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Abstract

We consider the design of an optimal auction in which the seller can determine the allo-

cation and the disclosure rule of the mechanism. Thus, in contrast to the standard analysis

of a optimal auctions, the seller can explicitly design the disclosure of the information

received by each bidder as his private information.

We show that the optimal disclosure rule is a sequential disclosure rule, implemented in

an ascending price auction. In the optimal disclosure mechanism, each losing bidder learns

his true valuation, but the winning bidder only learns that his valuation is su¢ ciently high

to win the auction. We show that in the optimal auction, the posterior incentive and

participation constraints of all the bidders are satis�ed. In the special case in which the

bidders have no private information initially, the seller can extract the entire surplus.
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1 Introduction

We consider the design of an optimal auction for a single object and a �nite number of bidders

with independent and private values. Importantly, we extend the design of the optimal mecha-

nism to include the determination of the allocation and the information. The present analysis is

motivated by the observation that in many instances the seller of an object has considerable con-

trol over the information that the buyers have when bidding for the object under consideration.

In fact, in some auctions, the seller intentionally limits the amount of information regarding the

object sold to such an extent that they are commonly referred to as �blind auctions�, see for

example Kenney and Klein (1983) and Blumenthal (1988) for the licensing of motion pictures

and Kavajecz and Keim (2005) for trading of large asset portfolios.

Interestingly, the relevant information is frequently disclosed sequentially and systematically

linked to the bidding mechanism. In an auction practice referred to as indicative bidding, the

seller (or an agent of the seller) initially invites �indicative�bids on the basis of a prospectus with

a limited description of the asset and subsequently grants access to additional and more precise

information only on the basis of su¢ ciently strong interest as expressed in the early rounds of

bidding, see Ye (2007).

Here, we shall investigate the nature of the revenue maximizing mechanism when the seller

can jointly determine the allocation and the disclosure rule which form the optimal mechanism.

Importantly, we shall explicitly allow for sequential disclosure rules, i.e. disclosure rules which

depend on the current (and past) bids, and hence in a direct mechanism on the current (and

past) disclosed information.

In earlier work, Bergemann and Pesendorfer (2007) analyzed the present auction setting but

restricted attention to static disclosure rules, i.e. disclosure rules in which each bidder only

received a single signal. In contrast, in the present contribution we explicitly allow the seller to

release additional signals in the course of the bidding process. In Bergemann and Pesendorfer

(2007), the agents�initial private information was restricted to be the common prior distribution

of the true valuations of the bidders. Thus, initially the agents did not possess any private

information at all and any private information had to be generated by the disclosure rule of

the mechanism. Subsequent work, notably by Es½o and Szentes (2007) and Gershkov (2009),

generalized the analysis to encompass private information which is not subject to the control of
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the disclosure rule and in due course we shall relate these two scenarios to each other. However,

in the introduction it might be useful to brie�y explain the role of sequential disclosure in the

absence of any private information.

Consider for a moment an ascending auction, say in the form of the Japanese button auction,

in which the asking price is raised continuously over time, see Cassady (1967). At each point in

time and associated current price, each bidder has to make a decision as to whether he is staying

in the auction or exiting the auction, i.e. whether he continues to press the button or whether

he releases the button. We may now ask how much information would a bidder minimally need

to participate in an e¢ cient bidding mechanism, i.e. a mechanism which would support the

e¢ cient allocation of the object across the bidders. Now, given a current price, all he would

need to know is whether his value is above or below the current price. If indeed he were in

the possession of this information at all past and hence lower price points, then the sequential

disclosure policy that supports this information structure is simply that at price p the true value

p is revealed. Thus as the current price increases, and a bidder learns his value, he will rationally

drop out (at the next price point) and the only remaining bidders are those who know that their

true value are above the current price. It is now clear that this ascending auction reaches its

natural stopping point when all but one of the bidders have dropped out, and the remaining

bidder is the natural winner of the auction. The associated assignment of the object is e¢ cient

as his value is larger than that of everybody else. Now, given the information that he has, his

expected valuation is the conditional expectation of his value, given that it is larger than or equal

to the current price p. In the canonical ascending auction he indeed would pay p, but given his

current information, his willingness to pay is his conditional expectation, which is strictly larger

than p. In fact, the seller can charge him his exact conditional expectation and thus extract the

entire surplus of the bidder, while satisfying the incentive and participation constraints, given

the current information.

From the point of view of the seller, she would like the bidders to have and hence to provide

just enough private information to identify which bidder has the largest valuation. At the same

time, she does not want to give the bidder with the largest valuation too much information on his

valuation so as to minimize the informational rent of the winning bidder. In the above procedure,

this is achieved by giving the bidder at each point in time a binary information partition. Thus
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at any point in time, each bidder learns whether his valuation is above or below some threshold.

The subsequent game is such that if the valuation of the bidder lies below the threshold, it

is optimal for him to exit the contest. Increasing the threshold for all bidders until only one

bidder remains, and then charging the winning bidder his expected valuation conditional on the

valuation being larger than the �nal threshold, is the �nal outcome of the disclosure mechanism.

Thus, each bidder learns either his true valuation, namely the losing valuations, or that he is the

winning bidder and has the largest valuation, yet without learning its exact value.1

If bidders have private information, their respective type, from the very beginning of the

mechanism, then the procedure needs to be generalized. First, the bidders have to report their

types. Then, based on the reports, the thresholds in the sequential procedure are determined.

These thresholds typically vary with the reports and hence di¤er across the bidders. Otherwise,

the procedure works as above. Bidders obtain more and more information, and those who learn

their true valuations exit the process. The �nal winner only learns that his valuation exceeds

the �nal threshold. The winner will then be charged a price which is larger than this threshold

but smaller than his expected value, conceding the informational rent he obtains with regard

to his interim information. Determining the thresholds and the price is the critical step in the

analysis to ensure that the bidder with the highest "shock-adjusted virtual valuation" wins,

and to ensure that truthtelling both with regard to the initial, interim information and to the

information obtained in the sequential procedure prevails.

Bergemann and Pesendorfer (2007) consider the standard independent private value auction

for a single object with I risk-neutral bidders. Their objective is to derive the revenue maximizing

mechanism. In contrast to the received analysis of the optimal mechanism, see the seminal

contribution of Myerson (1981), they allow the seller to determine the allocation rule and the

disclosure rule of the mechanism simultaneously. The disclosure rule of the mechanism determines

the nature of the private signal that each agent receives about his true value, or willingness-to-pay

for the object. Bergemann and Pesendorfer (2007) refer to the disclosure rule as the information

structure of the mechanism. We shall refer to a pair of allocation and disclosure rules as a

1The information revelation mechanism analyzed here bears some similarity to the �bisection auction�recently

proposed by Grigorieva, Herings, Müller, and Vermeulen (2007). In the bisection auction, each bidder is asked

whether his valuation is above a threshold. If more than one says yes, the same question is asked with a higher

threshold. If only one bidder says yes, he will obtain the good.
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disclosure mechanism.

The disclosure rule controls the informativeness of the private signal about the valuation.

Importantly, while the seller determines the disclosure rule, the seller does not observe the

realization of the private signal of each bidder. Formally, the disclosure rule is a mapping, one

for each agent, from the value of the object to a distribution over a set of possible signals.

The set of feasible disclosure rules includes the full disclosure rule, in which each agent learns

his value perfectly, and the zero disclosure rule, in which each agent learns nothing above the

common prior over the valuation. Between these two extreme disclosure rules are many other

feasible disclosure rules, including deterministic and stochastic disclosure rules. In Bergemann

and Pesendorfer (2007), the seller chooses among all feasible disclosure and allocation rules to

maximize her expected revenue.2

The canonical revenue maximizing problem, as pioneered by Myerson (1981), can then be

viewed as the special case where the seller happens to adopt the full disclosure rule. The disclosure

mechanism is subject to the standard incentive and participation constraints of the agents. In

other words, given the disclosed private information, each bidder has an incentive to report

his private information truthfully, and given the private information, each bidder is willing to

participate, i.e. his expected net utility is at least as large as his utility from not participating. We

shall refer to these constraints as the posterior incentive and posterior participation constraints,

as each agent is conditioning his report and his participation on the private information revealed

in the disclosure mechanism. These notions of posterior constraints were �rst introduced by

Green and La¤ont (1987) to re�ect the possibility that the mechanism may reveal some, but not

necessarily all, payo¤-relevant information to the agents.3

Bergemann and Pesendorfer (2007) analyze the optimal disclosure mechanism subject to

2Kamenica and Gentzkow (2011) consider a related class of problems referred to as "Bayesian Persuasion�.

