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Abstract 

 

We derive a simplified version of the model of Fudenberg and Levine [2006, 2011] and show 

how this approximate model is useful in explaining choice under risk. We show that in the simple 

case of three outcomes, the model can generate indifference curves that “fan out” in the 

Marshack-Machina triangle, and thus can explain the well-known Allais and common ratio 

paradoxes that models such as prospect theory and regret theory are designed to capture. At the 

same time, our model is consistent with modern macroeconomic theory and evidence and 

generates predictions across a much wider set of domains than these models.  
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1. Introduction 

Fudenberg and Levine [2006, 2011, 2012] develop a model of costly self-control 

that can explain many ways that observed individual choice departs from the predictions 
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of the “standard model” of maximizing expected discounted utility. Their self-control 

model is based on the idea that a more rational “long run self” controls the impulses of a 

“short run self” that is very tempted by immediate rewards.2 Fudenberg and Levine 

[2006] points out that the self-control model can explain “time-domain” phenomena, such 

as a preference for commitment and time-inconsistent choice. Moreover,  when the model 

is enriched with the assumption of mental accounts or “pocket cash constraints” it can 

also explain the very high levels of small-stakes risk aversion seen in the lab, a 

quantitative puzzle that has become known as the Rabin paradox, after Rabin [2000].  

Fudenberg and Levine [2011] show that the same model can also explain the interaction 

of risk and delay seen in such experiments as Baucells and Heukamp [2010] and Keren 

and Roelofsma [1995]. Moreover they move beyond the qualitative matching of theories 

and facts that is typical in this literature to a quantitative calibration of the model to both 

Rabin-paradox data and the Allais paradox.3  

Unfortunately the model of Fudenberg and Levine [2011] is fairly complex, 

which may obscure some of the key insights and make it difficult for others to apply the 

model. Our purpose here it to develop a somewhat simpler approximation to this model 

that is still accurate enough to be useful in applied work. After developing this 

approximation, we characterize its theoretical properties and show how it helps explain 
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2 While the model is intended as a very precise model of the internal processes underlying self-control, at a 
very rough level the model is consistent with fMRI evidence, since the “long run self” is identified with 
activation in the prefrontal cortex while the short run self corresponds to more primitive and faster-acting 
parts of the brain. See e.g. McClure et al. [2004, 2007] for fMRI evidence that support this general idea. 
3 One caveat is that the model described here, like Fudenberg and Levine [2006, 2011], assumes a short run 
self who lives only for a single period. For this reason the model, like quasi-hyperbolic discounting, implies 
that only the current period’s rewards are tempting. This stark conclusion is not suitable for analyzing some 
aspects of the timing of decisions, such as the marginal interest rates found in the experiment of Myerson 
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observed behavior in the Allais paradox and common ratio paradoxes and examine the 

implications of the theory for intransitivity.  

To study decision makers who act as if tempted by money winnings but also 

manage to save, as well as to explain the level of risk aversion observed in lab 

experiments, Fudenberg and Levine [2006] use the idea of mental accounting: A decision 

maker reduces the cost of restraining impulsive decisions by using mental accounting to 

commit to daily expenditures – the idea is that the mental account is set when the 

decision maker is in a “cool state” and not subject to temptation. By assumption, the 

commitment is to net expenditures, and not to consumption per se, so small losses must 

be born out of daily expenditures and small gains create a self-control problem. This 

results in the marginal propensity to consume out of small gains being large – one in 

fact.4  Because small  losses and small gains are applied entirely to daily expenditures and 

not spread over the lifetime, the decision maker is much more risk averse over small 

unexpected lotteries than under the classical model, where any change in wealth results in 

a much smaller permanent change in consumption over the individual’s lifetime.  

A second consequence of this theory is that if there is an increasing marginal cost 

of self-control then the decision maker’s utility is not linear in probabilities and so this is 

not an expected utility theory. Moreover, while any form of nonlinearity makes the model 

depart from expected utility, the increasing-marginal-cost specification predicts the 

                                                                                                                                                 
and Green [1995]. A more realistic version of the model, in which short run selves are less patient than the 
long run self without being completely myopic, is developed in Fudenberg and Levine [2012]. 
4 This is consistent with psychological evidence that people need justification in order to spend money on 
“vices”, which offer short-term gratification but low long-term benefit (Kivetz and Zheng, 2006). Earning 
small unexpected amounts provides such justification. Accordingly, people will tend to spend these 
amounts immediately on temptation goods, which they would not otherwise purchase.  
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particular violations of the independence axiom seen in, for example, the Allais, 

common-ratio and other related paradoxes, as detailed in Fudenberg and Levine [2011].  

Our goal here is to introduce a simple approximate version of the theory that can 

be used to study data on risk and lotteries. A key simplification is the assumption that the 

long-run value function is risk neutral, that is, that the marginal utility of savings is a 

constant. This is a good approximation to decisions that have little impact on lifetime 

wealth; it simplifies the model by replacing an unknown non-linear value function with a 

known linear value function. We also assume that the interest received over a single 

period (the “temptation horizon” of the short run self) is small enough to be ignored; this 

fits with the usual calibration of this period length to be one to three days.  We use the 

simplified model to explain how the theory ranks general small-stakes money lotteries, 

and illustrate this in the context of lotteries with only three possible outcomes in the gains 

domain using the classic Marschak-Machina depiction of indifference curves in the 

corresponding probability simplex. We also illustrate how the model leads to 

intransitivity. 

The structure of the paper is as follows. In Section 2 we derive the approximate 

version of the dual-self model. In Section 3 we study its properties using a series of 

propositions. In Section 4 we examine the special case of a single gamble with a unique 

positive prize. Section 5 addresses the very interesting case of choices in menus of two 

lotteries, with three possible outcomes. We show how the model predicts well-known 

paradoxes that violate expected utility and illustrate this in the Marschak-Machina 

triangle. Section 6 provides a general discussion and concludes.  
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2. Deriving an Approximate Dual-Self Model  

We will remind the reader of the main ingredients of the Fudenberg and Levine 

[2006, 2011] model, and then show how the approximation of risk neutrality for wealth 

leads to a much more tractable model. There is an individual who makes a consumption-

savings decision, with a short-run utility function ( ; )xu x c x+  each period.  Here x c+  

represents total consumption, x  is the planned level of consumption under the mental 

account (“pocket cash”), and c  denotes “incremental consumption”: the additional 

(possibly negative if money is lost) consumption made possible by unexpected windfalls. 

When studying a fixed individual and holding fixed that individual’s initial wealth 

and preferences, we can suppress the dependence on x  and take short-run utility to be 

( ) ( ; )xu c u x c x= + , where ' 0u >  and " 0u < . In the remainder of the paper, the term 

“consumption” will refer to this incremental consumption. 

