$$\frac{\partial X^*}{\partial \beta} = \left(\frac{\lambda}{\lambda + \rho - r}\right) \left(\frac{\partial G^*}{\partial \beta} + (1 - \beta) \frac{\partial K^*}{\partial \beta} - K^*\right),$$

(71)

$$\frac{\partial H^*}{\partial \beta} = (1 - \beta) \frac{\partial K^*}{\partial \beta} + \frac{\partial X^*}{\partial \beta} - K^*$$

(72)

$$\frac{\partial \Theta^*}{\partial \beta} = (1 - \beta) \frac{\partial K^*}{\partial \beta} + \frac{\partial X^*}{\partial \beta} + \frac{\partial G^*}{\partial \beta} - K^*$$

Thus, as in equation (66),

$$\frac{\partial C}{\partial \beta} = \frac{\partial C^*}{\partial \beta} = \frac{\partial C}{\partial H(0)} \frac{\partial H^*}{\partial \beta} = \hat{c}^* \frac{\partial \Theta^*}{\partial \beta} - \frac{\partial C}{\partial H(0)} \frac{\partial H^*}{\partial \beta}.$$

(73)

For our standard baseline parameters (28) with $\lambda = 0.019734$ and $\beta=0$, these formulas yield negative values of $\partial C / \partial \beta = -0.00091$. So a small increase in β would hurt the oligarchs near this steady state. As β is increased, $\partial C / \partial \beta$ remains negative until $\beta = 0.725$, but then $\partial C / \partial \beta$ becomes positive for $\beta > 0.725$. Thus, as we saw in Section 8, a radical improvement in corporate governance (jumping from $\beta=0$ to $\beta>0.82$) could benefit the oligarchs even though a smaller improvement in corporate governance would hurt them.
References:

Figure 1. Aggregate steady-state consumption rates with different political risks in country 2, for two-country model with $\alpha=2/3$, $\delta=0.04$, $\rho=0.05$, $A=0.8469$, $L_1=L_2=1$, $\lambda_1=0$, $\beta_1=0.6$, $\beta_2=0$.

Figure 2. Aggregate steady-state consumption when outsiders can finance different fractions of local capital in country 2, for two-country model with $\alpha=2/3$, $\delta=0.04$, $\rho=0.05$, $A=0.8469$, $L_1=L_2=1$, $\lambda_1=0$, $\beta_1=0.6$, $\lambda_2=0.02$.
Figure 3a. Asset changes after decreasing political risk to $\lambda = 0.01$ at $t = 0$, starting from the steady state of $\lambda = 0.02$, holding fixed $\alpha=2/3$, $\delta=0.04$, $\rho=0.05$, $A=0.8469$, $r = 0.03$, $L = 1$, $\beta=0$.

Figure 3b. Profits and wages after decreasing political risk to $\lambda = 0.01$ at $t = 0$, starting from the steady state of $\lambda = 0.02$, holding fixed $\alpha=2/3$, $\delta=0.04$, $\rho=0.05$, $A=0.8469$, $r = 0.03$, $L = 1$, $\beta=0$.
Figure 4a. Asset changes after increasing collateralizability to $\beta = 0.33$ at $t = 0$, starting from the steady state of $\beta = 0$, holding fixed $\alpha = 2/3$, $\delta = 0.04$, $\rho = 0.05$, $A = 0.8469$, $r = 0.03$, $L = 1$, $\lambda = 0.02$.

Figure 4b. Profits and wages after increasing collateralizability to $\beta = 0.33$ at $t = 0$, starting from steady state of $\beta = 0$, with $\alpha = 2/3$, $\delta = 0.04$, $\rho = 0.05$, $A = 0.8469$, $r = 0.03$, $L = 1$, $\lambda = 0.02$ fixed.
Figure 5a. Relation of G and K to oligarchs' economic wealth H on dynamic equilibrium path, for the baseline example ($\alpha=2/3$, $\delta=0.04$, $\rho=0.05$, $A=0.8469$, $r = 0.03$, $L = 1$, $\lambda=0.02$, $\beta=0$) and two variations: one with $\lambda=0.01$, one with $\beta=0.33$. Closed $r=-\infty$ steady state also shown.

Figure 5b. Relation of π to oligarchs' economic wealth H on dynamic equilibrium path, for the baseline example ($\alpha=2/3$, $\delta=0.04$, $\rho=0.05$, $A=0.8469$, $r = 0.03$, $L = 1$, $\lambda=0.02$, $\beta=0$) and two variations: one with $\lambda=0.01$, one with $\beta=0.33$. Closed $r=-\infty$ steady state also shown.
Figure 6. Asset values after allowing \(r = 0.03 \) investment abroad at \(t = 0 \), starting from the closed \((r = -\infty)\) steady state, with \(\alpha = 2/3, \delta = 0.04, \rho = 0.05, A = 0.8469, r = 0.03, L = 1, \lambda = 0.02, \beta = 0. \)