They consider the interaction between a principal and a single agent, where the principal can determine the

disclosure rule, but the allocation is determined by the agent. Thus the game is �given�rather than �designed�

as in the current analysis, but of course the action taken by the agent can be in�uenced through the disclosure

rule adopted by the principal.
3By contrast, the ex-post incentive and participation constraints are evaluated under complete information

about the realized ex post valuation of each agent. Further, and by convention, we refer to ex-ante as the moment

in which each bidder only knows the common prior, and to interim as the moment in which each bidder only

knows his own private type.
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posterior incentive and posterior participation constraints. They �nd that the optimal disclosure

mechanism uses a deterministic, but coarse, disclosure rule. In other words, each agent receives

only limited information about his true value, and the resulting revenue strictly exceeds the

revenue of the full disclosure rule. In addition, the deterministic disclosure rule can be represented

as a �nite partition over the set of values, where each element of the partition is an interval,

and hence a connected set, of the real line. The optimality of the coarse information is shown to

arise from the nature of the information rent. In the full disclosure rule, each agent is informed

of his true value, and while this can guarantee an e¢ cient allocation, it also allows the agent

to receive a substantial information rent. By limiting the private information, it is shown that

the seller can reduce the information rent without substantially lowering the e¢ ciency of the

allocation. In fact, Bergemann and Pesendorfer (2007) show that the optimal disclosure rule

always induces an asymmetric partition of the values across the bidders, even in an otherwise

symmetric environment. The asymmetry of the partition allows the seller to rank the bidders,

and hence approximately maintain e¢ ciency, while �tting each signal of a given bidder between

competing signals (from below and above) of the other bidders, which enhances the competition

and hence depresses the information rent of each agent.

Gershkov (2002) reconsiders the optimal disclosure mechanism of Bergemann and Pesendorfer

(2007) under a weaker participation constraint, namely the ex-ante participation constraint, while

maintaining the posterior incentive constraints. With the ex-ante participation constraint, the

seller can charge each bidder a participation fee before the release of any private information.

The participation fee essentially allows the seller to extract the entire expected surplus from the

agents. Gershkov (2002) establishes that in the presence of the ex-ante participation constraint,

the optimal disclosure rule is the full disclosure rule, and the optimal allocation rule is the e¢ cient

assignment of the object under the standard second price auction. The participation fee charges

each bidder his expected net utility of the subsequent second price auction, and hence extracts

the entire surplus from the bidders. To wit, the resulting transfer rule necessarily violates the

posterior participation constraint, as all but one of the bidders, namely the winning bidder, make

a payment, the participation fee, but do not receive the object, and hence realize a negative net

utility.4

4The nature of the solution in Gershkov (2002) is reminiscent to the analysis of the e¢ cient regulation of a
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In an important contribution, Es½o and Szentes (2007) pursue the analysis of the optimal

information disclosure in the context of an informational environment which encompasses Berge-

mann and Pesendorfer (2007) and Gershkov (2002). In their model, each agent has two possible

sources of private information, an initial private signal of the true value of the object, the type,

and subsequently the realization of the true value. Importantly, the disclosure of the initial

signal, the type, cannot be a¤ected by the disclosure mechanism, it is only the disclosure of

the subsequent signal, possibly the true value of the object, that is controlled by the disclosure

mechanism. Es½o and Szentes (2007) show that the additional, or incremental, information that

is contained in the true value of the object, relative to the initial signal, can be represented as a

signal that is orthogonal to, i.e. independent of, the initial signal. Based on this representation

of the private information of each agent, namely the initial signal and the incremental and in-

dependent signal, they suggest a sequential screening contract, in which each agent �rst reveals

his initial information, and then in a second step the additionally disclosed information. The

design of the optimal disclosure mechanism is subject to the posterior incentive constraints and

the interim participation constraints. Thus, each bidder is willing to participate given his initial

private information only, and is reporting truthfully his initial information and the additional

disclosed information. Surprisingly, they show that the optimal disclosure mechanism is the full

disclosure mechanism. Yet, even though each agent is receiving two distinct and independent

private signals, they also show that the net utility of each agent is due to the information rent

of the initial signal only. In consequence, the main result in Es½o and Szentes (2007) is that

the optimal disclosure mechanism generates as much revenue as an optimal mechanism could in

which the incremental information of each agent was observable by the seller.56

The strong equivalence result, based on the orthogonalization of the initial and the incremen-

tal signals, again relies on the interim participation constraint, similar to the role of the ex-ante

natural monopoly o¤ered by Demsetz (1968) and Loeb and Magat (1979), which suggests the ex ante sale of all

future rents.
5Gershkov (2009) obtains a similar result in a setting where the incremental signal of each agents pertains to

common value component in the valuation of each bidder.
6In a very recent contribution, Li and Shi (2013) extend the analysis of the optimal disclosure process by

permitting the disclosure process to depend not only on the reported type, but also on the true, but unknown

value of the object. In this case, they show that the optimal policy can involve partial and discriminatory rather

than complete and uniform information disclosure.
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participation constraint in Gershkov (2002). In particular, the mechanism requires each bidder

to pay a participation fee, or an option fee, which modi�es the probability of winning, and the

transfer conditional on winning. Importantly, the mechanism necessitates a payment from the

losing bidders, and hence violates the posterior participation constraint. Thus, this result leaves

open the question what can be achieved under stricter participation constraints. Krähmer and

Strausz (2011) pursue this question in the sequential screening environment of Courty and Li

(2000), which is a single agent setting. In contrast to the previously discussed literature, they

maintain the full disclosure rule, and thus do not investigate the nature of the optimal disclosure

policy. Rather, they investigate the nature of the optimal screening mechanism, when the seller

is required to satisfy the posterior participation and posterior incentive constraints. Now, given

the full disclosure rule and the single agent setting, the posterior constraints actually coincide

with the ex post participation and incentive constraints. Krähmer and Strausz (2011) conclude

that under the stronger participation constraint, the bene�ts of sequential screening completely

disappear, and the optimal sequential contract is equivalent to the optimal static contract in

which the agent reports the initial and the incremental signals simultaneously. The decomposi-

tion between the initial and the incremental signal proved, by itself, to be an important tool in

the analysis of sequential screening contracts, see Pavan, Segal, and Toikka (2011) for a recent

contribution on revenue maximizing mechanism design in a general environment with an in�nite

time horizon.

We proceed as follows. In the next section we present the model, the payo¤ and the informa-

tion environment, which closely follow Es½o and Szentes (2007). We also describe the framework

of sequential information disclosure. In Section 3 we analyze the case without interim private

information by the bidders; and here the �rst best allocation can be implemented. The general

case is analyzed in Section 4, where we also provide an example, which compares the sequential

information disclosure procedure with the handicap auction proposed by Es½o and Szentes (2007).

Section 5 concludes.
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2 The Model

2.1 Payo¤s, Types and Signals

There is one seller with a single object for sale and there are n potential bidders, indexed by

i 2 f1; 2; :::; ng, which are risk-neutral and with quasi-linear utility. The seller can commit to a
mechanism to sell the object to one of the competing bidders.

The true valuation of bidder i is given by Vi 2 Vi, where Vi is a compact and convex subset
of R+, which we assume without loss of generality to be equal to the unit interval Vi = [0; 1] for
all i. The prior distribution of Vi is denoted by Hi and corresponding density hi. The valuations

are independently distributed across the agents.

Importantly, each agent only receives a noisy signal vi of his true valuation Vi before he enters

the mechanism. We assume that the type vi is distributed, again without loss of generality

on the unit interval [0; 1] with distribution Fi and corresponding density fi. We denote by

Hivi , Hi (Vi jvi ) ; the distribution of Vi conditional on vi, with the corresponding conditional
density hivi , hi (Vi jvi ). We refer to vi as the type, or interim information, of agent i.

