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Abstract

We study how the outcomes of a private-value �rst price auction can vary with bidders�

information, for a �xed distribution of private values. In a two bidder, two value, setting, we

characterize all combinations of bidder surplus and revenue that can arise, and identify the in-

formation structure that minimizes revenue. The extremal information structure that minimizes

revenue entails each bidder observing a noisy and correlated signal about the other bidder�s value.

In the general environment with many bidders and many values, we characterize the mini-

mum bidder surplus of each bidder and maximum revenue across all information structures. The

extremal information structure that simultaneously attains these bounds entails an e¢ cient allo-

cation, bidders knowing whether they will win or lose, losers bidding their true value and winners

being induced to bid high by partial information about the highest losing bid. Our analysis uses

a linear algebraic characterization of equilibria across all information structures, and we report

simulations of properties of the set of all equilibria.
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1 Introduction

It has been a little over �fty years since Vickrey (1962) presented a general analysis of the �rst-price

sealed-bid auction when values are private, symmetric, and independent, i.e., bidders know their own

value for sure and know only the prior distribution about others�preferences. Since that time, the

analysis has been extended to some special cases involving complete information or positive correlation,

and we review this literature below. However, these analyses have generally been carried out under the

maintained assumption that bidders�types are one-dimensional, so that bidders know nothing more

than their own value and the prior distribution. A comprehensive analysis of what can happen in a

�rst-price auction when bidders receive more information than their private value has thus far been

lacking.

In this paper, we seek to �ll the gap by characterizing what can happen in all equilibria for all

information structures of a �rst price auction, holding �xed the distribution of private values of the

bidders. Solving for all possible information structures sounds challenging. But we will exploit an

argument in Bergemann and Morris (2013a), showing that the set of all joint distributions of values

and bids that could arise from a Bayes Nash equilibrium for some information structure is equivalent

to the set of a version of incomplete information correlated equilibrium dubbed Bayes correlated

equilibrium (BCE). In the case of private values considered in this paper, this reduces to the Bayesian

solution of Forges (1993). In the context of a �rst price auction, a Bayes correlated equilibrium of a

�rst price auction is a joint distribution of bids and values with the property that, conditional on any

given value and bid of a bidder, that bidder does not have an incentive to substitute an alternative bid.

Once we can identify extremal Bayes correlated equilibria, such as those maximizing revenue of the

seller, we can mechanically identify the information structure that would give rise to that distribution

as a Bayes Nash equilibrium.

Our results in this preliminary version comprise three parts. First, we consider a single-unit �rst-

price auction with two bidders who have only two possible values but can make any real bid.1 In this

auction, the low valuation bidder is essentially in Bertrand competition with the other low valuation

bidder, and always bids his value. The high valuation bidder never has an incentive to bid below

the low value, and consequently the outcome is always e¢ cient. Nonetheless, by varying the beliefs

of the high valuation bidder, one can achieve substantial variation in revenue and bidders�surplus.

1To ensure existence, we use an e¢ cient tie breaking rule, and we also rule out the use of dominated strategies in

which a player bids above his valuation.
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For symmetric distributions over values, we provide a complete characterization of the set of possible

bidders�surpluses and revenue that can arise. We construct equilibria along the frontier, and we show

that these equilibria achieve bounds on bidders�surplus. For asymmetric distributions we are able to

construct equilibria that trace out a frontier which is consistent with evidence from simulations. In the

binary valuation example, the worst outcome for bidders is achieved with the complete information

type space in which bidders are perfectly informed about all bidders�valuations. This induces Bertrand

competition between the bidders, and consequently the winner bids the second highest value. However,

the best outcome for bidders (and lowest revenue for the seller) is attained when each bidder observes

a noisy and correlated signal of the other bidder�s value. The noise and correlation in bidders�signals

can be used to maximize the probability that high valuation bidders assign to facing an opponent

making a low bid, thus increasing bidder surplus and reducing revenue.

We also analyze the many bidder many value case. In this case, it is possible for the bidders

to be strictly worse o¤ than under complete information Bertrand competition. In fact, there is a

straightforward lower bound on each bidder�s surplus.2 Since we assume that dominated strategies are

not played, each bidder knows that his opponents will never bid above their respective values. Thus,

a worst-case bound on the distribution of opponents�highest bid is the distribution of their highest

value. A bidder could always ignore any additional information and best respond to this distribution,

and guarantee himself a minimum payo¤. Of course, in equilibrium, his opponents cannot in fact

always be bidding their values. We show that it is always possible to construct a more complicated

joint distribution of values and bids such that each bidder is held down to this lower bound. Moreover,

each bidder can be held to this bound for a range of payo¤s of the other bidders. Since the BCE

that achieves this bound allocates the good e¢ ciently, we therefore also obtain an upper bound on

the revenue of the seller. The extremal information structure attaining these bounds entails bidders

knowing whether they will win or lose, losing bidders bidding their values and winning bidders receiving

partial information about the highest losing bid in a way that maximizes their average bid.

Our third set of results is a computational exploration of the set of Bayes correlated equilibria.

We consider discretized models in which players values and bids are drawn from a grid. One of the

attractive features of BCE is that, like complete information correlated equilibria, the object of interest

is a joint distribution satisfying a series of linear incentive constraints. When combined with a linear

objective such as bidder surplus or revenue, this has the structure of a linear program. Thus, we

are able to use large-scale linear programming software to compute the set of bidders surpluses and

2We are grateful for Satoru Takahashi for pointing this out to us.
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revenue for fairly rich speci�cations of the model. Using this computational approach, we show what

happens to revenue and the shape of the bidder surplus set as the number of valuations grows.

Our focus in the paper is identifying what can happen in equilibrium if bidders know at least their

private values but have additional information about other bidders�values. But suppose that we knew

that, in addition to knowing their private values, bidders had also observed at least some information

about others�values. Thus we had a higher lower bound on the amount of information held by bidders.

The general formulation of Bayes correlated equilibrium in Bergemann and Morris (2013a) allows for

arbitrary lower bounds on the amount of information held by bidders.3 As the lower bound increases,

the set of Bayes correlated equilibria must shrink towards the complete information Nash equilibrium.

We illustrate this phenomenon by revisiting the binary-value conditionally-independent model of Fang

and Morris (2006). We compute the set of BCE for a range of informativeness of the conditionally

independent signals to illustrate the shrinking.

Finally, it is well known that reserve prices and entry fees can boost revenue for a �xed information

structure. We consider the e¤ect of these variations in the context of robust predictions. These

exercises illustrate the possible use of the methodology of this paper in evaluating how mechanisms

perform over a wide range of assumptions about information structures. The results indicate that both

reserve prices and entry fees can boost minimum revenue, with reserve prices being substantially more

bene�cial in this regard. A positive entry fee can also raise the maximum revenue, though reserve

prices unequivocally depress the upper bound on revenue. Thus, if the designer is concerned with

worst-case performance of the mechanism, then both devices are bene�cial and we provide a robust

recommendation of which reserve price or fee to use.

A small number of papers have solved for equilibria of private value �rst price auctions where

bidders know their own value but have partial information about other bidders�values. Kim and Che

(2004) consider the case where bidders are partitioned into groups, and there is complete information

of valuations within elements of the partition, but no information about the valuations of bidders not

in the same element of the partition. Equilibria in this setting are ine¢ cient and thus reduce seller

revenue. The implications of speci�c information structures in auctions, and their implication for

online advertising market design, are analyzed in recent work by Abraham, Athey, Babaio¤, and Grubb

(2012) and Celis, Lewis, Mobius, and Nazerzadeh (2012). Both papers are motivated by asymmetries

3Bergemann and Morris (2013b) analyze the Bayes correlated equilibrium in an environment with linear quadratic

payo¤s and normally distributed uncertainty. There, the lower bound on the information is described by the variance

of the noise terms in the signals received by the players.
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in bidders� ability to access additional information about the object for sale. Consequently, they

examine the role of the distributions of valuations resulting from the private acquisition of data by

a single bidder. In particular, Abraham, Athey, Babaio¤, and Grubb (2012) focus on second price

auctions in a common value environment, while Celis, Lewis, Mobius, and Nazerzadeh (2012) propose

an approximately optimal mechanism in a private values model. In a closely related contribution to

these two papers, Kempe, Syrganis, and Tardos (2012) study the �rst-price, common-value auction

with asymmetrically informed bidders.

By contrast, we focus on extremal information structures which give rise to extremal values of

bidder surplus and revenue and this involves e¢ cient allocations at least in the symmetric cases which

we can solve. Fang and Morris (2006) and Azacis and Vida (2013) consider the two bidder, two

value, two signal case. We review their results in detail in the next Section. We end up solving for

"Bayes correlated equilibria" for �rst price auctions (because these characterize what can happen in

equilibrium for di¤erent information structures). Other papers have examined outcome in private

value �rst price auctions under solution concepts weaker than Bayes Nash equilibrium (for a �xed

information structure). Battigalli and Siniscalchi (2003) and Dekel and Wolinsky (2003) examine

rationalizable outcomes. The set of rationalizable outcomes they consider are neither a subset nor a

superset of the BCE outcomes we consider: more restrictive than us, they maintain that all bidders�

interim beliefs about opponents�values are the same as the prior distribution; however, our solution

concept maintains the common prior assumption. Lopomo, Marx, and Sun (2011) examine bidder

collusion in �rst price auctions. They model bidder collusion as a mechanism design problem, and so

the set of attainable equilibria corresponds to the set of communication equilibria in the sense of, e.g.,

Forges (1993), and they give analytic and computational results showing the impossibility of collusion.

Communication equilibrium is another version of incomplete information correlated equilibrium which

imposes "truth-telling" constraints (players must have an incentive to truthfully report their types to

a mediator) that do not arise in Bayes correlated equilibria.

The rest of the paper proceeds as follows: In Section 2, we give a parameterized two value example

to illustrate our result. In Section 3, we describe the general auction model which is used throughout

the rest of the paper. In Section 4, we specialize to the case of two bidders and binary valuations.

Section 5 gives the general analysis of the bidder surplus lower bounds and revenue upper bound.

Section 6 reports the computational results.
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2 A Binary Example

We will begin with a simple example to illustrate the role that information can play in a �rst price

auction. There are two bidders, each of whom has either a low (0) or high (1) valuation. Valuations

are independently distributed, and are low with probability 1
3
and high with probability 2

3
. Thus, the

probability distributions over value pro�les is given by

value 0 1

0 1
9

2
9

1 2
9

4
9

where rows correspond to the valuation of bidder 1 and columns correspond to the valuation of bidder

2. With probability 8
9
, at least one bidder has positive value of 1, and thus the ex-ante e¢ cient surplus

is 8
9
. The results reported in this Section are a special case of the more general analysis of the two

type case in Section 4.