We are primarily interested in how the agent chooses lotteries Z  from a fixed 

menu ℑ , where each of the lotteries resolves in the current period. For this, an important 

intermediate step is to analyze the agent’s optimal consumption ex post after a particular 

lottery has been chosen.5  Let * max ( )Zu Eu Z∈ℑ=  be the greatest available short-run 

utility. This “temptation” represents what the short-run self would like – to spend all the 

gains immediately. If the lottery Z  has n  outcomes, the choice of optimal consumption 

entails choosing an optimal random consumption plan cɶ  with outcomes 1( ,..., )nc c , 

specifying one consumption level for each possible lottery realization. Overall first period 

utility is given by ( )( ) * ( )Eu c g u Eu c− −ɶ ɶ  where g  is the cost of self-control. 

                                                 
5 Notice that by assumption the self-control cost is incurred when the agent determines the consumption 
plan, so it depends on the expected utility of this plan.   
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 In other words, current utility depends on current consumption and the cost of 

self-control, which is increasing in “foregone utility,” the difference between the utility 

the “short-run self” would have liked and what he actually got: * ( )u Eu c− ɶ . For 

convenience, we define the argument ( ) *Eu c u∆ ≡ −ɶ , which is non-positive. We 

assume that g  is a smooth, non-decreasing, weakly convex function satisfying 

(0) 0, ( ) 0g g= −∆ ≥ .  

The model of Fudenberg and Levine [2006, 2011] is not static, but considers an 

infinite horizon problem. It is well known that the recursive structure of the maximization 

problem allows us to represent future utility by means of a “value function” v , computed 

by optimizing beginning in period 2. This function has as its argument total wealth6 2w  at 

the beginning of the second period, which will be distributed optimally over the lifetime 

as consumption.  If the realization of the lottery is iz  and consumption is i ic z≤  then the 

realized wealth beginning in period 2 is 2 i iw z c+ − . The present value of utility starting 

in period 2 is 2( )Ev w Z c+ − ɶ . If δ  is the discount factor, the overall objective function 

is 

(1) 2 2( , *, , ) ( ) ( * ( )) ( )V c u Z w Eu c g u Eu c Ev w Z cδ= − − + + −ɶ ɶ ɶ ɶ .  

Following Fudenberg and Levine [2006, 2011] we assume that the lottery is 

unanticipated.7  Since pocket cash is chosen when the agent is not subject to temptation, 

the agent can obtain the optimal consumption path of someone who faces no self-control 

                                                 
6 Strictly speaking what matters is not total wealth and consumption but discretionary wealth and 
consumption, that is, net of expenditures such as rent and medical care that are committed in advance and 
do not pose a temptation. 
7 Or that the probability is small enough not to have had an appreciable impact on the choice of pocket 
cash. 
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costs, without using any self-control. This is achieved by setting 0c = : in this case 

absent any windfalls the agent is not able to consume more than the first-best 

consumption level, and so faces no temptation to consume more. Hence 0c =  is the 

optimal level, and so 2'(0) '( )u v wδ= . Define the function ( ) ( )h g∆ ≡ ∆ − −∆ , the 

“self-control gain function”. This function is non-positive, smooth, strictly increasing, 

weakly concave function on −ℜ  satisfying '(0) 1h ≥ . It inherits these properties from g . 

Also define 

 

(2)  ( )( , *, ) ( ) * '(0)( )cU c u Z h Eu c u u EZ Ec= − + −ɶ ɶ ɶ .   

 

We will now approximate V for small gambles. Recall that ( )o y  denotes a function such 

that 0lim ( ) / 0y o y y→ → , and that max | |Z  is the largest value in the support of | |Z .  

Lemma 1: The objective function satisfies the equality 

 2 2( , *, , ) ( , *, ) * ( ) (max | |)cV c u Z w U c u Z u v w o Zδ= + + +ɶ ɶ . 

Proof:  Recall that 2 2( , *, , ) ( ) ( * ( )) ( )V c u Z w Eu c g u Eu c Ev w Z cδ= − − + + −ɶ ɶ ɶ ɶ . Since 

v  is differentiable under standard conditions a first-degree Taylor approximation gives 

  

2

2 2

2 2

( )

{ ( ) '( )( ) (max | |)}

( ) '( )( ) (max | |)

Ev w Z c

E v w v w Z c o Z

v w v w EZ Ec o Z

+ − =

+ − + =

+ − +

ɶ

ɶ

ɶ

  

Substituting this and the definition of cU  into the objective function gives the desired 

result. 
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� 

In comparison to Fudenberg and Levine [2006, 2011], this model assumes that no 

interest is paid on money found, earned, or saved during the first period, which fits with 

the idea that the length of a period is measured in days. Further, as an approximation, first 

period savings are assumed not to change the marginal present value of period two value. 

If in fact savings are an appreciable portion of lifetime wealth, this approximation 

understates risk aversion. 

Observe that for a given menu ℑ  of lotteries 2* ( )u v wδ+  is a constant, and since 

the agent will pick the optimal consumption plan, for small Z  the agent’s preferences 

over lotteries can be represented by the approximate objective function 

( )*max ( , , ) max [ ( ) * '(0)( )]c
c cU c u Z h Eu c u u EZ Ec= − + −
ɶ ɶ

ɶ ɶ ɶ .  

Since consumption cannot exceed the amount earned by the prize, the problem is: 

choose 1( ,..., )nc c c=ɶ  to maximize ( )( ) * '(0)( )h Eu c u u EZ Ec− + −ɶ ɶ  subject to the 

constraints , 1,2,...,i ic z i n≤ = . Define  

 { }( ) { }( *, , ) ( ) * max ( ) ( ), 0 '(0) max ,0U u Z z h Eu Z u E u Z u z u E Z z≡ − − − + − . 

Theorem 2: The approximate objective function max ( , *, )c
cU c u Z
ɶ

ɶ  is equal to 

max ( *, , )zU u Z z and  there is a threshold ẑ  such that if ˆ
iz z≤  then *i ic z=  (so all of 

the unexpected winnings are saved) while if ˆ
iz z≥  then ˆ*ic z=  (so any amount over ẑ  

is saved, regardless of the size of iz .
8
)   

                                                 
8 This stark conclusion comes from our simplifying assumption that the marginal utility of savings is 
constant, which is a good approximation only if the winnings are not in fact too large.  
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Proof: Maximizing with respect to ic  for a given realization of the lottery iz , gives the 

consumption function *cɶ  as the implicit solution of 

 ( )'( *) ' ( *) * '(0)iu c h Eu c u u− ≥ɶ   

with equality if *i ic z< .9  For any specification of cɶ ,  let  (̂ )z cɶ  be the unique solution of  

 ( )ˆ'( ( )) ' ( ) * '(0)u z c h Eu c u u− =ɶ ɶ   (*) 

in ( , ]x− ∞ , where we assign ẑ = ∞  if there is no solution, that is, if 

( )ˆ'( ( )) ' ( ) * '(0)u z c h Eu c u u− >ɶ ɶ  for all ˆ ( , ]z x∈ − ∞ . Then we see that  *cɶ  itself must 

have the property that if ˆ
iz z≤  then *i ic z= , while if ˆ

iz z≥  then ˆ*ic z= .   