In addition, each agent i may receive additional information which resolves the residual

uncertainty about the value Vi during the bidding process. Es½o and Szentes (2007) suggested

that the additional information can be described by a random variable si which is statistically

independent of the initial information, vi. Formally, si can be written as:

si(vi; Vi) = Hivi(Vi jvi ) , si: (1)

Thus si is the percentile of the true valuation conditional on the type vi. We refer to the random

variable as the signal si 2 Si = (0; 1]. By providing the signal si(vi) = Hivi(Vi) the bidder learns
his valuation, while the seller, assuming that she could observe the signal, would still not know

the exact valuation of the bidder. Denote the function which computes the valuation given the

signal and initial type by

ui(vi; si) , H�1
ivi
(si).

Thus by construction, it has the property that for all vi and si, the resulting conditional expec-

tation satis�es E [ui(vi; si) jvi; si ] = Vi, i.e. after observing type vi and signal si, bidder i knows
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his true valuation Vi. We observe that by construction of (1), the distribution of si is simply the

uniform distribution on [0; 1].

Importantly, we assume that the seller can control the time and the precision of the additional

disclosed information. But, as in Bergemann and Pesendorfer (2007) and Es½o and Szentes (2007),

while the seller can control the precision (and now the timing) of the information, she does not

observe the realization of the additional signal, which remains private information to each bidder

i. In the next subsection we describe a speci�c procedure of sequential information disclosure

of the signal si. The disclosure of the random variable si is going to be sequential in that the

disclosure mechanism determines for every realization of the signal si the time at which the

realization is disclosed. In particular, higher realizations of si are going to be disclosed later in

time.

2.2 Sequential Mechanism: Disclosure and Allocation

We consider the following sequential disclosure and allocation mechanism which ends with the

allocation of the object. The disclosure component determines the time by which the signal si

is revealed. The allocation component determines the �nal allocation of and payments for the

object. As in the ascending auction, the object is awarded to the �nal participating bidder.

Disclosure The sequential mechanism asks each bidder to initially report his type vi and then

to report his signal realization si as soon as it is disclosed by the mechanism. The disclosure part

of the mechanism determines the time t 2 [0; 1] at which the signal realization si is disclosed. We
�rst de�ne the sequential disclosure component which determines the time at which the signal

realization si is disclosed. For every agent i, we de�ne a disclosure function �i , �i (t; bvi; si):
�i : [0; 1]� [0; 1]� (0; 1]! [0; 1] , (2)

which determines the disclosure of the signal realization as a function of time t 2 [0; 1], reported
type bvi 2 [0; 1] and signal realization si 2 (0; 1]. The function �i , �i (t; bvi; si) is assumed to
be a step function in time t, with a single jump, from 0 (which represent the event of no signal

disclosure yet) to si > 0 at a particular disclosure time ti (bvi; si):
ti (bvi; si) , min ft 2 [0; 1] j�i (t; bvi; si) > 0g ;
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and constant everywhere else in t. Thus the disclosure time ti (bvi; si) is the time at which the
signal realization si is disclosed to bidder i given a reported type bvi.
Importantly, the disclosure time ti (bvi; si) will be constructed to be component-wise strictly

increasing, that is ti (bvi; si) is strictly increasing in both the reported type bvi and the signal
realization si. Thus, a higher reported type slows down the disclosure of information, and a

higher realizations of si is going to be disclosed later than a low realization of si. In this sense,

the initial report bvi in�uences the speed of disclosure, and as time goes by, the bidder continues
to update his estimate, even in the absence of a disclosed signal. The disclosure function �i and

disclosure time ti for di¤erent realization of the type vi and signal si are illustrated in Figure 1.

Insert Figure 1: Disclosure function �i and disclosure time ti here.

The state of the disclosure process at time t, given by �i (t; bvi; si), is privately observable to
bidder i, and it is either 0 (which means disclosure has not yet occurred) or si (which means

disclosure has occurred).

A reporting (or message) strategy mi = (ri; di) of bidder i consists of an initial report ri and

a (continued) participation decision di for bidder i. The strategy of each bidder i depends on the

private state (or history) of bidder i. The private history of bidder i at t = 0 is simply his type

vi, or h0i = (vi) and at all subsequent times t > 0, his type vi, his reported type bvi and the state
of the disclosure process �i (t; bvi; si), or

hti = (vi; bvi; �i (t; bvi; si)) :7 (3)

Formally, then the initial report ri is de�ned as a mapping:

ri : [0; 1]! [0; 1] (4)

and the continued participation decision di is de�ned as:

di : [0; 1]� [0; 1]� [0; 1]� [0; 1]! f0; 1g : (5)

7We use the term private state or private history here interchangeably. Formally, the de�nition of the private

state represents a su¢ cient statistic of the entire private history, as it summarizes, without loss of generality, the

evolution of the disclosure process in terms of its present value.
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The decision of the bidder is either to stay in the bidding process: di (�) = 1 or to exit the bidding
process: di (�) = 0. The participation decision depends on the time t 2 [0; 1], the true type vi,
the reported type bvi 2 [0; 1], and the state of the disclosure process �i (t; bvi; si) 2 [0; 1]. The exit
decision is irrevocable, and hence di, as a function of time, is restricted to be weakly decreasing

in t.

Allocation The object is assigned as soon as all but one of the bidders have exited the bidding

process. As time t progresses, we can track the exit decision of the agents. At time t < 1, agent

i has exited the bidding process if the exit time � i (t) of bidder i:

� i (t) , min fft0 � t jdi (t0; �) = 0g ^ 1g , (6)

satis�es � i (t) � t. To wit, if the agent has not yet exited, then at time t, we assign him the

exit time 1, which simply represent the fact that at t he is still participating in the bidding. For

the individual bidder i, the disclosure process �i (�) stops as soon as bidder i decides to exit the
auction, or �i (t; bvi; si) = �i (� i; bvi; si) for all t � � i.
The mechanism determines the allocation at the �rst time, � , at which all but one of the

agents have exited the auction:

� , min ft > 0 j9k, s. th. � j (t) � t;8j 6= k; � k (t) > tg .

This de�nition of the stopping time (and the subsequent de�nition of the allocation rule) excludes

events in which all of the remaining bidders stop at the same time. These are zero probability

events and hence can be omitted without loss of generality. At the expense of additional notation,

we could complete the description by introducing a uniform random allocation in case of such a

zero probability event, essentially a tied bid.

The assignment of the object is described by a probability vector x = (x1; :::; xn), and the

assignment probabilities xi :

xi : [0; 1]
n ! f0; 1g (7)

are required to sum to less than or equal to one,

nX
i=1

xi (�) � 1.
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The allocation itself depends only on the stopping time � ; i.e.

xi (� 1; :::; �n) , 0, � i � � , xi (� 1; :::; �n) , 1, � i > �:

Similarly, the transfers are described by a vector p = (p1; :::; pn), where each pi is formally de�ned

by

pi : [0; 1]� [0; 1]� [0; 1]! R+. (8)

The transfer payments will have the property that only the winning bidder is making a positive

payment, i.e. pi (bvi; � i; �) = 0 if � i � � , and that the payment of the winning bidder will only

depend on his initial report bvi 2 [0; 1], and the stopping time � 2 [0; 1], of course conditionally
on � i > � .

Incentive and Participation Constraints We now de�ne �truthtelling�behavior as follows:

r�i (vi) , vi;

and

d�i (t; vi; vi; �i (t; vi; si)) ,

8<: 1, if �i = 0;

0; if �i > 0:

In other words, each agent reports truthfully his own type, and then stays in the bidding process

as long as he has not yet received the additional signal si, and exits as soon as a signal has been

received. We refer to this as �truthtelling�behavior as the individual exit time reveals the value

of the signal. We can now de�ne the incentive and participation constraints. We require that

truthtelling be a best response along every private history hti:

E
�
xi
��
m�
i ;m

�
�i
��
Vi � pi

��
m�
i ;m

�
�i
�� ��hti � � E �xi ��mi;m

�
�i
��
Vi � pi

��
mi;m

�
�i
�� ��hti � ;8mi;8hti;

(9)

and that truthtelling satisfy the participation constraint along every private history hti :

E
�
Vixi

��
m�
i ;m

�
�i
��
� pi

��
m�
i ;m

�
�i
�� ��hti � � 0, 8hti: (10)

In minor abuse of notation, we describe the assignments xi and the transfers pi in (9) and