This example gives rise to a surprisingly rich set of outcomes, depending on what information

bidders receive about one another�s values. The example has been considered by other authors, with

various assumptions on the structure of information. For the remainder of this Section, we will sum-

marize some key contributions of this literature to give context and motivation to our own results. For

each structure and equilibrium considered, we will characterize the surplus generated for the bidders,

with the results being collected in Figure 1.

Complete Information and Zero Information: A Let us begin with two benchmark information

structures: complete information and zero information (beyond the common prior). If there is complete

information, then conditional on a realization of the pro�le of valuations, the bidders are essentially in

Bertrand competition with one another. The unique undominated equilibrium has each agent always

bid 0 except when both have valuations 1, when both bid 1. In this equilibrium, each bidder gets

positive surplus of 1 when his valuation is high and the other bidder�s valuation is low, which occurs

with probability 2
9
. Thus, each bidder�s expected surplus is 2

9
� 0:22. The complete information point

is marked as A in Figure 1. The allocation is e¢ cient in equilibrium, and thus the seller gets expected

revenue of 4
9
.

The case where bidders have no information about the other�s value has been studied by Maskin

and Riley (2003). In this case, each bidder always thinks his opponent has a high value with probability
2
3
and a low value with probability 1

3
. There is a unique Bayes Nash equilibrium where low valuation
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Figure 1: Outcomes of the binary valuation example under di¤erent informational assumptions.

bidders always bid 0 and high valuation bidders randomize over bids in the interval
�
0; 2

3

�
according

to a distribution function:

F � (b) =
1

2

�
b

1� b

�
.

A high valuation bidder who expects his opponent to bid 0 with probability 1
3
and to bid according to

distribution F � with probability 2
3
, is indi¤erent between all bids in the interval

�
0; 2

3

�
, since bidding

any b 2
�
0; 2

3

�
would give expected payo¤:

(1� b)

�
1

3
+
2

3

1

2

�
b

1� b

��
=
1

3
(1� b) +

1

3
b =

1

3
.

Since a bidder is indi¤erent to always bidding 0, expected surplus of each bidder is again 2
9
and expected

revenue is again 4
9
. Thus revenue equivalence holds, and this also corresponds to point A in Figure 1.

Informed Bidder vs. Uninformed Bidder: B Now consider an asymmetric information struc-

ture. Suppose that bidder 1 knows bidder 2�s value, but bidder 2 has no information about bidder 1�s

value. What happens now? A technical problem arises in solving for equilibria. If a high valuation

bidder 1 knows that bidder 2 has a low value and thus will bid 0, then there is an openness problem:

bidder 1 has an incentive to bid strictly greater than 0, to guarantee that he will win, but wants the

bid to be as small as possible. We will use a standard technical trick� in this example and in the
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remainder of the paper� to get around this problem: we assume an e¢ cient tie-breaking rule, so that

if both bids are equal, the good is always sold to the highest valuation bidder. Under this assumption,

there is a unique equilibrium.

Bidder 1 will bid 0 either if he has a low valuation, or if he has a high valuation, but knows that

bidder 2 has a low valuation. If bidder 1 has a high valuation and knows that bidder 2 has a high

valuation, then he will bid according to the distribution F � described above. The low valuation bidder

2 will bid 0; the high valuation bidder 2 will bid 0 with probability 1
3
and bid according to F � with

probability 2
3
. This strategy pro�le is optimal, because a high valuation bidder 1 who knows he is

facing a high valuation bidder 2, and a high valuation bidder 2 who does not know what type of bidder

1 he is facing, assigns probability 1
3
to an opponent bidding 0 and 2

3
to an opponent bidding according

to F �. In this equilibrium, bidder 2�s expected surplus remains 2
9
, but bidder 1�s surplus increases

to 10
27
, since he is indi¤erent to always bidding 0 when he has a high valuation and would win with

probability 2
9
+ 1

3

�
4
9

�
if he did so. This point and the corresponding case where the bidders�roles are

reversed are marked as point B in Figure 1. Thus we observe that a bidder does get rent from extra

information as long as the other bidder does not have the analogous information.

Conditionally Independent Signals: C,D We have now covered the four cases where each bidder

either knows or does not know the other bidder�s value. But what about intermediate cases where

bidders have some information about the other bidder�s value? A natural special case to consider

then, in addition to knowing his own value, is a bidder who observes a conditionally independent noisy

signal of his opponent�s value. This problem was studied by Fang and Morris (2006) who suppose,

in particular, that each agent observes a binary signal, 0 or 1, and that the "accuracy" of the signal

is q 2
�
1
2
; 1
�
, so that with (conditionally independent) probability q, an agent�s signal is equal to the

other agent�s value, while with probability 1 � q it is not. In this case, there is also a unique Bayes

Nash equilibrium. Low valuation agents always bid 0. High valuation bidders who observe a low signal

bid on the interval [0; b], where

b =
2 (1� q)2

2 (1� q)2 + q
,

according to c.d.f.

F0 (b) =
q

2 (1� q)2
b

1� b
.

High valuation bidders who observe a high signal bid on the interval
�
b; b
�
, where

b =
2q2 + (1 + 2q) (1� q) b

2q2 + (1 + 2q) (1� q)
,
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according to c.d.f.

F1 (b) =
(1 + 2q) (1� q)

q2
b� b

1� b
.

In this case, one can show that the expected surplus of each agent is given by

S (q) =
2

9

�
2q (1� q) + q

2 (1� q)2 + q

�
.

Consistent with our earlier calculations, if q = 1
2
, we have the independent private values case and

surplus S
�
1
2

�
equals 2

9
, and if q = 1, we have complete information and S (1) equals 2

9
. However,

surplus is strictly greater than 2
9
for all 1

2
< q < 1 and surplus is maximized when q = 3

4
and expected

bidder surplus is 2
7
� 0:29. This point is marked as point C in Figure 1.

Azacis and Vida (2013) have generalized the analysis of Fang and Morris (2006), examining what

happens when each bidder observes n conditionally independent signals of the other bidder�s values,

and solving numerically the highest expected surplus that bidders can obtain in this setting in a

symmetric n conditionally independent signal model. The surplus is increasing in n and appears to

converge to around 0:31 as n increases. This point is marked as point E in Figure 1.

Correlated Signals: E,F But the restriction to conditionally independent information structures is

also restrictive. Azacis and Vida (2013) give an example showing that if the bidders�signals about the

other bidder�s value are correlated (conditional on the realized value), then it is possible to construct

equilibria which give higher symmetric surplus to the bidders than any conditionally independent

signal structure. This is point E in Figure 1. We conclude this section by giving an example of a

correlated information structure which, it will turn out, maximizes the sum of the surplus of the two

bidders and minimizes revenue.

We maintain the assumption of binary signals. Now suppose that for any realized pair of values

of the two bidders, the probability that both bidders observes a "correct" signal, i.e., equal to the

value of the other bidder, was 2�
p
3 � 0:27. Suppose that the probability that one bidder observes

a correct signal while the other bidder observes an incorrect signal is 1
2

�p
3� 1

�
� 0:37. Finally, the

probability that both observe incorrect signals is 0. Now there is an equilibrium where low valuation

bidders, and high valuation bidders who observe a low signal, always bid 0. High valuation bidders

with a high signal bid on the interval
h
0; 4�2

p
3

3�
p
3

i
according to the distribution:

bF (b) = p
3� 1

2�
p
3

b

1� b
.
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The key feature of the information structure supporting this equilibrium is that a high valuation

bidder faces the same distribution of bids independent of the signal he observes in equilibrium. With

probability
2
9

2
9
+ 2

9

�p
3� 1

� = 2
9

�p
3� 1

�
2
9

�p
3� 1

�
+ 4

9

�
2�

p
3
� ,

he expects his opponent to bid 0, while with complementary probability he expects his opponent to

make a strictly positive bid distributed according to bF . Independent of his signal, he is indi¤erent
between all bids in the interval

�
0; 4�2

p
3

3�
p
3

i
. In this equilibrium, each bidder�s surplus is given by

2
2
p
3
� 0:58, which is marked as point F in Figure 1.
In this Section, we have described equilibria for particular information structures and illustrated

in Figure 1 how they translate into bidder surplus. In this example, all equilibria will be e¢ cient for

all information structures and so Figure 1 also maps out all revenue outcomes. In the next Section, we

will describe the methodology for characterizing what happens in all information structures at once.

With this methodology, we will be able to use results in Section 4 to show that the set of bidder surplus

pairs that could arise in any information structure is given by the shaded area in Figure 1.

3 Model

There are I agents who are bidding for a single unit of a good. In this Section, we will describe the

general model for the case of �nite values and �nite bids. In later Sections, we will sometimes work

with exactly this model (i.e., in the computational model) but sometimes work with the analogous

de�nitions with continuum values and/or bids.

We let V � R+ be a discrete set of possible values. The valuation of the good to agent i is vi, where
vi 2 V . The prior distribution on values is given by  2 �

�
V I
�
. We will write  i for the marginal

distribution over bidder i�s value, and

 (v�ijvi) =
 (vi; v�i)Pev�i2V I�1  (vi; ev�i)

to be the conditional distribution of v�i given vi.

The agents compete in a �rst-price auction. Each agent i selects a bid bi 2 B, where B � R+
is a discrete set of possible bids. For example, B might be the set equal to V , as it is for some of

the simulations in Section 6. Note that for economy of notation only, we have chosen the sets of

possible values and bids to be the same for all agents. The e¢ cient surplus that could be generated
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by allocating the good to the bidder who values it the most is

W =
X
v2V I

 (v)max
i
fvig :

We will study a standard �rst price auction. However, we will maintain the e¢ cient tie-breaking

rule introduced in the previous Section, so that, in the case of ties, the agent with the higher valuation

wins. If multiple bidders with the same valuation also make the same bid, the winner is chosen

uniformly among this group. Given the realized pro�le of bids b 2 BI and values v 2 V I , we denote

by H (b; v) the set of high bidders under the tie-breaking rule

H (b; v) = fijbi � bj and vi � vj if bi = bj for all j 6= ig :

The payo¤ to bidder i is then given by

ui (b; v) ,

8<: vi�bi
#H(b;v)

if i 2 H (b; v) ;
0 if otherwise.