Notice that the marginal propensity to consume out of income above the threshold 

is zero (this is a consequence of our approximation assumption). Thus ˆ* min{ , }i ic z z= , 

and therefore ˆ( *) min{ ( ), ( )}iEu c E u z u z=ɶ  is non-decreasing in ẑ  and 

( )ˆ'( ) ' ( *) *u z h Eu c u−ɶ  is strictly decreasing in ẑ . Notice that at ẑ x= −  we have 

'( ) '( ( ) *) '(0)u x h u x u u− − − > , because '( ) '(0)u x u− >  and '( ( ) *) 1h u x u− − ≥ .10    

Our objective is to express the consumer’s preferences for lotteries in terms of this unique 

threshold. Adding and subtracting ( )Eu Z  inside of h  and using the linearity of 

expectation we have: 

                                                 
9 Notice that the aforementioned condition is exactly the same for every 1,2,...,i n= .  Hence, if for two 

optimal * *,i jc c  the constraint is not binding (that is * , *i i j jc z c z< < ) then it must be the case that 

* *i jc c= .  
10 This is because '(0) 1h ≥  and h is weakly concave. 
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( )( *) * '(0)( *)h Eu c u u EZ Ec− + − =ɶ ɶ

( )( ) * ( ( ) ( *)) '(0) ( *)h Eu Z u E u Z u c u E Z c− − − + −ɶ ɶ . 

 

Using  ˆ* min{ , }i ic z z=  we see that ˆ( ) ( *) max{ ( ) ( ),0}u Z u c u Z u z− = −ɶ  and 

ˆ* max{ ,0}Z c Z z− = −ɶ . Substituting in gives the desired result.  

� 

3. Choice from Menus of Lotteries 

 We now suppose that the decision maker faces a menu ℑ of lotteries on [ , ]x y−  

where , 0x y >  and y  is “small” relative to lifetime wealth. As above, we suppose that 

the agent does not expect to face this menu.   

The approximate utility for opportunity set ℑ , threshold z  and lottery 0Z ≥  is 

given by Theorem 2 as 

 { }( ) { }( *, , ) ( ) * max ( ) ( ), 0 '(0) max ,0U u Z z h Eu Z u E u Z u z u E Z z= − − − + − . 

To reiterate, the first term h  represents the combination of utility received from 

immediate consumption and the cost of controlling the desire to spend even more. The 

second term represents the long-term benefit of the amount that is saved: this is not 

subject to a self-control problem, but is spread over the entire lifetime, and as indicated 

we approximate the corresponding risk as negligible so that the utility from savings is 

linear. 

Notice that in general the ranking of lotteries is menu dependent, as it depends not 

only on the lottery Z  that is being assessed, but also the utility *u  from the lottery that 

yields the greatest short-run utility. This represents a temptation: spend all the money 
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right away, and choose the lottery that maximizes the expected utility from doing so. 

However, when h  is linear the ranking does not depend on *u . 

Properties of the Approximate Model 

The next result shows how to determine the value of the threshold ẑ  above which 

all of the (unexpected) lottery payoff is saved.  

Proposition 3:   The 0 ˆargmax ( *, , )z U u Z z z≥ ≡  is characterized by 

{ }( )ˆ ˆ' ( ) * max ( ) ( ),0 '( ) '(0)h Eu Z u E u Z u z u z u− − − =  

which has a unique solution. If '(0) 1h >  then ˆ 0z > . ( *, , )U u Z z  is differentiable with 

respect to z  at ˆz z=  and the derivative is zero. The function  

 { }( )( , ) ' ( ) * max ( ) ( ),0 '( )F Z z h Eu Z u E u Z u z u z= − − −  

is strictly decreasing  in z  with left and right derivatives both bounded away from zero. 

Proof: The expression follows from plugging the solution ˆ* min{ , }i ic z z=  into the 

necessary first order condition (*). The uniqueness of the solution follows from the fact 

that the LHS is strictly decreasing. If '(0) 1h >  then since 'h  is decreasing, it follows 

that the solution satisfies ˆ'( ) '(0)u z u<  which in turn implies ˆ 0z > .  

 To see that ( *, , )U u Z z   is differentiable with respect to z  at ˆz z=  we compute 

that its derivative is equal to zero. Observe first that ( *, , )U u Z i  is certainly differentiable 

unless ˆiz z=  for some i  and regardless, the left and right derivatives exist. We will 
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complete the proof by showing that both are equal to zero at ˆz z= . The derivative has 

the form 

 { }( ) { }
{ }

( *, , ) /

[ ' ( ) * max ( ) ( ),0 max ( ) ( ),0 /

'(0) max ,0 / ]
i ii

i

U u Z z z

p h Eu Z u E u Z u z u z u z z

u z z z

∂ ∂ =

− − − − ∂ − ∂

+ ∂ − ∂

∑  

where the derivative of the max is understood to depend on the direction if 
iz z= . The 

key observation is that each individual term in the sum vanishes at ˆz z= . If iz z<  this 

is immediate since near z  the term does not depend on z . The same is true if iz z=  for 

the right-hand side derivative. When 
iz z>  the term is 

 { }( )' ( ) * max ( ) ( ), 0 '( ) '(0)h Eu Z u E u Z u z u z u− − − − +  

which vanishes at ẑ  by the earlier characterization of ẑ . The same applies when iz z=  

in the negative direction. 

 The properties of ( , )F Z z  may be established by differentiating with respect to z . 

� 

Proposition 4: If h  is linear then the decision-maker ranks lotteries according to 

{ } { }'(0)min ( ), ( ) '(0)max ,0L LE h u z u Z u Z z + −  
 

where Lz  is the unique solution of '( ) '(0) / '(0)Lu z u h= . 

Proof: In this case the objective function is 

 { }( ) { }ˆ ˆ(0) '(0) ( ) * max ( ) ( ),0 '(0) max ,0h h Eu Z u E u Z u z u E Z z+ − − − + − . 
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Discarding the irrelevant constant term (0) '(0) *h h u− , and observing that 

{ }ˆ ˆ( ) max ( ) ( ),0 min{ ( ), ( )}Eu Z E u Z u z E u z u Z− − =  gives the expression for ranking 

lotteries. Substituting into (*) and solving gives the solution for Lz . 

� 

In addition to menu independence, Proposition 4 shows that in the linear case the 

independence axiom is satisfied: lotteries are ranked according to an expected utility and 

the weak axiom of revealed preference is satisfied. However, the linear model cannot 

explain choices such as the common ratio or Allais paradox that violate the independence 

axiom, nor can it explain the interaction of risk and delay (Baucells and Heukamp, 2010; 

Keren and Roelofsma, 1995), or the “compromise effect” (Simonson, 1989).  

Even when h  is not linear, the preferences still correspond to an expected utility 

theory on particular pairs of lotteries, namely those with “all small outcomes” and those 

all of whose outcomes are large. The next two propositions say this formally:  

Proposition 5: Define Cz  as the unique solution of ( )' ( ) * '( ) '(0)C Ch u z u u z u− = . 

Then C Lz z≥  and for all Z ∈ ℑ  we have 0argmax ( *, , ) C
z U u Z z z≥ ≥ . Moreover, if 

all Z Cz≥  then 0argmax ( *, , ) C
z U u Z z z≥ =  and lotteries are ranked according toEZ . 