(10) as dependent on the entire reporting strategy pro�le, but of course the strategy pro�le m�

generates the reports r� (v) and the exit times (:::; � i; :::), which determine the assignment and
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transfer prices. We observe that the above incentive and participation constraints imply that the

interim participation and incentive constraints are satis�ed, i.e. at the outset of the game when

each agent only observes his type vi: h0i = vi, as well as the posterior participation and incentive

constraints when bidder i either exited, � i � � , or won the bidding process, � i > � .
We may summarize the sequential mechanism as follows. For each bidder i, nature initially

draws (vi; si). Bidder i initially observes vi but not si. Bidder i reports bvi , ri(vi) according

to the reporting strategy ri(�) (whether or not bvi = vi). Then, the disclosure policy �i(�) uses
the reported type bvi (and not the true type vi) and the signal si to generate the disclosure time
t(bvi; si). The mapping speci�ed by the disclosure policy (that is, the time at which a signal
realization will be disclosed as a function of the reported type) is common knowledge. At any

point of time t, the bidder either knows that si > s0i for the critical signal s
0
i such that t = t(bvi; s0i)

or that the value is si, namely if t(bvi; si) � t.
The allocation mechanism is thus a version of an ascending auction, in the format of the

�Japanese�or �button�auction in which the price uniformly increases over time. In the button

auction, if a bidder releases the button, he reveals his type, and the auction ends for him. The

ascending disclosure mechanism modi�es the button auction in two important aspects: (i) it

associates a disclosure process with the price process, (ii) the �nal price paid is personalized,

and related to, but not necessarily equal to the valuation of the �nal remaining competitor.

A special, but important, case with which we begin the analysis in Section 3 is the case of

uninformed bidders. Here, the initial information, the type vi, is simply a singleton, and thus

merely represents the prior information contained in the common prior Hi, and does not contain

any additional information.

3 Bidding without Interim Information

We begin our analysis with bidders who do not possess interim private information. In other

words, the initial information of each agent is the common prior H = (H1; ::::; Hn) over the

valuations. This informational environment with ex-ante uninformed bidders was analyzed by

Bergemann and Pesendorfer (2007), but they restricted attention to static disclosure mechanisms.

In this section we revisit their setting but allow for the possibility of sequential information
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disclosure.

Before we consider any sequential disclosure mechanism it is useful to describe the benchmark

allocation, which the seller could achieve, if the valuation Vi of each bidder were observable by

the seller. In the case of observable valuations, the seller could directly identify the bidder i

with the highest valuation Vi, and o¤er him the object at a price equal to his valuation Vi. The

resulting allocation would satisfy the posterior, in fact the ex post participation and incentive

constraints of all the bidders, and the seller would be able to extract the entire social surplus.

The resulting optimal revenue, the social surplus, is given by:

S� ,
Z
V1

� � �
Z
Vn

max fV1; :::; Vng dH1 (V1) � � � dHn (Vn) . (11)

The resulting allocation is socially e¢ cient, that is bidder i with valuation Vi obtains the good

if and only if all other bidders have valuations less than Vi.

We now adapt (and simplify) the sequential mechanism, de�ned earlier by (2), (7) and (8) to

the present environment. In particular, without interim information vi, the disclosure function

can depend on time t and signal si alone, and without loss of generality, we can take the signal

si to be equal to the valuation Vi. With this, the disclosure function can now be written as:

�i : [0; 1]� [0; 1]! [0; 1] , (12)

which determines the disclosure of the valuation as a function of time t 2 [0; 1] and of the

valuation Vi 2 [0; 1]. The disclosure function �i (t; Vi) is constructed as a step function in time t,
with a single jump, from 0 to Vi at the disclosure time ti of valuation Vi, where

ti (Vi) , min
t
ft 2 [0; 1] j�i (t; Vi) � Vig . (13)

Thus the disclosure time ti (Vi) is the �rst time at which the valuation Vi is privately disclosed

to bidder i.

In the absence of ex-ante private information, we can choose the disclosure functions f�ig
n
i=1

to be identical for all of the agents and de�ne

�i (t; Vi) ,

8<: 0; if t < Vi;

Vi; if t � Vi:
(14)
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Thus, bidder i with valuation Vi receives a perfectly informative signal about his valuation at

t = Vi, whereas at all times t with t < Vi, he will infer that his expected valuation is given by

the conditional expectation, E [Vi jVi � t ].
The assignment of the object to agent i depends only on his exit time � i and the stopping

time � :

xi (� i; �) ,

8<: 0; if � i � � ;
1; if � i > �:

(15)

The transfer payments request a single positive payment pi at the stopping time � from the

winning bidder only:

pi (� i; �) ,

8<: 0; if � i � � ;
E [Vi jVi � � ] ; if � i > �:

(16)

A sequential mechanism is then de�ned by (14)-(16), and we shall refer to it as the ascending

disclosure mechanism.

Without interim information, the participation decision di depends only on the time t and

the state of the disclosure process at time t, represented by �i (t; �).

di : [0; 1]� [0; 1]! f0; 1g ;

The decision of the bidder is either to stay in the bidding process: di (�) = 1 or to exit the bidding
process: di (�) = 0. We can now explicitly describe the incentive and participation constraints in
this environment. We begin with the incentive constraints and require that �truthtelling�be a

best response for every private history hti = (t; �i (t; �)). Thus if �i (t; �) = 0, then;

E [xi (1; t) (Vi � pi ((1; t))) jt; �i (t; �) = 0] � E [xi ((t; t)) (Vi � pi ((t; t))) jt; �i (t; �) = 0] ; (17)

and if �i (t; �) > 0, then:

E [xi ((t; t)) (Vi � pi ((t; t))) jt; �i (t; �) = Vi ] � E [xi ((1; t)) (Vi � pi ((1; t))) jt; �i (t; �) = Vi ] : (18)

In other words, it is optimal to stay in the bidding process if no information has been revealed:

�i (t; �) = 0; and it is optimal to exit rather than to continue if information has been disclosed:
�i (t; �) = Vi. Now given that xi (1; t) = 1; xi (t; t) = 0; pi (1; t) = E [Vi jVi � t ] and pi (t; t) = 0,
we can simplify (17) and (18) to read:

E [(Vi � E [Vi jVi � t ]) j Vi � t ] � 0;
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and if �i (t; �) > 0, then:
0 � Vi � E

hbVi ���bVi � ti :
We also require that in either case, the expected net utility for the bidder is always nonneg-

ative, or

E [(Vi � E [Vi jVi � t ]) j Vi � t ] � 0; (19)

and

E [xi ((t; t)) (Vi � pi ((t; t))) jt; �i (t; �) = Vi ] � 0: (20)

We refer to the above constraints as the posterior incentive and participation constraints, as each

agent is willing to report truthfully, given the information the agent has, and has been provided by

the sequential mechanism at every time t. We refer to the constraints as the posterior constraints

rather than as the ex post constraints, as the agent may not know his true valuation at the time

of the assignment, but given the information at the time of the assignment, his constraints are

met.

The revenue of the ascending disclosure mechanism, provided that all the bidders report

truthfully is denoted by R�. We can now state our �rst result in the setting with bidders without

interim information.

Proposition 1 The ascending disclosure mechanism satis�es the posterior incentive and par-

ticipation constraints for all agents and the seller extracts the entire social surplus:

S� = R�:

Proof. We �rst observe that if all the bidders follow the truthtelling strategy, then the

posterior participation constraint is satis�ed for the losing and the winning bidders. A losing

bidder does not receive the object, see allocation rule (15), and by the payment rule (16) faces

a zero payment, and hence his net utility is equal to zero. The winning bidder receives the

object with probability one, see allocation rule (15), but given the payment rule (16) has to pay

his expected conditional valuation at the stopping time � . Thus, again, given the information

disclosed by the mechanism at time � , the net utility of the winning bidder is zero, and hence

the posterior participation constraint is satis�ed.

17



We then consider the posterior incentive constraints in the ascending disclosure mechanism.

Every losing bidder learns his value and immediately exits to receive a net utility of zero. Clearly,

exiting before learning the valuation Vi does not improve the net utility of bidder i, as bidder i

would merely exit earlier, and still receive zero net utility. But if he were to stay longer, and not

stop his own disclosure process, then the auction could reach the stopping point � > � i = Vi,

and ask bidder i to pay more than his true valuation. Clearly, this does not improve his net

utility either. Finally, consider the winning bidder. He cannot change the price conditional on

winning, he can only lower his probability of winning by exiting the auction before his valuation

is revealed. But if he were to exit the auction, he would receive zero net utility as well, thus

exiting early does not constitute a pro�table deviation either. Thus staying in the mechanism is

an optimal strategy.