An information structure is given by a set of signals for each bidder, Ti, and a probability distrib-

ution mapping pro�les of values to pro�les of signals:

� : V I ! �(T ) :

The information structure (T; �), combined with the utility functions de�ned above, parametrizes a

game of incomplete information. A strategy for agent i in the incomplete information game (T; �) is a

mapping �i : V �Ti ! �(B). A strategy is undominated if �i (bijvi; ti) > 0 implies bi � vi. A strategy

pro�le � = (�i)
I
i=1 is a Bayes Nash equilibrium (BNE) if it is undominated and �i (bijvi; ti) > 0 implies

bi 2 argmax
b0i2B

X
v�i;b�i;t�i

 (vi; v�i)

 Y
j 6=i

�j (bjjvj; tj)
!
� ((ti; t�i) j (vi; v�i))ui ((b0i; b�i) ; (vi; v�i)) :

The number of games induced by di¤erent information structures is large, and for each information

structure the set of BNE is a complicated object. We will rely on a simpler set of objects to achieve

our characterization. A decision rule � : V I ! �
�
BI
�
speci�es a joint distribution over bids as a

function of the pro�le of valuations. A decision rule is undominated if no agent bids above his value,

so that

� (bjv) > 0) bi � vi for all i.
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A decision rule is obedient ifX
v�i;b�i

 (vi; v�i)� (bi; b�ijvi; v�i)ui ((bi; b�i) ; (vi; v�i)) (1)

�
X
v�i;b�i

 (vi; v�i)� (bi; b�ijvi; v�i)ui ((b0i; b�i) ; (vi; v�i))

for all i, vi, bi and b0i. A decision rule is a Bayes correlated equilibrium (BCE) if it is undominated and

obedient.

Our motive for studying BCE is that the set of BCE characterize all behavior that could arise in

an BNE for any information structure. A strategy pro�le � induces a decision rule

� (bjv) =
X
t2T

 
IY
j=i

�i (bijvi; ti)
!
� (tjv)

This motive is summarized in the following result:

Theorem 1 (Equivalence)

Decision rule � is a undominated Bayes correlated equilibrium if and only if there exists an informa-

tion structure (T; �) and an undominated Bayes Nash equilibrium � of the auction with information

structure (T; �) such that � induces �.

This is a special case of Theorem 1 of Bergemann and Morris (2013a), with the proviso the added

restriction that only undominated actions are played. For completeness, we will summarize some of

the main ideas of the proof. If � is an obedient decision rule, then we can use it to construct an

information structure in which bidders are told what they would have played under �, which we can

think of as a "recommended" bid. In other words, Ti = B and � (bjv) = � (bjv). We de�ne a strategy
pro�le � : B ! B which is just the identity from recommendations to bids. If bidders �i bid their
recommendations, then obedience tells us that bidder i has a weak incentive to bid the recommendation

as well.

In the other direction, if � is a BNE for information structure (T; �), then the decision rule induced

by (T; �) and � must be obedient. Conditional on bi being the random draw from the decision rule,

it is as if bidder i learns that one of the ti must have been realized such that bi is in the support of

� (�jti). Since bi is a best response conditional on the realization of any of these signals, it must be a
best response to learning that just one was realized.

The characterization in Theorem 1 allows us to reduce our original goal, characterizing all BNE

for all information structures, to characterizing the set of obedient decision rules. This is a collection
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of families of joint distributions satisfying the linear obedience constraints of (1). Under the decision

rule �, we can de�ne the welfare outcomes:

Ui (�) =
X
v;b

 (v)� (bjv)ui (v; b)

R (�) =
X
v;b

 (v)� (bjv)max
i
fbig

TS (�) = R (�) +
X
i2I

Ui (�) ;

which are respectively bidder i�s surplus, revenue, and the total surplus. These quantities are also

linear functions of �. Our main results will be a characterization of the set of possible (U1; : : : ; UI ; R)

that can arise under an obedient decision rule.

4 The Two Bidder, Two Type Case

4.1 Overview

In Section 2, we gave several examples of BCE in the specialized symmetric model with two bidders

and two values. These examples illustrated the richness of how information can impact the outcome of

the auction, and also give a sense of the understanding achieved thus far in the literature. We also gave

examples of the new equilibria we have discovered. In this Section, we will provide a more systematic

study of the BCE in the binary value model. Speci�cally, we will construct a class of parametrized

BCE that attain the bidder surplus frontier depicted in Figure 1. Moreover, we will argue that these

equilibria trace out the entire set of surpluses that can be achieved in BCE, i.e., the bounds in Figure

1 are tight. Aside from being interesting in its own right, the two bidder two type example will allow

us to illustrate the Bayes correlated equilibrium methodology. At the end, we will also construct a

frontier of surpluses for the asymmetric version of this model, although we will not prove tightness.

Relative to the general model of Section 3, we specialize to I = 2 and V = fv; vg, where 0 � v < v.

Let the symmetric probability distribution  over values be given by the following table:

value distribution v v

v 1� 2p� r p

v p r

(2)

where p 2
�
0; 1

2

�
is the probability that any one bidder has a high value and the other has a low value
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and r 2 [0; 1� 2p]. The expected e¢ cient surplus in this example is

W = v + (2p+ r) (v � v) .

The example in Section 2 corresponds to the special case where v = 0, v = 1, p = 2
9
and r = 4

9
.

4.2 A Class of BCE

We �rst construct a family of Bayes correlated equilibria. We will illustrate Theorem 1 by showing that

these BCE correspond to BNE of particular information structures. In Theorem 2, we will establish

that this class of equilibria attain all of the welfare outcomes attainable in any BCE. These equilibria

can be thought of as being based on the following information structure: Low valuation bidders get

no additional information beyond their value, but high types can receive one of two signals, low L

and high H. After receiving a signal L, a bidder knows for sure that the other player could not have

value v and have received L. Rather, either the other player has a low value, or has a high value and

received a high signal H. However, after receiving a high signal, any valuation and signal combination

is possible for the other player. This information structure is summarized in (3) below. Since low

valuation bidders are in competition with the other low type and play an undominated strategy, a

player with value v always bids v. We will construct an equilibrium in which high bidders who receive

low signals always bid v, and high bidders who receive high signals always randomize on an interval�
v; b
�
. Thus, high bidders who bid v in equilibrium put zero probability on their high opponent bidding

v.

Speci�cally, this class of BCE is parameterized by probabilities x1; x2 and c. We will focus on

decision rules where a low valuation bidder always bids v and, if a high valuation bidder does not bid

v, then he always independently selects a strictly positive bid from the interval�
v;

r � x1 � x2
c+ r � x1 � x2

(v � v)

�
according to c.d.f.

F (b) =
c

r � x1 � x2

b

1� b
.

Thus, for each bidder, there are three cases to consider: (i) he has valuation v and bids v; (ii) he has

valuation v and bids v; and (iii) he has valuation v and selects a strictly positive bid according to F .

In the following table, we describe the joint distribution over these three (value,bid) pairs for the two
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bidders under the parametrized decision rules:

(v) (v; L) (v;H)

(v) 1� 2p� r p+ x2 � c c� x2

(v; L) p+ x1 � c 0 x2

(v;H) c� x1 x1 r � x1 � x2

(3)

Feasibility requires that

x1 + x2 � r; (4)

0 � c� x1 � p;

0 � c� x2 � p:

By construction, a bidder of type (v;H) is indi¤erent between all bids. We must ensure that the

obedience constraint of a bidder of type (v; L) is satis�ed. This requires that the probability that this

type assigns to facing a bid of v is at least as high as that for type (v;H). This requires that

p+ xi � c

xj
� c

r � xi � xj
: (5)

If these constraints are satis�ed, then the surplus of bidder i is

Ui = (p+ xi) (v � v)

and revenue is

v + (r � x1 � x2) (v � v)

Thus the ex ante surplus pro�le (U1; U2) of the two bidders is attainable within this class of BCE

if and only if there exist (x1; x2; c) satisfying (4) and obedience (5) such that

U1 = (p+ x1) (v � v) and U2 = (p+ x2) (v � v) . (6)

For this reason, the quantity xi is each bidder�s excess surplus over p, which a bidder could always

obtain by bidding v and only winning when the other bidder has valuation v.

Figure 1 illustrates a number of equilibria from this class. If x1 = x2 = 0 and c = p, then the model

reduces to the no information equilibrium that hits point A. If xi = 0 and c = xj =
pr
p+r

(to maintain

(5)), then we obtain points B. And �nally, if x1 = x2 = c =
p
p (p+ r)� p, we attain point F, which

maximizes the joint surplus of the bidders. We have not previously described the frontier equilibria

between points B and F, but they are in this class as well. In fact, they are attained if we set c = xi

and xj =
(r�xi)(p+xi)

p+r
, then we parametrize the portion of the boundary where xj � xi, as xi ranges

from 0 to
p
p (p+ r)� p.
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4.3 Bounds Attained

Our main result for this section is that the set of surplus pairs attainable in the parametric BCE traces

out the entire set of bidder payo¤s that can arise in obedient decision rules. We will prove this result

in a generalization of the model of Section 3 that allows for a continuum of bids. Speci�cally, we

rede�ne a decision rule to be a mapping from pro�les of valuations to joint cumulative distributions

F (b1; b2jv1; v2) on V 2, where V = [v; v]. For the ease of exposition, we will make the following

assumptions:

1. The low valuation bidder always bids v.

2. The high valuation bidders never both bid v.

3. F (b1; b2jv1; v2) is di¤erentiable on [v; v]2 and has a continuous density f (b1; b2jv1; v2) on (v; v)2.

Note that (3) does not preclude there being mass along the boundary of [v; v]2. We simply require

that the derivative exists and is unique when taking limits from within the box. In light of these

assumptions, we can economize on notation a bit by writing F (b1; b2) = F (b1; b2jv; v), G1 (b1) =
F (b1; vjv; v), and G2 (b2) = F (v; b2jv; v). We can also de�ne the marginal distribution F1 (b1) =

F (b1; v). Since F and G are absolutely continuous, the marginal distributions have densities fi and gi

such that

F1 (b) = F1 (v) +

Z b

x=v

f1 (x) dx;

G1 (b) = G1 (v) +

Z b

x=v

g1 (x) dx:

Similarly, F (b1; b2) can be written as the integral of a F1-almost everywhere de�ned function @F@b1 (b1; b2),

and we de�ne F1 (b2jb1) =
@F
@b1

(b1;b2)

f(b1)
where this function exists. All of these objects are de�ned analo-

gously for bidder 2. Our obedience constraint for the high type can now be stated as

bi 2 argmax
b0
(v � b0) (r Fi (b

0jbi) dFi (bi) + p dGi (bi)) for bi > v;

where this obedience constraint is required to hold (r Fi + p Gi)-almost everywhere. For bi > 0,

dGi (bi) =
@Gi(bi)
@bi

= gi (b), dGi (0) = Gi (0) � i, and analogously for dFi. Note that we have

introduced special notation for Gi (0). For the remainder of this section, when we refer to BCE, the

aforementioned structure and (1)-(3) are assumed. We are now ready to state our result.
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Theorem 2 (Surplus Boundary of BCE)

The set of bidder surpluses attainable in BCE equals the set of bidder surpluses attainable in BCE in

the parameterized class.