Proof: Uniqueness follows from strict monotonicity of the LHS of the expression; 

C Lz z≥  follows from the fact that ( ) *Cu z u− , the argument of 'h , is non-positive.  

Plugging the solution ˆ* min{ , }i ic z z=  into (*) we have  

( )ˆ ˆ' min{ ( ), ( )} * '( ) '(0)h E u z u Z u u z u− = . Observe also that ˆ ˆmin{ ( ), ( )} ( )u z u Z u z≤  

so that ( )ˆ ˆ' ( ) * '( ) '(0)h u z u u z u− ≤  and thus ˆCz z≤ . Finally, if all Z Cz≥  then 
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min{ ( ), ( )} ( )C Cu z u Z u z= , so ( )' min{ ( ), ( )} * '( ) '(0)C Ch E u z u Z u u z u− =  meaning 

that the first order condition is satisfied. Then, Proposition 3 implies that 

0argmax ( *, , ) C
z U u Z z z≥ = , and plugging back into the objective function, we get 

( )max ( *, , ) ( ) * '(0) ( )C C
zU u Z z h u z u u E Z z= − + − , which is increasing in EZ . 

� 

In other words, the decision-maker is risk neutral with respect to relatively large 

positive lotteries. 

Proposition 6: If LZ z≤  for all Z ∈ ℑ  then lotteries are ranked according to ( )Eu Z . 

Proof: Observe that ˆ Lz z≥  since the argument in 'h  of Proposition 3 is non-positive. 

Hence LZ z≤  implies ˆZ z≤  and so the objective function may be written as 

( )ˆ( *, , ) ( ) *U u Z z h Eu Z u= −  from which the result follows. 

� 

This says that the decision maker uses the short-run utility function to evaluate 

sufficiently small lotteries. 

 The suggestion of these results is that if h  is strictly concave rather than linear, 

then for lotteries with outcomes that do not lie entirely above the cutoff Cz  or entirely 

below the cutoff Lz  the theory need not be an expected utility theory, and so may exhibit 

reversals such as those exhibited in the Allais or common ratio paradoxes.  

 

Proposition 7: Preferences over lotteries are consistent with stochastic dominance. 
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Proof: Quiggin [1989] has shown that one lottery first order stochastically dominates 

another if and only if the lotteries can be realized as random variables on a common 

probability space, such that every realization of the dominant lottery is at least as great as 

the corresponding realization of the dominated lottery. Hence it is sufficient to consider 

whether utility is non-decreasing in the vector of values of Z . Since the objective 

function is ( ) { }( *, , ) min{ ( ), ( )} * '(0) max ,0U u Z z h E u Z u z u u E Z z= − + − , and 

this is non-decreasing in the vector of values of Z , the same is true for max ( *, , )zU u Z z . 

� 

 

Hence, our model predicts that people will tend to choose a lottery that is “clearly 

better” than another (dominated) lottery. “Better” is in the sense that any given monetary 

payoff is offered with at least as high probability as in the dominated lottery. 

 

4. Found Money 

A key role in the analysis is played by the cutoff Lz , which is the solution to 

'( ) '(0) / '(0)Lu z u h= . To get an idea of how this cutoff works, it is interesting to 

examine the simplest possible decision problem: that of found money. Here ℑ  is a 

singleton containing a single lottery that delivers a certain amountζ . This can correspond 

to finding the amount ζ on the street. While in standard theory such gains will be spread 

over the entire lifetime, here when the amount is small, that is, less than the cutoff Lz , it 

will all be spent. Although this sounds like the description of the threshold ẑ , the cutoff 

Lz  is different, and we will try to explain why.  
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When the agent finds money ζ  the temptation is to spend all of it, so * ( )u u ζ= . 

If the amount found is small, then the approximation we have introduced is valid, and the 

agent will choose consumption c to maximize 

*( , , )cU c u z =ɶ ɶ  ( ) ( )( ) * '(0)( ) ( ) ( ) '(0)( )h u c u u c h u c u u cζ ζ ζ− + − = − + − .  

The corresponding first order condition is '( ( ) ( )) '( ) '(0)h u c u u c uζ− ≥  with equality if 

c ζ< . Notice that the threshold ẑ  is defined by ˆ ˆ'( ( ) ( )) '( ) '(0)h u z u u z uζ− = , so it 

depends on the earned amount ζ .  

 Now we use an example to illustrate the role of the cutoff Lz , which, unlike ẑ , 

does not depend on ζ . Assume logarithmic utility ( ) log( )u c x c= + , where x  is the 

exogenously given pocket cash, and also that ( ) exp( )h A γ∆ = − − ∆  with 1A ≥ , 

1γ ≥ . In this case, '(0) 1 /u x= , and the objective function is 

  exp[ (log( ) log( ))] ( ) /A x x c c xγ ζ ζ− + − + + − =  

 [( ) / ( )] ( ) /A x x c c xγζ ζ− + + + − .  

Setting the derivative of this with respect to c  equal to zero gives 

1( ) / ( ) (1 / ) 0A x x c xγ γγ ζ ++ + − = . It follows that the value of the threshold ẑ  for 

each value of ζ  is given by 1/( 1)ˆ [ ( ) ]z Ax x xγ γγ ζ += + − . This has slope 

  1/( 1)ˆ / [ / ( )] / ( 1) 0dz d Ax x γζ γ ζ γ γ+= + + > ,  

which is decreasing in ζ . So the (̂ )z ζ line is continuous, strictly increasing and strictly 

concave in ζ , and 1/( 1)(̂0) ( ) 0z A x xγγ += − ≥ . 
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Now specialize further to the case where 1γ = , so that 

ˆ (1 / )z x A x xζ= + − , with ˆ / / 2 (1 / )dz d A xζ ζ= + . Notice that if 0ζ = , 

ˆ ( 1)z x A= − .  Optimal consumption for each level of ζ  is depicted in the 2-

dimensional plane in Figure 1. 

[FIGURE 1 SOMEWHERE HERE] 

Remember that the role of the threshold ẑ  is that if the realization of the lottery is 

higher than it, then consumption is ẑ , but if the realization is less than ẑ , then 

consumption is equal to the realization. Here since the lottery is deterministic, the 

realization corresponding to ζ  is simply ζ . The (̂ )z ζ line starts above zero, and it crosses 

the 45 -degree line once at a point greater than zero. The cutoff point ( 1)Lz x A= − , 

where it crosses this line, is critical for determining consumption. For the values of ζ  

where ẑ ζ>  (at the left of Lz ) the threshold is higher than ζ  so optimal consumption is 

equal to ζ . For the values of ζ  where ẑ ζ<  (at the right of Lz )  optimal consumption is 

equal to  the threshold ẑ . Accordingly, optimal consumption is given by the thick grey 

line in Figure 1. Finally, notice that the cutoff satisfies '( ( ) ( )) '( ) '(0)L Lh u z u u z uζ− = , 

and Lz ζ= , so that indeed '( ) '(0) / '(0)Lu z u h= . Note in particular that in this case 

consumption goes to infinity as found money goes to infinity, even though the fraction 

that is spent goes to zero. 