Finally, let us consider the revenue of the ascending disclosure mechanism. The seller receives

revenue from bidder i when all the other bidders have a valuation below him. Thus, the allocation

is e¢ cient, and as every bidder, winning or losing receive zero expected utility, it follows that

the seller receives the entire social surplus.

We observe that in the ascending disclosure mechanism, the participation and incentive con-

straints of the losing bidders are not merely satis�ed as posterior constraints, but even hold as

ex post constraints. In other words, given the truthful reports of all the agents, a losing bidder

would not want to change his reporting behavior, even after he learned his true valuation Vi. In

contrast, for the winning bidder, the surplus extraction result crucially relies on the fact that

the winning bidder does not learn his true valuation Vi, but rather is limited to knowing that his

true valuation is in the interval [� ; 1] and hence forms his conditional expectation on the basis of

the disclosed information.

Having shown that with ex-ante uninformed bidders, the ascending information disclosure

leads to the revenue maximizing allocation, we now generalize the procedure to the case where

the bidders have some private, or interim, information before they enter the mechanism.
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4 Bidding with Interim Information

We now return to the general model in which each bidder i receives a noisy signal vi of his

valuation Vi; his interim information. This is the informational environment analyzed in Es½o and

Szentes (2007) and we maintain their distributional assumptions, namely that the density fi (vi)

associated with the distribution Fi (vi) of the buyer�s type vi is positive everywhere and that

the distribution satis�es the monotone hazard condition, that is fi (vi) = (1� Fi (vi)) is weakly
increasing in vi. We also maintain their assumptions about the relationship between the initial

type and �nal valuation, namely that (@Hivi (Vi) =@vi) =hivi (Vi) is increasing in vi and Vi. They

establish that in the revenue maximizing mechanism, the seller makes all additional information

si available to the bidders. Yet, surprisingly, the seller can achieve the same expected revenue

as if the private signal si were directly observable by the seller. The objective of this section is

to provide a sequential implementation of the revenue maximizing mechanism. The ascending

disclosure mechanism di¤ers from the static disclosure mechanism in Es½o and Szentes (2007) in

two essential aspects: (i) the signal si is not completely disclosed, and (ii) the participation

constraint of each bidder is satis�ed at the posterior level rather than the interim level.

We proceed in three steps. In Subsection 4.1, we recall the relevant aspects of the revenue

maximizing allocation in which the signal pro�le s is directly observable by the seller, as derived

by Es½o and Szentes (2007).8 In Subsection 4.2, we present the ascending disclosure mechanism

with interim information. In Subsection 4.3, we show that the ascending disclosure mechanism

implements the revenue maximizing allocation.

4.1 Observable Signal

The benchmark case is the situation where the seller can observe the signal si of each bidder.

Es½o and Szentes (2007) show that in the second best, where the seller can observe the so-called

�shocks�si, the optimal mechanism has the following property: the object is rewarded to the

bidder with the largest non-negative "shock-adjusted virtual valuation" Wi(vi; si):

Wi(vi; si) = ui(vi; si)�
1� Fi(vi)
fi(vi)

ui1(vi; si); (21)

8Es½o and Szentes (2007) proceed to show that this second best allocation can also be implemented when the

signal pro�le s is unobservable to the seller.
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where ui1(vi; si) is the partial derivative of ui(vi; si) with respect to the �rst argument. We next

describe some properties of the virtual valuation.

Lemma 1 (Virtual Valuation)

1. The virtual valuation Wi (vi; si) is strictly increasing in vi and si;

2. If ui (vi; si) = ui (v0i; s
0
i) and vi � v0i, then Wi (vi; si) � Wi (v

0
i; s

0
i) ;

3. If Wi (vi; si) =Wi (v
0
i; s

0
i) and vi � v0i, then ui (vi; si) � ui (v0i; s0i) :

Proof. (1.) - (3.) follow directly from Lemma 1 and Corollary 1 of Es½o and Szentes (2007).

The above monotonicity of the virtual utility Wi (vi; si) implies that for a given vector of

types v = (v1; :::; vn) and vector of signals s�i = (s1; ::; si�1; si+1; :::; sn), bidder i obtains the

good whenever his signal si is larger than a threshold value si (v; s�i) of the signal si. This

threshold is de�ned by:

si (v; s�i) , min fmin fsi 2 [0; 1]jWi (vi; si) � 0 and 8j 6= i; Wi (vi; si) � Wj (vj; sj)g ; 1g : (22)

We note that in the above we take the minimum over si and 1, as vi might be small, and hence

there might be no signal si 2 [0; 1] that would turn bidder i into a winner. Given that the virtual
valuation does only depend on v and s and in particular is not a function of the distributional

property of s, we can construct the optimal (static) mechanism for every realization of s. The

optimal allocation is then determined by the virtual valuations and the bidder obtains the good

whenever his type is larger than a threshold vi (v�i; s):

vi (v�i; s) , min fmin fvi 2 [0; 1]jWi (vi; si) � 0 and 8j 6= i; Wi (vi; si) � Wj (vj; sj)g ; 1g : (23)

We construct incentive compatible transfers, which are only paid in case of winning, by asking

the winner to pay the valuation of the lowest type vi (v�i; s), given the signals s, which would

have won the contest:

pi (v�i; s) , ui
�
vi(v�i; s); si

�
: (24)

The payment pi (v�i; s) therefore has the Vickrey property that the payment of the winner i

is independent of his true type vi, conditional on the event vi � vi(v�i; s). The payment rule
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described by (24) therefore has the property that it implements truthtelling with respect to vi if

the signals (s1; :::; sn) are publicly revealed.

4.2 Ascending Disclosure Mechanism

We next construct the sequential information disclosure with the important property that the

virtual valuations of all participating bidders are equalized at all times t until bidding ends at

� . Given the initial reports of all bidders, truthful or not, we reveal to each bidder i whether

his signal si is above a current threshold at a speed such that at all times the virtual utility of

all participating bidders evaluated at the current threshold are identical. In this context, the

initial report bvi of bidder i simply determines the speed at which the disclosure process is running
through the signals. Formally, we explicitly de�ne the disclosure function �i (t; bvi; si) through the
virtual valuation Wi(bvi; si) and the associated disclosure time ti (bvi; si) for all i; bvi; si:

ti (bvi; si) ,
8<: 0; if Wi(bvi; si) < 0;
Wi(bvi; si); if Wi(bvi; si) � 0; (25)

and thus

�i (t; bvi; si) =
8<: 0; if t < ti (bvi; si) ;
si; if t � ti (bvi; si) : (26)

We use the static payments (24) in the ascending mechanism, but only via the (conditioning)

information available at the stopping time � . The individual exit times of the losing bidders,

� j � � , implicitly de�ne the reported signal realizations bsj via (25), namely:
Wj (bvj; bsj) = � j.

Thus, the winning bidder i pays for all realizations of si above the threshold si (bv;bs�i), and we
de�ne the transfer function Pi (bv;bs�i) by:

Pi(bv;bs�i) , E �pi (bv�i;bs) ��si � si (bv;bs�i)� : (27)

In particular, this implies that the winning bidder pays in expectations as much as he does in

the static mechanism with observable signals.

If we consider the allocation and payment rules, as encoded by (22) and (24), then it is

apparent that all the decisions with respect to bidder i, whether they concern the disclosure
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of information or the allocation, only depend on the competing bidders in a very limited way;

namely via the largest virtual utility among the competing bidders. Thus, to the extent that

the other bidders are truthtelling, a su¢ cient statistic of the pro�le (v�i; s�i) is the resulting

maximal virtual utility

w(v�i; s�i) , max
j 6=i

fWj (vj; sj) ; 0g :

It follows that to verify the posterior incentive and participation constraints of bidder i, it is

entirely su¢ cient to represent the competitors via a distribution of competing (maximal) virtual

utilities w, which we denote by G (w). For the remainder of this section, it will therefore be

su¢ cient to consider a single agent competing against a virtual valuation w. In consequence

we can drop the subscripts everywhere and rewrite the relevant notation, in particular (24) and

(23), as:

s (bv; w) , min fsjW (bv; s) � maxfw; 0gg , (28)

and

v (s; w) , min fvjW (v; s) � maxfw; 0gg . (29)

Consequently, the transfer payment given by (24) can be written as:

p (s; w) , u (v (s; w) ; s) ; (30)

where the transfer has a Vickrey property with respect to v but not with respect to s.