The proof is rather involved and will proceed via a series of Lemmas. Here is an overview of

the argument. We will consider the problem of maximizing the weighted sum of bidders�surpluses

S (�) = S1 + � S2 over all BCE, where � 2 [�1; 1]. The reason for restricting to � � �1 will be
seen over the course of the argument; for � < �1, we will always have a corner solution, and so this
is without loss of generality. The case when � > 1 is symmetric. The parametric equilibria of the

previous Subsection attain a particular function S (�), which will be characterized in Lemma 1.

While BCE have a relatively tractable linear structure, there are a lot of obedience constraints,

and making sure that all of them are satis�ed is a challenging task. Our shortcuts are threefold: (i) we

will de�ne one-dimensional marginal distributions of the BCE that are su¢ cient to pin down bidder

surplus; (ii) we will simply drop a bunch of the obedience constraints, in particular we drop all of bidder

1�s obedience constraints, and any obedience constraint of bidder 2 that involves deviating to less than

the recommendation; and (iii) we will aggregate up the remaining constraints into a restriction on the

lower dimensional objects speci�ed in (i). Step (i) will be accomplished in Lemma 2 and discussion

preceding it. Steps (ii) and (iii) will be the subject of Lemma 3. These three tasks leave us with a

relaxed version of our original weighted surplus maximization problem, in which we maximize over

the low dimensional objects. We will then solve the relaxed problem for the maximum surplus in the

direction (1; �), and verify that one of our parametrized BCE achieves the same level in this direction.

To start, let us de�ne the level S (�) that we will show is tight.

Lemma 1 (Parametric frontier)

In the direction (1; �) in bidder surplus space, the parametric BCE attain at least the level

S (�) = (v � v)

"
p+

�
1 + �2

�
(p+ r)

4

#
: (7)

Proof. We will look at the subset of the parametrized equilibria for which c = x1 and x1 � x2. As

such, the second obedience constraint in (1) implies the �rst, as

p

x2
� p

x1
� p+ x2 � x1

x1
;

so we will impose that the second constraint binds, so that

x21 = (p+ x2 � x1) (r � x1 � x2) =) x1 =
(r � x2) (p+ x2)

p+ r
: (8)



18

Given that xi gives bidder i�s excess surplus, we simply wish to maximize

x1 + � x2;

over non-negative x1 and x2 that satisfy (8) and x1�x2 � p. Substituting in (8) and taking a �rst-order

condition, we obtain

x1 (�) =

�
1� �2

�
(p+ r)

4
;

x2 (�) =
� (p+ r) + r � p

2
;

and hence

S1 (�) =

 
p+

�
1� �2

�
(p+ r)

4

!
(v � v) ;

S2 (�) =
(1 + �) (p+ r)

2
(v � v) ;

and the sum is

S (�) = S1 (�) + � S2 (�)

= (v � v)

"
p+

�
1� �2

�
(p+ r)

4
+ �

(1 + �) (p+ r)

2

#

= (v � v)

"
p+

�
1 + �2

�
(p+ r)

4

#
:

Since we showed above that these equilibria trace out a closed convex set, and since all of these

boundary equilibria solve the relaxed problem, we have shown that these equilibria in fact attain the

entire boundary.

We will now maximize the weighted sumZ v

b1=v

(v � b1) (r F1 (b1jb1) dF1 (b1) + p dG1 (b1)) + �

Z v

b2=v

(v � b2) (r F2 (b2jb2) dF2 (b2) + p dG2 (b2)) ;

subject to the obedience constraint, and show that this maximum value coincides with S (�). For the

next step, we de�ne the lower dimensional objects we will be working with. This is step (i) of our

aforementioned program. Let us de�ne

hi (b) = r Fi (bjb) fi (b) + p gi (b)
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to be the density of bidder i winning the auction with a bid of b >v. We also introduce the shorthand

notation

i = Gi (v) :

We can therefore simplify the objective function toZ v

b=v

(v � b) (h1 (b) + � h2 (b)) db+ (v � v) p (1 + � 2)

=

Z v

b=v

(H1 (b) + � H2 (b)) db+ (v � v) p (1 + � 2) :

The equality follows from integration by parts, where

Hi (b) =

Z b

x=v

hi (x) dx;

is the cumulative probability of bidder i winning with a bid less than b and greater than v. Thus, our

problem has been reduced from characterizing a two-dimensional distribution and two one-dimensional

distributions to just two one-dimensional distributions and the real valued parameters 1 and 2. Note

that Hi is not a probability distribution, in the sense that H1 (v)+H2 (v) = r+ p (2� 1 � 2), which

is the total probability of the high valuation bidders winning with bids in the half open interval (v; v].

The following Lemma uses the di¤erentiable structure of the decision rule.

Lemma 2 (Shared surplus from bi >v)

In any BCE, we must have H1 (b) = H2 (b) = H (b). Hence, the bidders derive equal surplus from

positive bids.

Proof. Our obedience constraint implies that for b > 0; we must have the following �rst-order

condition hold at b0 = b:

0 = (v � b) r
@Fi (xjb)
@x

����
x=b

fi (b)� r Fi (bjb) fi (b)� p gi (b)

= (v � b) r f (b; b)� hi (b)

=) hi (b) = (v � b) r f (b; b) ;

which implies that h1 (b) = h2 (b) = h (b). In other words, both bidders must be equally likely to win

with a bid b >v. As a result, we also have

H1 (b) = H2 (b) = H (b)
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Since the surplus a bidder derives from positive bids is precisely
R v
b=v

H (b) db, we have the result.

Consequently, we can simplify our objective to

(1 + �)

Z v

b=v

H (b) db+ (v � v) p (1 + � 2) :

With this result, we are down to a single one-dimensional distribution and the two real parameters.

Our next result combines steps (ii) and (iii). We will use a subset of the obedience constraints to

de�ne a law of motion on H (b). This law of motion must hold for any obedient decision rule, and it

is the only consequence of obedience that we will retain in our relaxed problem.

Lemma 3 (Aggregated obedience constraint)

In any BCE, H (b) must obey the law of motion

H (b) � 1

v � b

Z b

x=v

H (x) dx+ p

�
b� v

v � b
2 +G1 (b)� 1

�
(9)

Proof. The non-local obedience constraint tells us that

(v � b0) (r Fi (b
0jb) fi (b) + p gi (b)) � (v � b) (r Fi (bjb) fi (b) + p gi (b))

= (v � b)h (b)

which implies that

r (Fi (b
0jb)� Fi (bjb)) fi (b) �

b0 � b

v � b0
h (b) : (10)

For b =v, we have the similar constraint that

(v � b0) (r Fi (b
0jv)Fi (v) + p i) � (v � v) p i;

so

r Fi (b
0jv)Fi (v) �

b0 � v

v � b0
p i:

Moreover,

H (b) =

Z b

x=v

(r F1 (xjx) f1 (x) + p g1 (x)) dx (11)

= r

Z b

x=v

Z x

y=v

dF1 (yjx) f1 (x) dx+ p (G1 (b)� 1)

= r

Z b

x=v

Z x

y=v

f (y; x) dy dx+ r

Z b

x=v

dF1 (vjx) f1 (x) dx+ p (G1 (b)� 1) ;
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but

r

Z b

x=v

Z x

y=v

f (y; x) dx = r

Z b

y=v

Z b

x=y

f (y; x) dy dx (12)

= r

Z b

x=v

(F2 (bjx)� F2 (xjx)) f2 (x) dx

�
Z b

x=v

b� x

v � b
h (x) dx

=
1

v � b

Z b

x=v

H (x) dx:

The �rst line is Fubini�s Theorem, the second follows from the de�nition of the conditional distributions,

the third is substituting in (10), and the last line is integration by parts. Similarly,

r

Z b

x=v

dF1 (vjx) f1 (x) dx = r F2 (bjv)F2 (v) (13)

� b� v

v � b
p 2:

Substituting (12) and (13) into (11) and simplifying gives the desired result.

We will now consider a relaxation of our original problem:

max
H;G1;G2

(1 + �)

Z v

b=v

H (b) db+ (v � v) p (1 + � 2)

subject to Gi � 1, H � r+p(2�1�2)
2

and (9). The remainder of the proof will characterize the solution,

and verify that this solution is attained by one of the parametric equilibria.

Proof of Theorem 2. Note that G1 (b) only enters our problem through (9), and by making

G1 (b) as large as possible, we relax the constraint. Hence, it is without loss of generality to set

G1 (b) = 1 for all b >v. Next, since � � �1, the objective is weakly increasing in H (b), so we should
make H (b) as large as possible. As long as H (b) < r+p(2�1�2)

2
, it must be that (9) is binding.

Otherwise we could increase H (b) by setting it equal to the RHS of (9), which weakly raises H (b) for

all values of b, and consequently relaxes further (9).