5. Three-Outcome Gambles 

 To better understand the implications of self-control preferences for choices 

among lotteries we examine lotteries with just three outcomes. This very simple case is 
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sufficient to illustrate some of the best-known departures from expected utility theory, 

namely as the Allais paradox11 and the common ratio effect12 (Allais, 1953; Kahneman 

and Tversky, 1979). 

Assume that the possible lottery outcomes are 1 2 3z z z< < , with probabilities 

1 2 3, ,p p p  and corresponding short-run utilities 1 2 3u u u< < , where 

( ), 1,2,3i iu u z i= = . As is traditional for lotteries of this type, we will work in the 

Marschak-Machina triangle: we take 2 1 31p p p= − −  and plot 1 3,p p . Machina [1987] 

illustrates how the above stated anomalies, which violate the expected utility benchmark, 

can be captured by indifference curves that “fan out”, or become steeper as one moves 

towards the northwest part of the triangle. Figures 2 and 3 illustrate and explain how 

fanning-out curves can generate the Allais paradox and the common ratio effect 

(respectively). Our objective in this section is to show that indifference curves with these 

characteristics can also be generated by our simple model, which therefore captures these 

departures from expected utility.  

[FIGURE 2 SOMEWHERE HERE] 

[FIGURE 3 SOMEWHERE HERE] 

 

                                                 
11 The paradox concerns choices between pairs of lotteries. We will remind readers of the original Allais 
experiment, which involves two choice scenarios. In Scenario I, Lottery s  gives $1m (one million) with 
probability 1.00 and Lottery r  gives $1m with probability 0.89, $5m with probability 0.10 and $0 with 
probability 0.01. In Scenario II, Lottery 's  gives $1m with probability 0.11 and $0 with probability 0.89 
and Lottery 'r  gives $5m with probability 0.10 and $0 with probability 0.90. Some subjects choose 
Lottery s  in Scenario I but Lottery 'r  in Scenario II, which violates expected utility.  The Allais paradox 
is part of a more general effect, called the “common consequence” effect.  
12 In experiments of the common ratio effect, there is also choice among pairs of lotteries, where each 

lottery involves the zero outcome and either outcome A  orB , where 0 A B< < . In Scenario 1, the small 

outcome (A ) offered with a high probability ( π ) is preferred over the large outcome (B ) with a low 

probability ( ρ ).  However, when in Scenario 2 the probability for both positive outcomes is multiplied by 

the same number 0 1ξ< < , the choice is reversed in favor of the lottery with the large outcome.     
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 For simplicity and because the Allais and common ratio paradoxes have this form, 

we consider only the gains domain, and moreover assume that the worst possible 

outcome is zero ( 1 0z = ). We assume that '(0) 1h >  so that by Proposition 3 1 ˆz z< .13  

Also recall from Proposition 6 that if 3
Lz z≤  then preferences are just those of the 

short-run self. To avoid this uninteresting case we assume that 3
Lz z>  so that  

3'( ) '(0) / '(0)u z u h<  and 3 ˆz z> .14 

As benchmarks, consider first constant expected value curves (those of a risk 

neutral agent) so that indifference curves in the triangle are given by lines of the form 

3 3 2 1 2 1( ) ( )p z z p z z k− − − = . As a second benchmark, consider indifference curves for 

the short-run self which are given by lines of the form 3 3 2 1 2 1( ) ( )p u u p u u k− − − = . 

Because the short run self is risk averse, its indifference curves have a steeper slope than 

those of the risk neutral agent. 

Turning to the self-control case, we will consider choices between pairs of 

gambles, that is menus with two items, 1 3 1 3( , ), ( , )p p p q q q= = , which we shall index 

{ , }k p q∈ . The utility to the gamble p  in the menu { , }p q  is given by  

 ( , ) max (max{ ( ), ( )}, , )z p q pV p q U Eu Z Eu Z Z z≡ . 

We may now define the indifference set ( ) { | ( , ) ( , )}I p q V p q V q p≡ =  and the 

corresponding indifference relation q p∼  if ( )q I p∈ . Notice that this relation is 

                                                 
13 This highlights a special role of 0: it is less than the threshold ẑ  except in the non-self-control case 
where '(0) 0h = . 
14 To see that the latter inequality follows, note that if 3 ˆz z≤  then plugging in (*) would imply that 

ˆLz z= , which entails a contradiction  to our assumption that 3
Lz z> .  
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reflexive but need not be transitive. To understand more clearly the indifference set, 

consider that it is defined implicitly by  

 max (max{ ( ), ( )}, , ) max (max{ ( ), ( )}, , ) 0z p q p z p q qU Eu Z Eu Z Z z U Eu Z Eu Z Z z− = . 

We wish to examine the slope of this indifference set in the Marschak-Machina 

triangle. For this, we need to invoke the implicit function theorem and therefore need to 

show that this expression is continuously differentiable, at least in some neighborhood. 

The key fact is that it is indeed differentiable with respect to q  at least in an open 

neighborhood of q p=  and at all points where ( ) ( )p qEu Z Eu Z≠ . To see this, evaluate 

the utility difference at the optimal value of z , that is, ˆ ˆ,p qz z : 

 1 3 1 3 1 3 1 3ˆ ˆ( , , * ( , ), ( , ), ( , ))p qq q u q q z q q z q qΦ = ˆ ˆ( *, , ) ( *, , )p p q qU u Z z U u Z z− .  (2) 

We shall show that the indirect effects of a marginal change of q  through its effect on 

*u  and ˆ ˆ,p qz z can be ignored (in a neighborhood of q p= ). First, the derivative of Φ  

with respect to *u  is zero at q p= , since 

ˆ ˆ( *, , ) / * ( *, , ) / * | 0p p q q q pdU u Z z du dU u Z z du =− = . 

Second, the derivative with respect to k̂z  is zero by Proposition 3.15 Note that k̂z is 

implicitly determined by the relation  ( , ) '(0)k kF Z z u=  from Proposition 3. The 

function F  is differentiable in ,k p q=  by inspection and is strictly decreasing with left 

and right derivatives in kz  bounded away from zero by Proposition 3. Thus, the implicit 

                                                 
15 Note that now we need to ensure that * /du dq  and ˆ /kdz dq are not infinity in order to avoid the 

indeterminate form 0×∞ . It is clear that * /du dq < ∞ , but we now need to make sure that 

ˆ /kdz dq < ∞ .  
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function theorem applies to k̂z  as a function of q , hence since k̂z   is determined 

optimally, the envelope theorem implies that we need consider only the derivative with 

respect to qZ . This dependence is differentiable by inspection.   

In order for the indifference curves to fan out in such a manner that they explain 

the paradoxes, we need their slope to increase as we move towards the northwest of the 

triangle. We shall show that this is the case, because as we move in that direction the 

threshold ẑ  increases. Intuitively we expect that higher ẑ  corresponds to a more difficult 

self-control problem and that this should result in preferences – that is slopes of 

indifference curves – less like that of the long-run risk neutral self and more like the 

steeper sloped short-run indifference curves. This is verified by the next result.  