Now, as s is not observable in the ascending disclosure mechanism, if the bidder with a

reported type bv wins against the virtual valuation of w, then his true signal s has to be su¢ ciently
high, namely s � s (bv; w), and the transfer payment is formed by the conditional expectation:

P (bv; w) , E [p (s; w) js � s (bv; w) ] = 1

1� s (bv; w)
Z 1

s(bv;w) u (v (s; w) ; s) ds, (31)

where here and in all future integral expressions, we use the property that s is uniformly distrib-

uted on the unit interval, see (1). By the construction of the payment P (bv; w) in (31), it follows
that

p (s (bv; w) ; w) � P (bv; w) ; (32)

as well as

u (bv; s (bv; w))� P (bv; w) � 0; (33)
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where we note that by construction bv = v (s (bv; w) ; w). For later use, we collect some properties
of the threshold signal and the payment.

Lemma 2 (Payment and Signal Threshold)

1. If v > v0, then s (v; w) < s (v0; w) for all w.

2. p (s; w) is increasing in s and w.

3. P (v; w) is increasing in w and decreasing in v.

Proof. (1.) By Lemma 1.1, the virtual valuation is strictly increasing in v and s, and hence

it follows that the signal thresholds s (�; w) have to have the reverse ranking of v.
(2.) The transfer function p (s; w) is given by u (v (s; w) ; s), see (30). By Lemma 1.3, it

follows that if s is increasing, then u (v (s; w) ; s) is increasing as well. By Lemma 1.1, W (v; s) is

strictly increasing in v and s, and hence v (s; w) is increasing in w, and since u (v; s) is increasing

in v, the result follows.

(3.) For a given v, the transfer function P (v; w), see (31), is de�ned as a conditional expec-

tation over all signal realization s above a threshold s (v; w). This threshold is increasing in w

by the monotonicity of W (v; s), see Lemma 1.1. But by the previous argument, (2.), p (s; w) is

increasing in both s and w, and hence the conditional expectation over p (s; w) is increasing in

w. After all, an increase in w raises the expectation, given that the function p (s; w) is increasing

in s for a given w, but also the function p (�; w) is shifted upwards by a shift in w.
For a given w, the transfer function P (v; w), is de�ned as a conditional expectation over

all signal realization s above a threshold s (v; w). This threshold is decreasing in v by the

monotonicity ofW (v; s), see Lemma 1.1. But by the previous argument, (2.), p (s; w) is increasing

in s, and hence the conditional expectation over p (s; w) is decreasing in v.

4.3 Posterior Implementation

We now establish that the ascending disclosure mechanism leads to truthtelling with respect to

v and s. This will establish our main result:
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Proposition 2 (Posterior Implementation)

The ascending disclosure mechanism satis�es the posterior incentive and participation constraints

for all agents. The seller extracts as much revenue as in the revenue maximizing auction with

observable signals.

The proof proceeds in several steps. We show in Lemma 3 that if the bidder reports both

his type and his signal truthfully, then he obtains the same allocation and expected utility as

in the revenue maximizing mechanism of Es½o and Szentes (2007). In Lemma 4 we show that if

the bidder reports his type v truthfully, then he will also report his signal s truthfully, that is

he will exit the process as soon as he learns his true signal s. Then, Lemma 5 establishes that if

the bidder reports his signal s truthfully, he will also report his type v truthfully. The �nal step

of the argument, presented in Lemma 6, shows that lying both with respect to the type and the

signal is not pro�table either.

Lemma 3 (Revenue Equivalence)

Given truthtelling of (v; s), the allocation and the expected net utility is identical to the revenue

maximizing mechanism with observable signals.

Proof. The equivalence follows directly from the stipulated behavior at (29) and the expected

payment stipulated by (30). In the static mechanism a bidder with type v obtainsZ 1

0

"Z maxf0;W (v;s)g

0

[u (v; s)� u (v (s; w) ; s)] dG (w)
#
ds. (34)

In the present sequential procedure, the bidder with type v obtains:Z 1

0

�Z 1

s(v;w)

[u (v; s)� u (v (s; w) ; s)]
�
dsdG (w) . (35)

The equivalence of (34) and (35) now follows after exchanging the order of integration.

We can now verify that every agent reports his information truthfully in equilibrium.

Lemma 4 (Truthful Signal Report)

Given truthtelling of type v, the bidder is truthtelling about signal s.
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Proof. Suppose the sequential procedure reaches w and s > s(v; w), then we assign the

object to the bidder and ask him to pay:

P (v; w) =
1

1� s(v; w))

Z 1

s(v;w)

u (v (s; w) ; s) ds;

and since he does not know the signal realization s either, the expected net utility is

1

1� s(v; w))

Z 1

s(v;w)

[u (v; s)� u (v (s; w) ; s)] ds: (36)

But since the virtual utility is increasing in s, see Lemma 1, it follows that

@v (s; w)

@s
< 0,

and hence for all s > s(v; w)

u (v; s)� u (v (s; w) ; s) > 0;

since v > v(s; w), and thus the bidder expects a positive utility, and is staying in the auction.

On the other hand, suppose he were to learn that his true signal is s = s(v; w), then he would

quit the auction immediately, because his expected utility if he were to win at some later point

w0 � w is given by

u (v; s(v; w))� P (v; w0) � u (v; s(v; w))� P (v; w)

= u (v; s(v; w))�
Z 1

s(v;w)

u (v (s; w) ; s)
ds

1� s(v; w) � 0:

Now,

u (v; s(v; w))� u (v (s0; w) ; s0) < 0,

since with s0 > s(v; w) and v0 < v such that u (v; s(v; w)) = u (v0; s0), W (v; s(v; w)) > W (v0; s0),

by Lemma 1.2. But this means that v (s0; w) > v0, and hence

u (v; s(v; w))� u (v (s0; w) ; s0) < u (v; s(v; w))� u (v0; s0) = 0,

which completes the proof.

We are now in a position to verify that, conditional on reporting truthfully in the ascending

auction, each bidder is also willing to report truthfully about his type v.
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Lemma 5 (Truthful Type Report)

Given truthtelling of the signal s, the bidder is truthtelling about his type v.

Proof. Suppose for now that the bidder knows the value of w. Suppose also that the bidder

misreports bv 6= v but continues to report his signal truthfully, that is he exits whenever his signal
s has been disclosed to him, i.e. d (t; v; bv; � (t; bv; s)) = 0 if and only if � (t; bv; s) > 0. Then, the
agent will fail to win the object if s < s(bv; w), which happens with probability s(bv; w). Now, if
s(bv; w) = 1, then the proof is complete, since in this case this deviation yields a zero net payo¤,
and thus not pro�table. Now suppose that s(bv; w) < 1. The agent wins the auction if s � s(bv; w)
which happens with probability 1� s(bv; w), in which case he pays

1

1� s(bv; w)
Z 1

s(bv;w) u(v(s; w); s)ds:
Therefore, his ex-ante expected payment isZ 1

s(bv;w) u(v(s; w); s)ds:
His ex-ante gross utility derived from the object isZ s(bv;w)

0

0ds +

Z 1

s(bv;w) u(v; s)ds;
so that his ex-ante net expected utility isZ 1

s(bv;w) [u(v; s)� u(v(s; w); s)] ds: (37)

Note that u(v; s)� u(v(s; w); s) � 0 if and only if v � v(s; w); and in turn if and only if

W (v; s) � W (v(s; w); s) =W (v; s(v; w))

if and only if s(v; w) � s. Therefore, the integral (37) is maximized if it is performed only on the
interval on which the integrand is non-negative, which is by construction [s(v; w); 1]. In other

words, setting bv = v maximizes this integral. Since this holds for any w, it must also hold in

expectation over all w.

For further analysis it is worth noting that the above proof establishes that reporting the

true type is not just optimal in expectation over all possible competing virtual valuations w, but
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in fact for each realization of the virtual valuation w. The initial report v̂ determines the speed

by which the bidder runs through his signals. Now, for every w, an overreport is associated

with a lower threshold for the critical signal s(v; w) by Lemma 2.1: v̂ > v , s(v̂; w) < s(v; w).