To summarize thus far, we know that there is a solution to the relaxed problem in which G1 (b) = 1

andH solves (9) as an equality until it hits r+(2� 1 � 2). We are therefore left with a two-parameter

objective, which is a function of 1 and 2. H solves the following di¤erential equation

(v � b) dH = 2H + p (2 + 1 � 1)
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subject to the initial condition H (v) = 0. Note that we must impose 2 + 1 � 1, since otherwise H
is decreasing at 0, and there is no way to satisfy the obedience constraints. This di¤erential equation

has the general solution:

H (b) =
(b� 2v) bp (1 + 2 � 1) + C

2 (v � b)2
:

Evaluating at b =v, we determine that

C = �p (1 + 2 � 1) v (2v � v) ;

and therefore

H (b) =
p (2 + 1 � 1)
2 (v � b)2

[b (2v � b)� v (2v � v)] :

This function hits r+p(2�1�2)
2

at precisely

b = v � (v � v)

s
p (2 + 1 � 1)

p+ r
:

Therefore,Z v

b=v

H (b) db =
�
v � b

�
H
�
b
�
� p

��
b� v

�
2 +

�
v � b

�
(1� 1)

�
+
�
v � b

�
H
�
b
�

=
�
v � b

�
[r + p (2� 1 � 2)]� p

��
b� v

�
2 +

�
v � b

�
(1� 1)

�
=

�
v � b

�
(p+ r)� p (v � v) 2;

where we have used (9) to calculate
R b
x=v

H (b) db, and the fact that H
�
b
�
= r+p(2�1�2)

2
. Plugging

back into our objective, we �nd

(1 + �)
��
v � b

�
(p+ r)� p (v � v) 2

�
+ p (v � v) (1 + �2) :

Hence, the derivative with respect to 1 is

� (1 + �) (p+ r)
@b

@1
+ p (v � v) :

It is clear that b is in fact decreasing in 1, so it is always optimal to set 1 as large as possible, namely

1 = 1. Substituting in the de�nition of b, our relaxed problem has simpli�ed to

max
2
(v � v)

h
(1 + �)

p
2p (p+ r) + p (1� 2)

i
:

The �rst order condition for 2 is

(1 + �)
p
p (p+ r)

1

2
p
2
= p;
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which has the unique solution

�2 (�) =
(1 + �)2 (p+ r)

4p
:

Note that we are ignoring extra constraints on �2 (�), like that it be in [0; 1]. However, ignoring these

constraints simply relaxes the problem further. Hence, the optimal objective of the relaxed problem is

S� (�) = (v � v)

 
p+

(1 + �)2 (p+ r)

4

!
:

Since this coincides with the S (�) we derived for the parametric equilibria, we are done.

To be clear, we have shown that our parametric class of BCE attain bounds on how far one can

go in a given direction (1; �). The fact that the entire surplus set is attained is a consequence of

the convexity of the set of obedient decision rules; we could take weighted sums of our parametric

equilibria to construct any point within the surplus set.

The argument we have presented is notable as a demonstration of one way in which the BCE

solution concept can be used to generate a robust prediction for a game. We will use the same method

in Section 5, simultaneously constructing equilibria and showing that these equilibria attain bounds

from a relaxed problem, to give a generalized lower bound on bidder surplus in the �rst price auction.

4.4 Beyond the Symmetric Common Prior

We can generalize the distribution over values used this far, see (2), to an asymmetric prior:

value distribution v v

v 1� p1 � p2 � r p2

v p1 r

(14)

where p1+ p2+ r � 1, and pi gives the probability that bidder i has a high value and bidder j 6= i has

a low value. For concreteness, suppose that p1 > p2. We can still construct the parametric equilibria

introduced before, however the feasibility and obedience constraints are now

x1 + x2 � r

0 � c� x1 � p1

0 � c� x2 � p2

By construction, a bidder of type (v;H) is indi¤erent between all bids. We must ensure that the

obedience constraint of a bidder of type (v; L) is satis�ed. This requires that the probability that this
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type assigns to facing a bid of v is at least as high as that for type (v;H). This requires that

pi + xi � c

xj
� c

r � xi � xj
:

In the symmetric model, we were able to construct frontier equilibria that trace out the frontier of

a convex set of bidder surpluses, as depicted in Figure 1. However, with p1 > p2, the set of payo¤s

traced out by the parametric class is no longer convex. Let us consider the Pareto frontier of this

class. Since c is an upper bound on xi, the excess surpluses, we would like to make c as large as

possible that is still consistent with feasibility. The smallest such value is c = max fx1; x2g. Set
x2 = x1 = c = x =

p
p2 (p2 + r) � p2, so that the second obedience constraint binds. At this point,

the �rst obedience constraint is necessarily slack, since

p1
x
>
p2
x
=

x

r � 2x:

Now consider moving along the Pareto frontier increasing x2. In this case, c = max fx1; x2g = x2, the

�rst obedience constraint is slack, and we solve

p2
x1
=

x2
r � x1 � x2

=) x1 = p2

�
p2 + r

x2 + p2
� 1
�
;

so that x1 is a convex function of x2. Hence, the Pareto frontier is convex at this point and the set of

surpluses attained by this class is non-convex.

Of course, we can always achieve any point in the convex hull of this set by taking linear combina-

tions of the three-type equilibria. But this discussion suggests that for asymmetric distributions, there

are other classes of equilibria which might further push out the frontier of bidder surplus. Indeed, this

is the case, and we will now construct such equilibria, which require the high value bidders to receive

three signals:

v (v; L) (v;M) (v;H)

v 1� p1 � p2 � r p2 0 0

(v; L) f 0 a2 b2

(v;M) p1 � f a1 d c� b2

(v;H) 0 b1 c� b1 e

As before, the bidder with valuation v always bids v, as does the bidder of type (v; L). In addition,

the equilibrium has two bid cuto¤s v� bM � bH � v. We will construct the equilibrium so that (v;M)

is indi¤erent to bidding anywhere in (v; bM) and (v;H) is indi¤erent to bidding in (bM ; bH). This pins
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down the shape of the bid distribution for types that bid on these regions, in a manner analogous to

the three type construction. As such, the bidders�payo¤s will be:

Si = (v � v) (pi + ai) + (v � bM) c:

We will impose the following incentive constraints, as indicated in this constraint incidence chart:

Indi¤erence

Type v bM bH

(v; L) x x -

Player 1 (v;M) x x -

(v;H) - x x

(v; L) x x x

Player 2 (v;M) x x x

(v;H) x x x

The interpretation is that if there is an "x" in a box, that means that the player with the given

type is indi¤erent to that bid. There are in fact eight incentive constraints, since the two players�type

(v;H) indi¤erence between bM and bH are redundant. In addition, there is an adding up constraint

a1 + a2 + b1 + b2 + 2c+ d+ e = r:

Since there are ten variables (two bid cuto¤s and eight probability variables) the system is underidenti-

�ed by one parameter, which we will leave as f . We spare the reader the derivation, and jump straight

to the results. It turns out that without using the adding up constraint, we can cleanly eliminate all

of the variables except for f and c:

a1 = p2(p1�f)
f�p2 ; a2 = f(p1�f)

f�p2 ;

b1 = cp2(f�p2)
f(p1+p2)�f2�p22

; b2 = c(f�p2)
p1�p2 ;

d = f(p1�f)2

(f�p2)2
; e = c2(f�p2)2

(p1�p2)(f(p1+p2)�f2�p22)
;

bM = v + (v � v) p1�f
p1�p2 ; bH = v + (v � v)

c(f�p2)2+(p1�f)(f(p1+p2)�f2�p22)
c(f�p2)2+(p1�p2)(f(p1+p2)�f2�p22)

:

The variable c can then be obtained from the adding up equation. In the interest of saving trees,

we will not print the closed form expression of c as a function of f , although it can be provided upon

request. In Figure 2, we show the three-type equilibria that have a non-convex frontier, and also these

four-type equilibria that convexify the frontier. These equilibria are meant to demonstrate that it is
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Figure 2: The set of bidder surpluses for an asymmetric example. In solid lines are the three type

equilibria constructed previously. Note the non-convexity of the northeast frontier. The four type

equilibria in dashed lines push out the set.

possible to extend our analysis to more general models, although the complexity of such constructions

grows quite quickly, even for the modest generalization of going from three types to four. In the next

section, we will construct a rich class of equilibria of the many player, many valuation model, which

are analytically tractable in spite of the generality.

5 Many Values: Lower Bounds of Bidder Surplus and Upper

Bounds of Revenue

We now return to the general model of Section 3 with many valuations and many types. The goal of

this section is to give a tight characterization of the lower limit of bidder surplus and the upper limit

of revenue over all BCE. This characterization consists of a theoretical bound and the construction

of equilibria that attain the bound. For most of this section, we will study a model where the set of

valuations is equal to the set of bids, i.e., B = V . As the analysis of Section 4 has illustrated, our
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techniques can handle models with a continuum of bids and we will give a continuum bid example.

However, our bounds and constructed equilibria will only involve bids that are in the support of

bidders�values. Thus, it is expositionally easier and without loss of generality for us to stay within

this simpler framework.

The following analysis is closely connected to Bergemann, Brooks, and Morris (2013), where we

analyze the limits of third-degree price discrimination induced with respect to the private information.

The problem of choosing a bid when facing a �xed distribution of opponents�bids is formally equivalent

to the pricing problem of a monopolist when facing a �xed distribution of buyers�valuations. In the

auction setting, the bid b represents a cuto¤ bid of others below which the buyer receives the good

with surplus v � b, whereas in the monopoly setting, the price p is a cuto¤ valuation above which the
monopolist makes a sale and earns pro�t p� c, where c is the cost of production. Bergemann, Brooks,
and Morris (2013) study the possible e¤ects of information on the monopolist�s pricing problem, which

is closely related to how information can in�uence bidding behavior when facing a �xed distribution of

opponents�bids. The key di¤erence which greatly complicates the auction problem is that unlike an

exogenous distribution of consumer valuations, the distribution of opponents�bids is endogenous, and

must itself be generated by an obedient decision rule. Nonetheless, arguments similar to those used in

characterizing price discrimination will be employed to construct equilibria attaining our lower bound

on bidder surplus.

5.1 Bounds on Bidder Surplus and Revenue

Throughout our analysis, we have assumed that bidders do not use dominated strategies in which they

bid above their own values. Hence, in any BCE, bidders must believe that whatever their opponents�

bidding strategy, it is bounded above by the conditional distribution of their opponents�values. Since

the surplus a bidder can achieve by best responding is decreasing (in the sense of �rst-order stochastic

dominance) in the distribution of opponents� bids, the equilibrium surplus must be weakly better

than what a bidder could have attained if opponents bid their values. This property can be exploited

to give a straightforward bound on the surplus a bidder can guarantee himself in equilibrium. In

particular, the epistemic result of Theorem 1 shows that a perfectly legitimate interpretation of a BCE

is that bidders receive information and best respond to their opponents�behavior conditional on this

information. However, a bidder could always ignore this extra information, and simply best respond

to this worst-case conjecture about their opponent�s bids, and be guaranteed a minimum surplus.

Formally, the equilibrium bid distribution faced by a bidder with valuation vi is bounded above by
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 (v�ijvi). We de�ne U i (vi) to be the maximum surplus a bidder could obtain when opponents bid

their values, and bi (vi) is a bid that attains it,

U i (vi) = max
bi2B

(vi � bi)
X

�
v�i2V I�1

����bi>maxj 6=i
vj

� (v�ijvi) .

bi (vi) 2 argmax
bi2B

(vi � bi)
X

�
v�i2V I�1

����bi>maxj 6=i
vj

� (v�ijvi) .