Proposition 8: The slope of ( )I p  at the point q p= , denoted ( )S p , is positive and 

greater than the slope of risk neutral indifference curves. The slope depends on p only 

through ẑ  and is increasing in ẑ .
16

 

Proof: It will be convenient to normalize so that 1 2 20,u u z= = . Then the slope of the 

risk neutral indifference curves is  

 2

3 2

z

z z−
. 

We now compute the slope of the actual indifference curves at p , that is ( )S p . First, the 

expressions for ˆ( *, , )q qU u Z z  may be written as  

{ }( ) { }ˆ ˆ ˆ( *, , ) min ( ), ( ) * '(0) max ,0q q q q q qU u Z z h E u Z u z u u E Z z= − + −  

                                                 
16  In particular, it can be written as a function ˆ( ) ( ( ))S p z p= Σ  where Σ  is strictly increasing in ẑ . 
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{ }( )
{ }

*
1 3 2 3

1 3 2 3 3

ˆ ˆ(1 )min ( ), ( ) ( )

ˆ ˆ'(0)[(1 )max ,0 ( )].
q q

q q

h q q u z u z q u z u

u q q z z q z z

= − − + −

+ − − − + −
 

From this we may compute   

{ }( ) { }

1 *

2 2

ˆ( *, , )/ |

ˆ ˆ ˆ' min ( ), ( ) * [min{ ( ), ( )}] '(0)[max ,0 ]

q q u

q q q q

U u Z z q

h E u Z u z u u z u z u z z

∂ ∂ =

− − − −
 

 

{ } { }( )*2 1 3 2 3ˆ ˆ ˆmin ( ), ( ) ' (1 )min ( ), ( ) ( )q q qu z u z h q q u z u z q u z u= − − − + −  

{ }2 ˆ'(0)(max ,0 ).qu z z− − 17 

 
{ }( )

{ }
3 * 2

3 2

ˆ ˆ ˆ ˆ( *, , ) / | ' min ( ), ( ) * [ ( ) min{ ( ), ( )}]

ˆ ˆ'(0)[ max ,0 ].
q q u q q q q

q q

U u Z z q h E u Z u z u u z u z u z

u z z z z

∂ ∂ = − −

+ − − −
 

Using { }( )ˆ ˆ' min ( ), ( ) * '( ) '(0)q q qh E u Z u z u u z u− =  we have the proportionality where 

the common factor ˆ'(0) / '( )qu u z  omitted: 

{ }1 * 2 2ˆ ˆ ˆ ˆ( *, , )/ | [min{ ( ), ( )}] '( )[max ,0 ]q q u q q qU u Z z q u z u z u z z z∂ ∂ = − − −  

 

{ }3 * 2 3 2ˆ ˆ ˆ ˆ ˆ ˆ( *, , )/ | [ ( ) min{ ( ), ( )}] '( )[ max ,0 ]q q u q q q q qU u Z z q u z u z u z u z z z z z∂ ∂ = − + − − −

 

There are two cases.    

Case 1: 3 2q̂z z z> >  . In this case, the partial derivatives are: 

                                                 
17 Notice that we are ignoring the partial derivative of U with respect to *u  since  

*/ 0d duΦ =  at 

q p=  so that it will cancel out in the final computation of the slope. 
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{ }1 * 2 2

2

ˆ ˆ ˆ ˆ( *, , )/ | [min{ ( ), ( )}] '( )[max ,0 ]q q u q q qU u Z z q u z u z u z z z

z

∂ ∂ = − − −

= −
 

 3 * 2 3ˆ ˆ ˆ ˆ( *, , )/ | [ ( ) ] '( )[ ]q q u q q qU u Z z q u z z u z z z∂ ∂ = − + − . 

This gives for the slope of indifference curve 

 

2
3 1

2 3

2

3 2 3 3

/
ˆ ˆ ˆ[ ( ) ] '( )[ ]

.
ˆ ˆ ˆ( ( )) '( )[ ]

q q q

q q q

z
dp dp

u z z u z z z

z

z z z u z u z z z

= =
− + −

− − − + −

 

This will be steeper than in the risk neutral case provided that  

 3 3ˆ ˆ ˆ( ) '( )[ ]q q qz u z u z z z− > − . 

Since ˆ ˆ( )q qu z z<  it follows that 3 3ˆ ˆ( )q qz u z z z− > − . We normalized so that 

1 2 20,u u z= =  and since 2q̂z z>  it follows that ˆ'( ) 1qu z < . This gives the desired 

inequality. 

Differentiating the denominator with respect to 
q̂z  we see that 

 2 3 3

3

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ{[ ( ) ] '( )[ ]} / '( ) ''( )[ ] '( )

ˆ ˆ''( )[ ] 0.
q q q q q q q q

q q

d u z z u z z z dz u z u z z z u z

u z z z

− + − = + − − =

− <
 

Thus, the indifference curves indeed get steeper as ẑ  increases.  

Case  2: 2 q̂z z> . Now we have that: 

 1 * 2ˆ ˆ ˆ ˆ( *, , )/ | ( ) '( )[ ]q q u q q qU u Z z q u z u z z z∂ ∂ = − − −  

 3 * 3 2ˆ ˆ( *, , )/ | '( )[ ]q q u qU u Z z q u z z z∂ ∂ = − . 
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It follows that the slope of an indifference curve is  

 

  
2

3 2

ˆ ˆ ˆ( ) / '( )q q qz z u z u z

z z

− +

−
 . 

Since 2q̂z z<  and 2 2( )u z z=  by strict risk aversion ˆ ˆ( )q qu z z> . Again using the mean 

value theorem, since (0) 0u = and by strict risk aversion, it follows that 

ˆ ˆ ˆ'( ) ( )q q qu z z u z< . This implies slope steeper than risk neutral. 

 

Rewriting the slope we have 

 

2
2

3 2 3 2

ˆ( )
ˆ 1

ˆ ˆ ˆ ˆ ˆ( ) / '( ) '( )

q
q

q q q q q

u z
z z

z z u z u z u z z

z z z z

  + −  − +  
=

− −
 

 
2

2

ˆ ˆ ˆ ˆ ˆ ˆ ˆ[ ( ) / '( )] / 1 1 ( ) ''( ) / [ '( )]

ˆ ˆ ˆ( ) ''( ) / [ '( )] 0.

q q q q q q q

q q q

d z u z u z dz u z u z u z

u z u z u z

− + = − + − =

− >
 

This gives the desired result. 

� 

Now that we have shown that the slope is increasing in ẑ , we need to examine 

how ẑ  behaves as 3p  increases and 1p  decreases (as we move in the northwest 

direction). In the following, we will be evaluating ẑ   at the point where p q= .   
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Proposition 9: The 
p̂z (corresponding to the singleton menu{ }p )  is increasing in 3p , 

and there is a critical value 3̂p  such that if 3p 3̂p≤ then p̂z  is decreasing in 1p , while if 

3p 3̂p>  then p̂z  is independent of 1p . 

 

Proof: We work with the alternative version of the condition defining ẑ  

 ( )ˆ ˆ' min{ ( ), ( )} * '( ) '(0)p p ph E u Z u z u u z u− = . 