Similarly, for every w, an underreport is associated with a higher threshold for the critical signal

s(v; w) by Lemma 2.1: v̂ < v , s(v̂; w) > s(v; w). Thus, if the bidder overreports his type,

v̂ > v, the disclosure process ends earlier for the bidder, as the threshold for the disclosed

signals s is lower, s(v̂; w) < s(v; w). Thus, the bidder receives less private information, than if

he were to report truthfully. By contrast, if the bidder underreports his type, v̂ < v; then the

disclosure process ends later for the bidder, as the threshold for the disclosed signals is higher,

s(v̂; w) > s(v; w). The initial reporting strategy of the bidder therefore in�uences the amount of

private information that he will receive in the disclosure process. But the next result establishes

that the advantage of increasing or decreasing the information is o¤set by less favorable transfer

payments associated with underreports and overreports, respectively.

Lemma 6 (Joint Deviations)

The bidder cannot increase his utility by overreporting v̂ > v or by underreporting v̂ < v.

Proof. We �x w and consider the utility the bidder obtains as a function of his own signal s,

if observed. We claim that for any misreport, the bidder obtains a lower utility for every w than

he would have obtained reporting his true type. We begin with overreporting v̂ > v , s(v̂; w) <

s(v; w). It is useful to consider two separate cases, and thus let

V + , fv 2 [0; 1]jbv � v and the bidder wants the object upon learning that s > s(bv; w)g; (38)
and conversely let

V � , fv 2 [0; 1]jbv � v and the bidder rejects the object upon learning that s > s(bv; w)g: (39)
Note that the agent prefers to receive the object upon learning that s > s(bv; w) if and only if

E [u(v; s)� P (bv; w)js > s(bv; w)] = 1

1� s(bv; w)
Z 1

s(bv;w) [u(v; s)� u(v(s; w); s)] ds � 0:
Now suppose that bv 2 V � and the agent learns that s � s(bv; w), and hence s � s(v̂; w) <

s(v; w), then it is optimal for the bidder to exit after s has been revealed. After all, by over-

reporting v̂ > v, it follows that u (v̂; s) > u (v; s), for all s. But if s � s(v̂; w), then by (33),
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u (v̂; s) � P (v̂; w) < 0, and hence it follows that u (v; s) � P (v̂; w) < 0 as well, and thus exit

is an optimal response, with the resulting zero net expected utility. If bv 2 V � and s > s(bv; w),
then the agent will refrain from claiming the object by construction of (39), as well. Therefore,

any deviation bv 2 V � is unpro�table.
Now suppose that bv 2 V +. Again, if s � s(bv; w), then the agent will truthfully refrain from

claiming the object. If s > s(bv; w), then he will truthfully claim the object by construction.

Therefore, if bv 2 V +, then the bidder will optimally report his signal truthfully in the second
stage for any realization of the signal. Now if bv 2 V + n fvg would constitute a strictly pro�table
deviation, then we would have established a contradiction to Lemma 5, which established the

optimality of truthtelling of the type, given thruthtelling of the signal.

Next consider the case of underreporting: v̂ < v , s(v̂; w) > s(v; w). This implies that the

bidder will learn more as compared to the case where he reported truthfully. If the signal s is

su¢ ciently small, then s � s(v; w) < s(v̂; w). Now, we observe that if the true signal had been
s = s(v; w), then the bidder would not want to receive the object if o¤ered at P (v; w), since

u (v; s(v; w))� P (v; w) < 0,

and by Lemma 2.3, P (v̂; w) > P (v; w), and a fortiori would want to drop out of the auction.

Suppose then that the true signal s is su¢ ciently large, or s > s(v; w). Now, there must exist a

signal ~s with s(v; w) < ~s � s(v̂; w) such that the bidder buys the good (for the given w) if and
only if his true signal is above ~s. Now, consider a type ~v with W (~v; ~s) = w. By construction, the

bidder who underreported v to v̂ obtains the object for the same set of signals as the truthful

type ~v would have. Note, however, that the payment of the type v who underreports to v̂ is

larger than the payment of the ~v type, again by Lemma 2.3. So, the utility of the bidder with

type v, who underreports with regard to his type, and then behaves optimally with regard to his

reported signal is smaller than if the bidder still underreported to ~v and then reported his signal

truthfully. But given Lemma 5, even the resulting net utility is smaller than the bidder would

obtain if he were to report his type truthfully. Thus underreporting is not pro�table either.
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4.4 Single Agent Example

We conclude this section with an example of a single buyer with a utility function that is additive

in the type v and the signal s. The example is meant to illustrate the impact of the sequential

information disclosure on the reporting incentives and the structure of payments. We also illus-

trate how the transfers in the static disclosure environment of Es½o and Szentes (2007) compare

with the transfers in the sequential disclosure environment.

Thus, we assume that the valuation of the single bidder/buyer is determined by:

u(v; s) = v + s,

with v uniformly distributed on [0; 1] and s uniformly distributed on [�1; 1]. (The support

assumption on the signal s, and consequently the valuation u (v; s) here does not agree with the

normalization to the unit interval in the earlier sections, but this is without consequence and

merely assists in computing the present example.) The signal s therefore has an expected value

of 0 and can readily be interpreted as the incremental information over and above the initial

type v.

Selling with an Observable Signal We saw earlier in (21) that the buyer should receive the

good whenever his virtual utility is nonnegative, or:

W (v; s) = u(v; s)� 1� F (v)
f(v)

u1(v; s) = 2v + s� 1 � 0: (40)

Thus, in particular, if the signal s were observable by the seller, then the bidder should receive

the object if and only if

2v + s� 1 � 0, v � 1� s
2
. (41)

We observe that even though type v and signal s receive the same weight in the valuation of

the buyer, the virtual valuation is biased towards the initial type v as the information rent of

the buyer only arises due the type v. In the presence of an observable signal s, the incentive

compatible payment, essentially a posted price, is:

p(s) =
1� s
2

+ s =
1 + s

2
.
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In consequence, the net utility of the buyer, conditional on receiving the object at a given

realization of v and s is:

u (v; s)� p (s) = v + s� 1 + s
2

= v � 1� s
2
. (42)

The latter is always nonnegative, given (41), and hence satis�es the interim participation con-

straint of the buyer. Moreover, the interim expected utility of a buyer with type v is given

by

E [u (v; s)� p (s) jv ] = E [[u (v; s)� p (s)]� I fW (v; s) � 0g jv ] (43)

=

Z 1

1�2v

1

2

�
v � 1� s

2

�
ds =

1

2
v2.

Static Disclosure: The Handicap Sale In the presence of private information of the signal

s, Es½o and Szentes (2007) suggest a handicap auction which implements the revenue maximizing

outcome. With a single bidder, the case we study here, the handicap auction works like a menu

of options. More precisely, the seller o¤ers the buyer a menu of option contracts, where each

option contract is speci�ed by a pair (f; p), namely an initial fee, denoted by f , and an associated

strike price, denoted by p; to acquire the object. In the direct revelation mechanism, the fee f

and the strike price are determined as function of the reported type v only, and the signal s

simply controls whether the buyer exerts the option at the given strike price p or not.9

The handicap auction implements the revenue maximizing allocation by choosing the strike

price p so that the agent buys the object if and only if the virtual utility is nonnegative,W (v; s) �
0. This determines the strike price for a given v as the bidder should receive the object if and

only if his virtual valuation is larger than zero, or v + s � 1� v, and thus

p(v) , 1� v. (44)

The associated fee f (v) for the option to strike at price p (v) = 1� v, the price of the option, is
then given by:

f(v) , 1

2
v2. (45)

9In Es½o and Szentes (2007), the additive environment appears in Example 1 to illustrate payo¤ environments

that satisfy the relevant monotonicity conditions. The additive environment reappears in the discussion of the

handicap auction, which they solve explicitly for the case of v being distributed uniformly and s being distributed

logistically. Here, we solve the symmetric environment where v and s are both uniformly distributed.
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The option price f (v) is determined by the revenue maximization problem of the seller, subject

to the incentive constraint that the buyer is purchasing the �right�option:Z 1

�1
max fv + s� p (v) ; 0g 1

2
ds� f (v) �

Z 1

�1
max fv + s� p (bv) ; 0g 1

2
ds� f (bv) , for all v; bv.

We �nd from (44) and (45), that a buyer with a high type is paying a high up front fee f (v) in

exchange for a lower strike price p (v).