This gives an ex ante lower bound on bidder surplus for bidder i of

U i =
X
vi2V

 i (vi)U i (vi) . (15)

Recall that the e¢ cient surplus is given by:

W =
X
v2V I

 (v)max
i
fvig :

Since bidders have to receive at least U i in equilibrium, the maximum revenue the seller could receive

is the total feasible surplus W minus the sum of these bounds for each player. Hence, an upper bound

on revenue R is the e¢ cient surplus minus the surplus that each agent can guarantee himself,

R = W �
IX
i=1

U i. (16)

We summarize these results in the following proposition:

Proposition 1 (Surplus and revenue bounds)

In any BCE, bidders must receive a surplus weakly greater than U i, and revenue can be no more than

R.

5.2 Equilibria that Attain the Bounds

Our next result constructs a class of BCE which attain the bounds from the previous section. Before

launching into the details, we will give some intuition for the construction. Recall, we wish to construct

an e¢ cient equilibrium in which bidders are held down to U i. This BCE implicitly has an information

structure, which we can think of as sending bidders two kinds of signals. The �rst signal L is sent

to bidders who do not have a strictly highest valuation, and in equilibrium, bidders with valuation vi
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who receive L as their signal know that someone else is bidding bj � vi. Hence, it is a best reply to

bid bi = vi, and this is what happens.

If bidder i does not receive the L signal, he receives the signal H and a further instruction to bid

a particular value b. H means that other bidders�values are strictly less than vi. As a consequence,

other bidders received signal L and are all bidding their values. Now, in order for the equilibrium to

hang together, it must be that the instructed bid b is always greater than maxj 6=i vj. We show that

in fact there is a way to "suggest" bids to the H bidder so that this constraint is satis�ed. Moreover,

we can structure recommendations so that the bidder is always indi¤erent between following the

recommendation b and bidding bi (vi). Since the latter strategy would simply result in the payo¤ U i,

this shows that the bidders are held down to their lower bound surplus.

Theorem 3 (Tightness of bounds)

There is an e¢ cient undominated BCE where the bidder surplus lower bound U i and revenue upper

bound R are simultaneously attained.

Proof. We will construct an obedient decision rule that attains the bounds. We can divide the

set of value realizations into subsets based on who is the winner. Let

Xi (vi) =
�ev 2 V I jevi = vi > evj 8 j 6= i

	
and

Y =
nev 2 V I

���#�argmax
i
evi� � 2o :

In plain words, Xi is the set of pro�les of valuations on which bidder i has the strictly highest valuation,

and Y is the set of pro�les on which at least two bidders tie for highest valuation. The decision rule

for v 2 Y will be

� (bjv) =

8<: 1 if b = v;

0 if otherwise.

Now consider v 2 Xi (vi). Let bi (vi) be de�ned as in the previous Subsection, which clearly is not

more than vi. We will de�ne the decision rule so that for v 2 Xi (vi), � (bjv) > 0 only if b�i = v�i, i.e.,

bidders other than i always bid their values. If bidder i were just told that the valuation pro�le is in

Xi (vi), then it must be that bi (vi) maximizes bidder i�s conditional surplus, since bi (vi) is obviously

superior to any bid b0 � vi, which generates non-positive surplus, whereas virtue of the fact that

Xi (vi) 6= ;, we know that it is possible for bidder i to achieve strictly positive surplus. Moreover, the
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relative probabilities of events of the form

Ei (bi) =

�
v�i 2 V I�1

����bi > maxj 6=i
vj

�
;

for bi < vi are the same conditional on Xi (vi) as they are unconditional on Xi (vi).

We will construct the decision rule on Xi (vi) so that (1) bidder i is always indi¤erent to bidding

bi (vi), and (2) bi � vj for all j 6= i. Together with the e¢ cient tie-breaking rule, this implies that bidder

i always wins the auction on event Xi (vi). We can denumerate the values that arise as w = maxj 6=i vj

for v 2 Xi (vi) as

w0 > � � � > wK ;

and further divide the set Xi (vi) into

Xi (vi; w) =

�
v 2 Xi (vi)

����w = maxj 6=i
vj

�
:

We can de�ne

�0 (w) =
X

v2Xi(vi;w)

 (v)

to be the distribution over maxj 6=i vj restricted to Xi (vi). As such,

bi (vi) 2 argmax
b
(vi � b)

X
w�b

�0 (w) :

We will inductively de�ne �k to be the solution to

(vi � bi (vi))
X

w�bi(vi)

�k�k (w) = (vi � wk)

 X
w<wk

�k�k (w) + �k (wk)

!

for k � 0 and set

�k (w) =

8>><>>:
�0 (w)

Q
l<k (1� �l) ; if w = wk;

�0 (w)�k
Q
l<k (1� �l) ; if w < wk;

0; otherwise;

and

�k+1 (w) =

8<: �0 (w)
Q
l�k (1� �l) = (1� �k) �k (w) ; if w < wk;

0; if w � wk:

Finally, for v 2 Xi (vi; wl), we de�ne

� (bjv) =

8>><>>:
Qk�1
l=0 (1� �l) ; if bi = wk and b�i = v�i;

�k
Qk�1
l=0 (1� �l) ; if bi = wl with l < k and b�i = v�i;

0; if bi = wl with l > k or b�i 6= v�i:
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To be clear, this de�nes � (bjv) for all v 2 V I , because each v is in some Xi (vi; wk) for some vi and

wk. Also, bidder i always wins when v 2 Xi (vi; wk), since the probability of recommendation wl is

zero when wl < wk.

We will show that this is a well-de�ned and obedient decision rule. Let P [k] be the statement that

bi (vi) 2 argmax
b
(vi � b)

X
w�b

�k (w) :

By assumption, P [0] is true. We will argue that P [k] =) P [k + 1]. Observe that if �k (wk) > 0, we

have

�k =
(vi � wk) �k (wk)

(vi � bi (vi))
P

w�bi(vi)
�k (w)� (vi � wk)

P
w<wk

�k (w)

which is less than 1, since

(vi � bi (vi))
X

w�bi(vi)

�k (w) � (vi � wk)
X
w�wk

�k (w) ;

and if �k (wk) = 0, �k = 0. Hence, �k 2 [0; 1], and �k+1 is well de�ned and proportional to �0 below
wk. Clearly,

(vi � bi (vi))
X

w�bi(vi)

�k+1 (w) = (vi � bi (vi))
X

w�bi(vi)

�0 (w)
Y
l�k

(1� �l)

� (vi � b)
X
w�b

�0 (w)
Y
l�k

(1� �l)

� (vi � b)
X
w�b

�k+1 (w) ;

which proves P [k + 1]. Finally, if bi (vi) = wk� and �k� (wk�) > 0, then we must have �k� = 1, so the

algorithm has to terminate at some bk � k�. If v 2 Xi (vi; wk) with k � bk, then
kX
l=0

� (wl; v�ijv) =
k�1Y
m=0

(1� �m) +
k�1X
l=0

�l

l�1Y
m=0

(1� �m)

= (1� �k�1 + �k�1)
k�2Y
m=0

(1� �m) +
k�2X
l=0

�l

l�1Y
m=0

(1� �m)

=

k�2Y
m=0

(1� �m) +
k�2X
l=0

�l

l�1Y
m=0

(1� �m)

...

= 1
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and hence, the decision rule is well-de�ned.

Next we will show obedience. Observe that if bi = vi, then it must be either (1) v 2 Y or v 2 Xj (vj)

for some j. Either way, if � (bi; b�ijv) > 0, it must be that there exists j 6= i such that bj � bi = vi.

Hence, the bidder�s conditional surplus must be zero, and any deviation at which he would win with

positive probability requires b0 > vi, which would lead to non-positive surplus. Hence, the decision

rule is obedient whenever bi = vi.

If bi = wk < vi, then it must be that v 2 Xi (vi; wl) for l � k. As such,X
v�i;b�i

 (vi; v�i)� (bi; b�ijvi; v�i)ui ((b0i; b�i) ; (vi; v�i)) = (vi � b0i)
X
w�b0i

�k (w) ;

since the probability of getting recommendation wk when v 2 Xi (vi; wl) is precisely �k (wl). Obedience

will follow from our �nal claim, which is that

wk 2 argmax
b
(vi � b)

X
w�b

�k (w)

which is a consequence of

(vi � wk)
X
w�wk

�k (w) = (vi � bi (vi))
X

w�bi(vi)

�k (w)

= (vi � bi (vi))
X

w�bi(vi)

(1� �k) �k (w)

� (vi � b)
X
w�b

(1� �k) �k (w) for all b < wk

= (vi � b)
X
w�b

�k (w) .

This also shows that bi (vi) is always a weak best reply, and henceX
vi;bi;v�i;b�i

 (vi; v�i)� (bi; b�ijvi; v�i)ui ((bi; b�i) ; (vi; v�i))

=
X
vi

X
bi(vi);v�i;b�i

 (vi; v�i)� (bi; b�ijvi; v�i)ui ((bi (vi) ; b�i) ; (vi; v�i))

=
X
vi

 i (vi)U i (vi)

= U i:

And �nally, the decision rule is e¢ cient, so R = R.
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Note that even though we have restricted bidders to using bids in the support of valuations, they

have no incentive to bid outside this set. The only situation in which a bidder ties at b < vi is when

vj < vi, and hence the e¢ cient tie-breaking negates any incentives to bid more.

The decision rule constructed in the proof of Theorem 3 has a special feature that the rule is

"compartmentalized" to the sets Xi (vi). In particular, we could modify the decision rule on any one

such set, without a¤ecting the obedience constraints for the rest of the equilibrium, as long as for

v 2 Xi (vi), � (bi; v�ijvi; v�i) > 0 implies that bi � maxj 6=i vj. For example, on such decision rule would
de�ne for v 2 Xi (vi),

� (bjv) =

8<: 1; if bi = maxj 6=i vj, b�i = v�i;

0; otherwise.

The signal structure has a simple interpretation: For bidder i who receives the signal H, he also learns

the pro�le of other bidders�valuations v�i, and consequently is able to bid the second-highest value. As

a result, bidder i must obtain the same payo¤as he would get in the complete information equilibrium.