Writing that out in terms of 1 3,p p  we get 

( )1 3 2 3 3ˆ ˆ ˆ' (1 )min{0, ( ) } min{0, ( ) } '( ) '(0)p p ph p p u z z p u z u u z u− − − + − = . (**) 

 First we examine the dependence of p̂z  on 3p . Differentiating (**) with respect to 

3p  we find  

 
( )

( )
1 3 2 3 3

3 2

ˆ ˆ'' (1 )min{0, ( ) } min{0, ( ) }

ˆ ˆ ˆmin{0, ( ) } min{0, ( ) } '( ) 0.
p p

p p p

h p p u z z p u z u

u z u u z z u z

− − − + −

× − − − ≥
 

The inequality follows from the fact that 3 2 2u z u> =  and is strict since 3p̂z z< . Since 

the derivative of (**) is negative with respect to 
p̂z  (by Proposition 3) we can apply the 

implicit function theorem to conclude that 

 
3

ˆ
0.

pz

p

∂
>

∂
 

Finally, we consider the derivative with respect to 1p . We shall show that this 

differs depending on whether or not ẑ  lies above or below 2z . To do this, we first solve 
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for the curve where 2ẑ z= . There is always a solution to 

( )ˆ ˆ' min{ ( ), ( )} * '( ) '(0)h E u Z u z u u z u− = , (i.e. ẑ  is interior and the relevant first-

order condition holds with equality) ; thus if  2ẑ z=  then  

 ( )3 2 3 2' ( ) '( ) '(0)h p z u u z u− = . (***) 

 

  When (***) holds it implicitly defines a unique value of 3̂p , with 2ẑ z>  for 

3 3̂p p>  and  2ẑ z<  for 3 3̂p p≤ . If there is no solution to (***) then either  2ẑ z>  for 

all 3p , and we set 3̂ 0p = , or 2ẑ z< for all 3p , and we set 3̂ 1p = . 

Consider the case 3 3̂p p> ; here  since 2 2( )u z z=  (**) becomes 

 ( )3 3ˆ ˆ' ( ( ) ) '( ) '(0)h p u z u u z u− = . 

This is indeed independent of 1p . Hence, in this region it holds that 1ˆ / 0pz p∂ ∂ =  as 

asserted. When 3 3̂p p<  we differentiate (**) with respect to 1p  to find 

 

 
( )1 3 2 3 3

2

ˆ ˆ ˆ'' (1 )min{0, ( ) } min{0, ( ) } '( )

ˆmin{0, ( ) }

h p p u z z p u z u u z

u z z

− − − − + −

× −
 

This expression is negative for 2 ˆz z> , hence ẑ  is decreasing in 1p  in this case. 

� 

Now we discuss how these results imply that the approximate dual-self model can 

explain behavior such as the Allais paradox, using Figure 4 to illustrate the ideas. 

Scenario I in Allais-paradox experiments juxtaposes a lottery s  with certain gain 2z  
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(located at the origin) with a risky lottery r  that has a positive return, so it lies above the 

risk neutral indifference curve (the thick line crossing s ). The data indicate that the latter 

tends to get rejected as too risky, so it has to lie below the actual indifference curve – the 

dashed line crossing s . In the figure the alternative Lottery r  lies to the upper right in 

between the two indifference curves; so indeed, Lottery s  will be preferred. 

FIGURE 4 SOMEWHERE HERE] 

[FIGURE 5 SOMEWHERE HERE] 

Scenario II entails reducing the probability, for both lotteries, of the middle 

outcome 2z  and adding this probability to outcome 1 0z = . This holds fixed the 

probability of 3z , so in the diagram it simply shifts both s  and r  the same distance to the 

right, resulting in the new lotteries 's  and 'r . If the probability of 3z  in Lottery s  is less 

than 3̂p , shifting Lottery s  to the right (to become 's ) causes the actual indifference 

curve to get flatter. Depending on the exact magnitude of the change, it could shift 

preference, so that 's  is now below 'r  rather than above 'r . Hence an Allais reversal can 

occur, with s  being chosen in Scenario I and the riskier alternative 'r  being chosen in 

Scenario II. This case is the one illustrated in the figure. Note that this reversal would not 

be possible if the indifference lines were parallel as in the standard model. 

Our results show that if the probability of 3z  was larger than 3̂p  this reversal 

could not occur (but remember that for the Allais paradox the probability of 3z  is in fact 

zero). This is illustrated in Figure 5, where the lotteries in the initial scenario have 

probability of the best outcome that exceeds 3̂p . In this case, a mere shift of the lottery to 
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the right leads to a new lottery 's , whose indifference curve does not have a different 

slope than ( )I s , hence no reversal occurs.  

This shows the importance of the fact that in the Allais experiments there is a 

large difference in the short-run expected payoffs across the two scenarios. It is the 

convexity in the self-control function that leads to reversals when the difference in these 

expected payoffs is sufficiently high. Now consider the common ratio paradox as 

depicted in Figure 3.  In Scenario I the agent has a choice between a Lottery s  with a 

high probability 2s  of winning outcome 2z  (or else yields zero) and a more risky Lottery 

r , which has a certain chance  3 2r s<  of winning 3z  (or else zero). Again, the choice of 

s , which is observed in the data, corresponds to the case where lottery r  lies between the 

risk-neutral indifference curve and the actual (steeper) indifference curve crossing s . In 

Scenario II, r  shifts down and to the right, while s shifts to the right (notice that the 

vector from s  to r  gets shorter but continues to point in the same direction). If the 

indifference curve gets flatter there can again be a reversal.  

This time the reversal occurs whether or not 3p  is smaller than 3̂p , because not 

only does 1p  get larger, but also 3p  gets smaller and that always flattens the indifference 

curve. Note the implication here: this theory predicts that common ratio paradoxes hold 

for a wider variety of parameter values than common consequence, since the latter only 

occur below 3̂p . The reason that common ratio scenarios always generate reversals in the 

approximate dual self model is that the short-run payoffs in the second scenario are 

always a fixed fraction of the payoffs in the initial scenario (assuming (0) 0u = ), 

regardless of the position of the initial-scenario lotteries in the triangle. 
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Finally we consider the issue of whether preferences are transitive. Transitivity 

holds if and only if for every choice of lotteries ,p q  such that ( )q I p∈  we have 

( ) ( )I p I q= . We now show that this need not be true. So, fix a lottery p  and a lottery 

' ( )q I p∈  and recall that when 2 q̂z z>   the slope of ( )I p  at the point q p=  is given by  

  
2 2

3 2 3 2

ˆ ˆ ˆ ˆ ˆ ˆ( ) / '( ) ( ) / '( )
|

q q q p p p

q p

z z u z u z z z u z u z

z z z z
=

− + − +
=

− −
. 

We would like to show that when h  is not linear the slope of ( ')I q  at p  is different from 

this.18 Recall that  

 

( )*1 1 3 2 3 3 1

ˆ( *, , )

ˆ ˆ(1 ) ( ) '(0)[(1 ) (1 ) ].

q q

q q

U u Z z

h q u z u u q q z q z q z

=

− − + − − + − −
 

Notice that the FOC for a maximum with respect to q̂z  is 

 ( )*1 ˆ ˆ' (1 ) ( ) '( ) '(0)q qh q u z u u z u− − = . 