By the taxation principle, we can achieve the outcome of the direct mechanism, the handicap

auction, with an indirect mechanism, namely a menu of option contracts, ff; p (f)g ; in which
a higher initial fee purchases a lower strike price, with p (f) = 1 �

p
2f , or conversely, where a

lower strike price requires a higher option fee; ff (p) ; pg ; with f(p) = (1� p)2=2.
Thus, in the handicap auction, the buyer �rst purchases the option, and then possibly pays

the strike price to receive the object. Now, clearly, since the fee is nonnegative, f (v) � 0, if

eventually the buyer fails to acquire the object, then his net utility is negative, and the ex post

participation constraint is violated. But, even if the buyer acquires the object, he may not break

even, as the sum of the payments f + p may exceed his valuation, that is

u (v; s)� p (v)� f (v) � 0;

as the buyer will pick up the option, but not break even as long as

1� 2v � s � 1 + 1
2
v2 � 2v.

Thus, in the event of a failure to purchase, or a failure to receive a su¢ ciently high signal s, the

ex post participation constraint of the buyer will be violated.

Sequential Disclosure: The Ascending Sale We now contrast the static disclosure with

the sequential disclosure. In the sequential disclosure mechanism, the buyer initially reports a

type v. As a function of the initial report v, the sequential disclosure mechanism determines how

much the buyer will learn about his signal s. We showed earlier that the sequential mechanism

assigns the object to the buyer if and only if the virtual utility is positive, and hence by (40),

s � 1 � 2v. It follows that the mechanism sequentially discloses all signals below the critical

value s(v) with

s(v) , 1� 2v. (46)
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Thus if his true signal s is below s(v), then the buyer will learn the value of s exactly, but in

contrast, if his true signal s is above s(v), then he only learns this conditional information. Thus,

if the disclosure mechanism reveals that the signal s satis�es s � s(v), then it will stop and o¤er
the object to the buyer at a price denoted by P (v). The price P (v) takes the expectation over

all s, conditional on s � s(v).
We established in (42) that the incentive compatible price given an observable s is given by:

p (s) =
1 + s

2
,

and thus the price P (bv), conditional on the reported type bv takes the average:
P (bv) , 1

Pr (s � s(bv))
Z 1

s(bv) p (s)
1

2
ds =

1bv
Z 1

1�2bv
1 + s

2

1

2
ds = 1� 1

2
bv. (47)

We then �nd from (46) and (47) that the initial report v a¤ects the amount of disclosed infor-

mation and the purchase price of the object. The disclosed information decreases in the initial

report v, and hence lower initial reports lead to more disclosed information. But, the additional

information is only obtained in exchange for a higher purchase price as P (v) is decreasing in

v as well, P 0 (v) = �1=2 < 0. Thus, a lower report �buys�more information and hence in-

creases the informativeness of the mechanism, but at the cost of a higher price conditional on the

transaction. This is the option character of the initial report. With his initial report the buyer

then determines how much more he will learn about his true valuation and ultimately pay for

the additional information with a higher purchase price. The expected utility of the truthtelling

bidder, conditional on receiving the object is given by:

E [u (v; s)� P (v) jv; s � s(v) ] = E [u (v; s) jv; s � s(v) ]� P (v)

=
1

Pr (s � s(v))

Z 1

s(v)

(s+ v)
1

2
ds�

�
1� 1

2
v

�
= 1�

�
1� 1

2
v

�
=
1

2
v,

which is nonnegative for every v � 0, and hence satis�es the posterior participation constraint of
the buyer everywhere. And of course, as the interim probability of winning with a type v is given

by Pr (s � s(v)) = v, it follows that the interim expected utility is given by v2=2, con�rming the
earlier result of (43).
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Finally, with the guidance of Lemma 4 - 6, it is straightforward to establish that it is indeed

optimal to tell the truth in the sequential disclosure mechanism. In particular, the parametric

nature of the example allows us to explicitly calculate the value of the misreporting strategies

and to establish that none of them improves on truthtelling.

5 Conclusions

We extend the canonical mechanism design to allow the seller to also control the information that

the bidder can receive about the object during the bidding contest. We exhibited a sequential

disclosure mechanism associated with a sequential bidding mechanism which allowed the seller

to extract almost the entire surplus of the allocation. The information rent of each bidder is

restricted to the private information that each bidder was endowed with before entering the

auction. The sequential disclosure process allowed us to assign the object in such a way as to

maintain the posterior incentive and participation constraints of all the bidders. The disclosure

mechanism allowed each bidder to obtain a su¢ cient amount of private information to �nd out

whether his virtual valuation is larger or smaller than those of their competitors. Importantly,

the winning bidder only learns the lower bound of his virtual utility, but never his exact valuation

nor others�virtual valuations. This was achieved by informing the bidders in each round whether

their valuations are below or above a given threshold. The threshold was increased in every round

and thus the losing bidders learn that their valuations are below the threshold at the moment

at which they exit the process. The winning bidder has to pay a price which is larger than if

the signal were known to equal exactly the threshold value but smaller than (or in case with no

private information equal to) his expected valuation.

33



References

Bergemann, D., and M. Pesendorfer (2007): �Information Structures in Optimal Auc-

tions,�Journal of Economic Theory, 137, 580�609.

Blumenthal, M. (1988): �Auctions with Constrained Information: Blind Bidding for Motion

Pictures,�Review of Economics and Statistics, 70, 191�198.

Cassady, R. (1967): Auctions and Auctioneering. University of California Press.

Courty, P., and H. Li (2000): �Sequential Screening,�Review of Economic Studies, 67, 697�

717.

Demsetz, H. (1968): �Why Regulate Utilities?,�Journal of Law and Economics, 11, 55�65.

Es ½O, P., and B. Szentes (2007): �Optimal Information Disclosure in Auctions,�Review of

Economic Studies, 74, 705�731.

Gershkov, A. (2002): �Optimal Auctions and Endogenous Information Structure,�Discussion

paper, Hebrew University, Jerusalem.

(2009): �Optimal Auctions and Information Disclosure,�Review of Economic Design,

13, 335�344.

Green, J., and J. Laffont (1987): �Posterior Implementability in a Two Person Decision

Problem,�Econometrica, 55, 69�94.

Grigorieva, E., P. Herings, R. Müller, and D. Vermeulen (2007): �The Private Value

Single Item Bisection Auction,�Economic Theory, 30, 107�118.

Kamenica, E., and M. Gentzkow (2011): �Bayesian Persuasion,�American Economic Re-

view, 101, 2590�2615.

Kavajecz, K., and D. Keim (2005): �Packaging Liquidity: Blind Auctions and Transaction

Cost E¢ ciencies,�Journal of Financial and Quantitative Analysis, 40, 465�492.

34



Kenney, R., and B. Klein (1983): �The Economics of Block Booking,�Journal of Law and

Economics, 26, 497�540.

Krähmer, D., and R. Strausz (2011): �The Bene�ts of Sequential Screening,�University of

Bonn and Humboldt University of Berlin.

Li, H., and X. Shi (2013): �Discriminatory Information Disclosure,�Discussion paper, Univer-

sity of British Columbia and University of Toronto.

Loeb, M., and W. Magat (1979): �A Decentralized Method of Utility Regulation,�Journal

of Law and Economics, 22, 399�404.

Myerson, R. (1981): �Optimal Auction Design,�Mathematics of Operations Research, 6, 58�

73.

Pavan, A., I. Segal, and J. Toikka (2011): �Dynamic Mechanism Design: Revenue Equiv-

alence, Pro�t Maximization, and Information Disclosure,� Discussion paper, Northwestern

University and Stanford University.

Ye, L. (2007): �Indicative Bidding and a Theory of Two-Stage Auctions,�Games and Economic

Behavior, 58, 181�207.

35



t(v, s) t(v, s′) t(v′, s)

s

s′

ξ(t, v, s)

ξ(t, v, s′)

ξ(t, v′, s)

time t

disclosure

dirkb
Typewritten Text

dirkb
Typewritten Text

dirkb
Typewritten Text

dirkb
Typewritten Text

dirkb
Typewritten Text

dirkb
Typewritten Text

dirkb
Typewritten Text

dirkb
Typewritten Text
 

dirkb
Typewritten Text

dirkb
Typewritten Text

dirkb
Typewritten Text

dirkb
Typewritten Text

dirkb
Typewritten Text

dirkb
Typewritten Text

dirkb
Typewritten Text

dirkb
Typewritten Text

dirkb
Typewritten Text
Figure 1: Disclosure function and disclosure time.
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