However, bidders j 6= i are still receiving U j. As such, we have the following Corollary:

Corollary 1

There exist undominated BCE that hold player i to U i, while giving other bidders a range of surpluses

which extends at least up to the bidder surplus attained under complete information.

5.3 An Example with a Continuum of Values

The bounds readily generalize to models with a continuum of values. As an example, let us consider

a setting with 2 agents whose values are drawn from the interval [0; 1] according to the cumulative

distribution function F (v) = v�. In this case, bidders conjecture that in the worst case their opponents

bids are also distributed with the cumulative distribution b�. The symmetric lower bound on surplus

for a bidder with valuation v is given by

W (v) = max
b2[0;1]

(v � b) b�.

The maximum is attained by setting

bi (v) =
�

1 + �
v;

and thus

W (v) =

�
v � �

1 + �
v

��
�

1 + �
v

��
=

1

1 + �

�
�

1 + �

��
v1+�:
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The ex ante lower bound on surplus is then

W =

1Z
v=0

1

1 + �

�
�

1 + �

��
v1+��v��1dv

=

1Z
v=0

�
�

1 + �

��+1
v2�dv

=
1

1 + 2�

�
�

1 + �

��+1
.

One can show that expected surplus in this example isW = 2�
1+2�

and thus the upper bound on revenue

is

R =

�
1�

�
1

1 + �

��
�

1 + �

���
2�

1 + 2�
:

The example with zero information beyond the common prior has a unique Bayes Nash equilibrium,

in which the revenue is
�

�
1+�

�
2�
1+2�

. In the special case of � = 1 (a uniform distribution), we have

that U (v) = 1
4
v2, and thus the minimum ex ante bidder surplus is U = 1

12
, and the total surplus is

TS = W = 2
3
. The upper bound on revenue is R = 1

2
, and by contrast the revenue in the BNE is

R = 1
3
. As � ! 0, the upper bound on revenue converges to 0, but the ratio of the upper bound on

revenue to the BNE revenue converges to +1 :

lim
�!0

�
1�

�
1

1+�

� �
�
1+�

��� 2�
1+2��

�
1+�

�
2�
1+2�

= lim
�!0

1 + ��
�

�
1+�

��
�

= +1:

Note that the conjectured behavior that generates the bounds is far from equilibrium: Each bidder

best responds to the belief that others will bid their values. But we will generally have the best

response bi (v) be strictly less than v, so this conjecture must turn out to be false in equilibrium.

However, we will see in the next Subsection that there is a BCE in which bidders are held down to

the bound, and moreover this equilibrium is e¢ cient.

We brie�y illustrate what the constructed BCE looks like in the case where there are two bidders

whose values are uniformly distributed on [0; 1]; this corresponds to the case of � = 1. The construction

uses an example Bergemann, Brooks, and Morris (2013), adapted to the auction setting. We �rst draw

two values uniformly from [0; 1], where vh and vl denote the highest and lowest values. In addition,

we also draw a "tentative recommendation" r 2
�
vh
2
; vh
�
for each bidder according to the cumulative

distribution

H (r) =
vh

2r � vh
e
1� vh

2r�vh ,
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and write

h (r) =
4vh (vh � b)

(2r � vh)
3 e

1� vh
2r�vh

for the corresponding density. Note the identity:

H (r) = h (r)
(2r � vh)

2

4 (vh � r)
.

After drawing the values, bidders are informed whether they are the higher value ("winning") bidder

or the lower value ("losing") bidder. In addition, the winning bidder will observe a "�nal recommen-

dation" set equal to b = max fr; vlg.
Under this information structure, there is an equilibrium where the bidder with valuation bids

vl and the high valuation player bids the recommendation b. Let us verify that this is incentive

compatible. Conditional on observing b with valuation vh, it could have been that either (1) b = r � vl

and vl is uniformly distributed on [0; r], or (2) b = vl > r, so there is a mass point on b. Hence, the

cumulative distribution of vl conditional on observing the signal b is

F (xjb; vh) _

8<: h (b) x
vh
; if x < b;

h (b) b
vh
+H (b) 1

vh
; otherwise.

Since F (xjb; vh) is constant for all x � b, x = b dominates all bids greater than b. The payo¤ from a

bid of x = b is

(vh � b)F (bjb; vh) _ h (b)

vh
(vh � b)

 
b+

(2b� vh)
2

4 (vh � b)

!

=
h (b)

vh
(vh � b)

4b (vh � b) + (4b2 � 4bvh + v2h)

4 (vh � b)

=
h (b)

vh

v2h
4
:

We have to verify that there are no bids x < b that are better. For x < b, we have

(vh � x) F (xjt; vh) _
h (b)

vh
(vh � x)x:

This function is concave and has a maximum on [0; vh) at x =
vh
2
, at which point the payo¤ is equal

to the payo¤ from x = b.

Hence, we conclude that following the recommended bid is incentive compatible, and moreover that

no matter the recommendation, bidders are indi¤erent to a bid of vh
2
, which is the bid that guarantees

them the lower bound payo¤. We conclude that in this BCE, bidders are held down to the lower

bound.
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6 Computational Results

In this Section, we push beyond our analytical results to obtain a more complete picture of how

information in�uences the outcome of a �rst-price auction. Availing ourselves of the linear structure of

BCE and the associated linear programs, we are able to solve for extremal BCE of discretized examples

in which values and bids are con�ned to a grid. We use these simulated equilibria to investigate the

limiting characteristics of BCE as the support of values and/or bids converges to the continuum, thus

approximating a continuous distribution of values. The simulations tell us a great deal about how

information can in�uence the auction for general distributions of values. In particular, the simulations

deliver numerical bounds on revenue and surplus, they show us the shape of the bidder surplus frontier

and the revenue-total surplus frontier, and the simulations allow us to assess the impact of entry fees

and reserve prices. We also will look more closely at the binary valuation model, and calculate

comparative statics as we vary bidders�information.

Though we will mainly report summary statistics about the computed BCE, we in fact solve for

the entire joint distribution of bids and values. In our experience, this distribution has a detailed

and complex structure. This is at least partly a consequence of the multiplicity of BCE attaining a

particular objective (e.g. maximizing revenue). As a result, we tend to see a mashup equilibrium which

is a convex combination of the various optimal distributions. However, we can distill some general

features of the BCE, such as which constraints must be binding to obtain a particular objective, and

which value/bid pro�les must be in the support of the BCE.

Let us brie�y comment on our methods. As stated above, we solve for extremal BCE for �ne

discretizations of the bid and value space. Even modest discretizations will result in very large linear

programs, with hundreds of thousands or even millions of variables. For example, with 2 players, 35

bids and 35 values per player (the largest model we will report below), we already have approximately

1.5 million possible combinations of bids and values (354). The number of constraints is smaller,

but still substantial: Approximately 40,000 incentive constraints per player, and 1225 probability

constraints. In fact, these raw numbers are exponential in the number of players and polynomial in

the numbers of values and bids. As a result, we will restrict our numerical investigations to models

with two bidders. We can also economize substantially by ruling out dominated behavior, such as

bidding above one�s value, or by taking advantage of symmetry. But even with these restrictions, the

complexity is daunting.

To tackle such large problems, we have made use of the state-of-the-art linear programming package
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CPLEX. We have written programs in C++ that construct and solve discretized models. In fact, these

programs can be used to compute the BCE of any game, not just �rst-price auctions, as long as the

game is suitably speci�ed within the object model of our program. For analysis, we have also developed

graphical tools in MATLAB to explore and understand the computed BCE. These tools allow us to

see the conditional joint distribution of actions and the state from a particular player�s perspective,

and we can tell at a glance which incentive constraints are binding for which types. We plan to make

further use of these tools in subsequent research.

Many of our simulation results are reported for uniform distributions over values. In fact, we have

run similar simulations using various distributions for values, both independent and correlated. The

stylized facts that we highlight seem quite robust to alternate speci�cations of symmetric distributions.

Indeed, we know that the bounds on minimum bidder surplus and maximum revenue hold true for

any number of bidders and distribution of values, even for asymmetric distributions.

6.1 Limit of Revenue and Bidder Surplus

We start our numerical analysis with a description of the ranges of revenue and bidder surplus that

can be achieved in some BCE. Our analytic results show that the lower bound of bidder surplus and

the upper bound of revenue are determined by Satoru�s bound. In the other direction, how large can

bidder surplus be, and how low can revenue fall? We computed minimum revenue and maximum

bidder surplus for a range of examples with two bidders in which there are 35 bids and the number of

valuations varies between 2 and 35, with bids and values evenly spaced in [0; 1]. The joint distribution

values is uniform. Figure 3 gives the results, along with Satoru�s bound. To be clear, by bidder surplus

we mean the sum of the individual surpluses of the two bidders.

As a preliminary observation, we know that one information structure which is always feasible

is complete information, in which the realization of values is publicly known. Bertrand competition

results in both players biding the second-highest valuation, and the high-valuation player wins the

tie break. The outcome is e¢ cient, so total surplus is the expected highest value, and revenue is the

expected second-highest value. So as a rough estimate, we know that the range of feasible revenues

will contain the expected lowest value, and the range of feasible total bidder surpluses will contain the

expected di¤erence between the highest and lowest values.

Indeed, this is precisely what we see, and moreover it appears that the revenue and surplus bounds

track their complete information quantities as we increase the number of values. Bounds on bidder

surplus are given by red lines and bounds on revenue are given by blue lines. In dashed lines are the
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Figure 3: Bounds on revenue and bidder surplus. Maximum revenue and minimum bidder surplus are

achieved in a common and e¢ cient equilibrium.

expected di¤erence between highest and lowest values in red, and expected lowest value in blue. With

two values, we observe that the expected highest value is 0.75 and the expected lowest is 0.25, giving

us the minimum bidder surplus and maximum revenue of 0.25 and 0.5 respectively. Also, as we know

from our earlier analysis, maximum bidder surplus and minimum revenue are substantially higher and

lower, respectively.

For more than two values, we see the bounds on revenue and surplus roughly tracking the complete

information benchmarks. For 35 values, the largest model computed, revenue lies in [0:13; 0:49] and

bidder surplus lies in [0:18; 0:54], and appears to be converging to values nearby. At the very least,

these numbers serve as a sanity check: revenue and surplus seem to converge in a reasonable manner,

and track the relevant benchmarks in the complete information case. In addition, the simulations tell

us that revenue and bidder surplus cut wide swaths around their complete information benchmarks,

indicating that information retains a powerful a¤ect on the outcome even when there is a large number

of values. For minimum bidder surplus and maximum revenue, this is expected given that Satoru�s

bound can be attained in e¢ cient equilibria. In fact, this implies that the maximum surplus and

minimum revenue can be achieved with the same equilibrium.