Let ( ')u p  denote the short-run expected utility from a generic lottery 'p . We may then 

rewrite the previous slope as  

 
2 1

3 2

ˆ ˆ ˆ'((1 ) ( ) ( )) ( ) / '(0)p p pz z h p u z u p u z u

z z

− + − −

−
. 

 Without loss of generality, consider the case where ( ') ( )u q u p> . We are then interested 

in what ( ')I q  looks like for lotteries r  near p , so we may assume ( ') ( )u q u r> ; the 

indifference curve we are interested in is defined locally by the following relation: 



 30

 
( )

( )

*
1 1 3 2 3 3 1

*
1 1 3 2 3 3 1

ˆ ˆ(1 ) ( ) '(0)[(1 ) (1 ) ]

ˆ ˆ(1 ) ( ) '(0)[(1 ) (1 ) ] 0.

q q

r r

G h q u z u u q q z q z q z

h r u z u u r r z r z r z

≡ − − + − − + − − −

− − + − − + − − =
 

We want to find 3 1/dr dr  at r p= . Note that * ( ')u u q=  is constant, and that we may 

ignore the dependence of r̂z  on r  by the envelope theorem as described above. Taking 

the derivatives of G  with respect to 1r , 3r  we have that: 

 ( )*1 1 2ˆ ˆ ˆ/ ' (1 ) ( ) ( ) '(0)[ ]p r rdG dr h r u z u u z u z z= − − − + −  

 3 3 2/ '(0)[ ]dG dr u z z= −  

Accordingly,  the slope of the indifference curve ( ')I q  at  r p=   is equal to: 

 
( )2 1

3 2

ˆ ˆ ˆ' (1 ) ( ) ( ') ( ) / '(0)p p pz z h p u z u q u z u

z z

− + − −

−
.  

Remember that  the slope of ( )I p  at  r p=   was equal to: 

 
2 1

3 2

ˆ ˆ ˆ'((1 ) ( ) ( )) ( ) / '(0)p p pz z h p u z u p u z u

z z

− + − −

−
. 

These are the same if and only if  

 1 1ˆ ˆ'((1 ) ( ) ( ')) '((1 ) ( ) ( ))p ph p u z u q h p u z u p− − = − − . 

But since ( ') ( )u q u p>  by assumption, this equation requires that 'h  be locally constant. 

The “expected regret” models of Loomes and Sugden [1982] and Fishburn [1982] 

also generate intransitive preferences. Like the dual-self model, the key characteristic of 

these models is the dependence of preferences on the choice menu. Like our model, these 

                                                                                                                                                 
18 Notice that if p does not belong to ( ')I q  there is nothing to prove.  
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models generate “indifference curves” that cross under certain assumptions; they can also 

explain the common ratio and common consequence effects.  

 

6. Discussion and Conclusion  

We have examined how the assumption of a linear long-run value function can 

lead to a more tractable model than the model of Fudenberg and Levine [2011], and we 

showed how this simplified model is useful in explaining choice among lotteries. The 

model respects stochastic dominance, and for lotteries with very low and very high 

possible prizes, lottery choice corresponds to the maximization of short-run expected 

utility and expected value, respectively. Restricting attention to the case of two lotteries 

with three outcomes, we show how the model can generate indifference curves that “fan 

out” and thus can explain the well-known Allais and common ratio paradoxes.   

As we have pointed out, models such as “expected regret” can capture the static 

risk-based anomalies that we have discussed here, and in addition generate the classic 

preference reversal phenomenon and other paradoxes. However, the general dual-self 

model has a wider scope, in the sense that it is consistent with a large number of facts, 

across different domains. In particular, the model has predictions about time-related 

phenomena (such as preference reversals for delayed rewards), risk-related phenomena 

(such as the ones described here), contextual psychological phenomena (such as the 

effect of cognitive load), etc. At the same time, the model is consistent with modern 

macroeconomic theory and evidence. In addition, the derivation of risk preference and 

reversals from an underlying model of self-control has implications about correlations 

between an individual’s choices between lotteries and her choices in other domains that 
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are not present in alternative theories such as prospect theory. It also makes predictions 

that the same individual may make different choices between lotteries depending on other 

decision problems that have recently been faced. In effect the h  function is determined 

by past behavior and personal characteristics. 

Psychological evidence indicates that self-control depends on a resource that 

resembles “strength” or a “muscle” (Muraven, and Baumeister 1998, Baumeister et al. 

1998). In particular, repeated use of self-control within short time intervals depletes the 

“stock of willpower”, and rest is needed in order to for this stock to recover. Further, like 

a muscle, the ability to exercise self-control can be enlarged by repeatedly exercising it. 

This time dimension in self-control is analyzed in Fudenberg and Levine [2012]. In 

particular an individual who has recently faced difficult self-control problems – and so 

depleted her stock of self-control – will exhibit a higher cost of self-control as measured 

by h . 

Second, different individuals have different degrees of past exercise of self-

control, and therefore different capacities of using it. There is some evidence that the 

ability to exercise self-control is heterogeneous and correlated with such positive 

outcomes as scholarly achievement, interpersonal skills, and less alcohol abuse (Tagney, 

Baumeister and Boone, 2004).  So for example we may expect individuals who have a 

history of addiction and alcohol abuse to have a higher cost of self-control as measured 

by h . Finally, as shown in O’ Donoghue and Rabin [1999] self-control costs imply an 

individual exhibits present bias. Hence we may expect individuals who exhibit greater 

present bias to have a higher cost of self-control as measured by h .  
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Finally, recent evidence indicates that higher cognitive load, by reducing the 

psychological resources available for self-control, leads to higher self-control costs.19 

Like other things such as recent difficult self-control problems, an individual with a 

higher cognitive load will exhibit a higher h . Cognitive load can be easily controlled in 

the laboratory, typically by selectively assigning memory tasks to different treatment 

groups. This means that the theory implies that reversals like those of common ratio and 

common consequence can be induced by increasing cognitive load.20 
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FIGURES 

 

Figure 1: The Consumption Threshold as a Function of the Amount of Found Money 
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Figure 2. The Allais Paradox and Fanning-Out Curves 

1                         Scenario I concerns the choice between s and r, and s corresponds 

              to a higher indifference curve. Scenario II concerns choice between  

                                        Increasing             s` and r`, and now r` is crossed by the higher indifference curve. This 

                                            Utility               generates the paradox: s is chosen in Scenario I and r` in Scenario II.         
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Figure 3. The Common Ratio Paradox and Fanning-Out Curves 

1 

                                                                           Scenario I concerns the choice between s and r and Scenario II  

                                        Increasing                   concerns the choice between s` and r`. The paradox involves 

                                            Utility                     the choice of s in Scenario I and of  r` in Scenario II. This can 

                                                                                                           also be captured by indifference curves that “fan out”, as can                                                                      

p3                                      r                                                   be seen in the figure.  
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Figure 4. The Allais Paradox Reversal in the Approximate Model 
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Figure 5. The High Expected Payoff Case with No Reversal 
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