Maximum bidder surplus and minimum revenue are more mysterious, and we are actively engaged

in understanding the extremal information structures that achieve these goals. We conjecture that
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the BCE that minimize revenue are e¢ cient, so that maximum bidder surplus and minimum revenue

are achieved by a common equilibrium. In fact, if one adds to this picture the sum of maximum

bidder surplus and minimum revenue, and also the sum of minimum bidder surplus and maximum

revenue, the two sums virtually coincide for each number of values, and therefore also coincide with

the expected highest value. We have omitted this additional information for the sake of clarity. In the

next subsection, we will present further evidence for this conjecture.

6.2 Feasible Surplus Pairs

Maximizing and minimizing joint bidder surplus and revenue represent just a handful of directions

in which we could look for extremal BCE. What are the extremal equilibria in other directions? For

example, what is the set of all feasible bidder surplus pairs, or the set of all revenue-total surplus

pairs? In the binary case, we gave a complete description of these sets with a continuum of bids. In

Figure 4, we show the theoretical frontier and the simulated frontier of bidder surplus for a discretized

binary value example with 50 bids. Bidders�values are independent, and each has a valuation of zero

with probability 1
3
. As anticipated, the two sets are quite close. Though the theoretical frontier has a

kink at the northeast corner, the computed example is somewhat rounded over. By always bidding 0,

a bidder is able to guarantee themselves a minimum payo¤ of 2
9
, when one has a high value and the

other has a low value, which gives us the southwest corner of the set.

For models with many values, we do not have a concise characterization of the entire frontier.

However, there are certain features that we know should be present. First, it is possible to hold each

bidder to Satoru�s bound while inducing a range of surpluses for the other bidder. Thus, there should

be a right angle at the southwest corner of the set of bidder surpluses. The �ats emanating from the

corner extend at least to the complete information payo¤, where the high valuation bidder wins and

pays the lowest value. But beyond these features, there is much we do not know about the set. Do

the �ats extend beyond the complete information case, as in the binary values example? Also, what

does the rest of the frontier look like? In the binary example, every equilibrium is e¢ cient. But which

frontier equilibria are e¢ cient with many values? Is there a kink at the point that maximizes total

bidder surplus?

In Figure 5, we show the frontier of the set of bidder surpluses for a model with 20 valuations and

20 bids. A couple of features immediately stand out. As expected, we see the corner on the southwest

frontier of the set. The complete information payo¤s of approximately 0.175 are in the interior of

the set, though the ��ats�extend well beyond this point, to about 0.235. We are intrigued by this
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Figure 4: The set of bidder surpluses arising in Bayes correlated equilibria when v= 0, v = 1, p = 2
9
,

and r = 4
9
. In blue is the simulated boundary, and in red is the theoretical frontier.

feature: It is possible to give each player payo¤s well above complete information while holding the

other player to their minimum payo¤.

In addition to the unconstrained frontier, we also show the frontier of bidder surpluses that can be

attained in an e¢ cient equilibrium. For these equilibria, the good is always allocated to the bidder

with the highest valuation. It appears that the maximum possible total bidder surplus can be achieved

in an e¢ cient equilibrium. Though not clear from this picture, further computational results indicate

that e¢ ciency is necessary to maximize total bidder surplus. Thus, the e¢ cient point on the 45 degree

line also represents a revenue minimizing equilibrium.

In the simulation, it appears that there is a region of the northeast frontier of bidder surpluses that

is also e¢ cient. However, we have observed that the region of overlap tends to shrink as we make the

bid grid �ner. Our conjecture is that this is the same rounding over e¤ect that we see in Figure 4, and

that in a model with a continuum of bids, the only e¢ cient point on the frontier of bidder surpluses

is the symmetric point.
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Figure 5: The set of bidder surpluses in Bayes correlated equilibria with many values. Each bidder

can be held to lower bound surplus for a range of surpluses of the other bidder.

6.3 Reserve Prices and Entry Fees

Throughout the paper, we have been exploring a single auction format: The �rst-price auction with an

e¢ cient tie-breaking rule. Much of the auction design literature is concerned with �nding the optimal

mechanism for a particular environment. While beyond the scope of the present work, we are interested

in characterizing robust optimal auctions that have favorable revenue performance even when there is

large uncertainty about players�beliefs. As a preliminary step in this direction, we explore the impact

of two simple extensions to the �rst-price auction format: reserve prices and entry fees.

Suppose the seller can either set a minimum admissible bid r or charge bidders a �at fee e for

submitting a positive bid. It is well known that these devices can enhance revenue in �rst-price

auctions, for a �xed information structure (see Milgrom and Weber (1982), and references therein).

On some occasions there is a preference for one device or another. Second-price auctions with reserve

prices are in fact optimal auctions in regular symmetric case, see Myerson (1981).

In Figure 6, we report the maximum and minimum revenue for a model with 25 values and 25

bids, as the reserve price and entry fee range from 0 to 1. The results are striking. Positive reserve

prices and entry fees both raise the minimum possible revenue. Positive entry fees raise the maximum

revenue, whereas maximum revenue is monotonically decreasing in the reserve. For a reserve price of
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1, only the high type participates, and bids his value. On the other hand, with an entry fee of 1, no

type submits positive bids and revenue is zero.

For both pictures, we have included a �complete information�analogue to calibrate our expectations

of what should happen. For reserve prices, the dashed curve is the exact outcome of a model with the

given reserve price and 25 values and 25 bids, where the pro�le of valuations is common knowledge.

We see that it roughly tracks the center of the revenue range, and follows the hump shape of the

minimum revenue curve.

For entry fees, we do not know the equilibrium for complete information. Instead, we have plotted

revenue from a second-price auction with an entry fee, for which it is well known how to construct the

equilibrium: There is a cuto¤ type �v(e) who participates, solving �v(e)F (�v(e)) = c, and values above

�v(e) bid their values. For the discretized model, �v(e) jumps discontinuously and the revenue curve

has a saw tooth pattern that lies within the revenue bounds. For clarity, we have plotted an idealized

version with 1,000 valuations. Again, the second-price auction curve roughly tracks the center of the

range, and the hump shape of the bounding curves.

Let us summarize. Positive entry fees robustly raise revenue, in the sense that a positive entry

fee raises both the minimum and maximum revenue over all BCE. Positive reserve prices also raise

the minimum possible revenue, but lower the maximum. If a designer had worst-case preferences, and

sought to maximize the minimum revenue over all BCE, then a large reserve price would be advisable:

A reserve price of 0.58 raises the minimum revenue to 0.40, from 0.13. For entry fees, a fee of 0.33

raises the maximum revenue from 0.49 to its maximum of 0.57, and a fee of 0.25 raises minimum

revenue to its maximum of 0.25.

6.4 The Role of Additional Information

For our last numerical exercise, we study the e¤ect of giving the bidders extra information beyond

their private value. The set of BCE is a �robust prediction�that encompasses all possible Bayesian

equilibria that could result when players have access to additional signals beyond their private values.

Some of these equilibria require bidders to be well-informed about the other bidders�values, and some

equilibria require less-informed bidders. As an example, in the asymmetric extremal BCE of the binary

valuation model, one bidder receives more information from the �suggested�bid than the other bidder.

If we impose lower bounds on players�information, by forcing them to observe additional signals, we

will invariably rule out equilibria in which players�signals need to be uninformative.

Speci�cally, let us consider the model of Fang and Morris (2006), in which valuations are in f0; 1g.
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Figure 6: Bounds on revenue as we introduce reserve prices and entry fees for a model with 25 values

and 25 bids, where values are uniformly distributed.

In addition to learning vi, each player receives a noisy signal si about the other bidder�s valuation.

Conditional upon vj, Pr(si = vjjvj) = �, where � � 0:5. Thus, � represents the informativeness of

the signal. We look for BCE when players observe at least (vi; si).

When � = 0:5, this is our baseline model in which each player only knows his private value. When

� = 1, players learn (vi; vj), and we have a unique BCE corresponding to the complete information

equilibrium. Moreover, we know that if � > �0, then the signals in the model � are more informative

than the signals in the model �0 in the sense of Blackwell (1951). Hence, the set of BCE with

information structure � is contained in that of the information structure �0, since any BCE under �

could be achieved by giving players additional information beyond what they receive under �0.

In Figure 6.4, we depict the surplus set of the bidders for a model in which values are independent,

and Pr(vi = 0) = 2
3
. Players bids are con�ned to a grid of 35 values, equally spaced between 0 and 1.

For values of � close to 0.5, the set of BCE coincides with the baseline model, except that we shave o¤

the corners of the set. This is intuitive: Our equilibria at the northwest and southeast corners require
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that one bidder not learn from his bid about the other bidder�s value. As soon as we give this bidder

additional information through si, it is no longer possible that his �rst-order beliefs always coincide

with the prior distribution.

On the other hand, the symmetric bidder surplus maximizing equilibrium requires both players

to learn a modest amount from their bids: Beliefs are di¤erent after recommendations of bi = 0 and

bi = 1. For low values of �, the equilibrium bid distribution is more informative than si. However,

for larger values of �, si becomes more informative, and it is no longer possible to achieve the total

bidder surplus maximizing equilibrium. As � approaches 1, the surplus set converges to the complete

information payo¤ of 2
9
. It is notable that even for � � 0:98, there still exist BCE which substantially

raise the surplus of the bidders above the complete information level.

7 Conclusion

The literature on auctions has documented the fact that the outcome of the �rst-price auction is

sensitive to bidders� information. We have applied the recently developed methodology of Bayes

correlated equilibria to systematically study exactly how much of an impact information can have on

the welfare outcomes of the auction. Our key �nding is that information can have a surprisingly large
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e¤ect, which we have attempted to quantify both theoretically and computationally. So far, we have

learned a great deal about both the complexity of the problem and the subtle structure that sometimes

emerges. While information can have a large e¤ect, it does have its limits, and with regard to the

binary valuation example and the lower bound on bidders surplus, we have given these limits a tight

characterization. As our �nal results on reserve prices and entry fees show, with well chosen auction

formats, it is possible to control how good, and how bad, this informational e¤ect can be.

This a progress report rather than our �nal word on the subject. The computational results of

Section 6 leave us with many unanswered questions and many conjectures about the role of information,

particularly with regard to maximum bidder surplus and minimum revenue. We continue to be actively

engaged in investigating these questions.
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