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Abstract

The introduction of arti�cially intelligent algorithms in pricing decisions by
�rms has triggered a literature in industrial organization asking if the use of
these algorithms will lead to collusive outcomes. In a simple repeated game
environment it is shown that if algorithms can be reliably communicated or
inferred the folk theorem breaks and the long-run outcome must be collusive.
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�Of course, the whole point of a Doomsday Machine is lost, if you keep it a
secret! Why didn't you tell the world, EH?� Dr. Strangelove

1. Introduction

The introduction of arti�cially intelligent algorithms (AI) in pricing decisions
by �rms has triggered a literature in industrial organization asking if these algo-
rithms will enable collusion between �rms.2 The possibility of collusion between
algorithms has long been established by folk theorems in the theory literature
in which players are limited to choosing automata (algorithmic strategies).3

Hence, provided response time is quick, �rms can collude using AIs. There is,
however, a deeper question that has been addressed with only partial success
in the theory literature which is whether �rms using AIs will always succeed
in colluding, or whether they may only achieve some less mutually pro�table
equilibrium such as the Cournot equilibrium.

There is a simple intuition as to why in a repeated game between two players
long-run outcomes should be e�cient. If there is an existing status quo that
is not e�cient, each player has an incentive to make an o�er to the other that
improves utility for both. This is not a new idea, but the devil is in the details.
In particular, what happens if the two commit to incompatible o�ers? Indeed,
the standard model of Nash equilibrium in a repeated game can be viewed as
a model in which players make simultaneous commitments, and, as might be
expected since neither can respond to the other's commitment, the folk theorem
holds for these games and there is no particular tendency to e�ciency.

Re�ection on the use of AIs by �rms suggests that the standard repeated
game model may not be adequate for addressing the issue of commitment.
Speci�cally while an AI can respond quickly to opponent actions it must �rst
be trained and this is an expensive and time-consuming procedure. Hence it is
natural to think that while the response time of an AI is rapid, decisions about
which AI to use are taken only occasionally. Hence I distinguish between re-
sponse time, which is short, and decision time which is long. Further re�ection
suggests that this model applies not only to AIs but more broadly: for exam-
ple, an organization, team, or sales force is trained to respond quickly, but that
training is only updated occasionally.

In the context of decision time it is natural to think that decisions are taken
asynchronously, that is, the two players are unlikely to simultaneously update
their AIs or retrain their sales forces. The key insight of this paper is that when
this is the case choice of an AI becomes a commitment, and players e�ectively
take turns in making commitments. If these commitments are observed then

2See in particular the experimental work of Calvano et al (2020) and the theoretical work
of Cartea et al (2022).

3Rubinstein (1986) makes this point. He goes on to show that in the Prisoner's dilemma if
players try to minimize the number of states used by their machines only a more limited set of
outcomes (never-the-less including e�cient ones) is attained. This latter result is generalized
in Abreu and Rubinstein (1988).
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I show that this breaks the folk theorem in a favorable way: in the long-run
equilibrium play is e�cient.

The role of time in this result needs emphasis. As indicated, there are two
measures of patience and impatience in the model: reaction time and decision
time. In calendar time reaction is fast, but the time between decisions is long.
This leads to �folk-theoremesque� patience in terms of incentives - each player
can provide the other with incentives. On the other hand, because decisions can
be revised only infrequently (in calendar time) they represent a relatively long-
term commitment. It means that in assessing the implications of a particular
commitment each player is �relatively� myopic.

To understand the intuition of this main result, consider a player who is
deciding how to design their AI or organization. Their opponent is commited to
a particular automaton and will (probably) remain so for a long time into the
future. Hence the player should design a best response to the current commit-
ment of the opponent. However: only on-path play matters and the player is
(largely) indi�erent as to how to play o� path as this will not matter until the
opponent revises their commitment.4 Hence o�-path play should be designed
to in�uence the opponent's play in the future when they revise their commit-
ment. It should be in the form of an �o�er� to the opponent that will provide
them with incentives to �cooperate.� This leads to play that in the long-run is
e�cient.

After illustrating this main idea with a simple example, I extend the model to
a broad class of two-player safety games that includes public goods and duopoly
games. The analysis has three parts. First, long-run e�ciency is shown to hold
for observable commitments. By contrast, it is shown to fail and that instead the
folk theorem holds with unobervable commitments. This re�ects the fact, known
certainly to Stanley Kubrick in 1964, that to be e�ective a commitment must
be observed by the opponent. In the conclusion I show that in the unobservable
case if automata are foregiving and players willing to experiment they can learn
their opponent's commitment and that the long-run e�ciency result again holds.

Literature Review

As indicated the study of automata in repeated games is not new, and origi-
nates in the work of Rubinstein (1986). That work also supposes that building
automata is costly. This is modeled by assuming that players choose automata
once and for all and try to minimize the number of states used by their au-
tomata. In contrast I model the cost of building automata by assuming that
they are only built occasionally leading to rather di�erent conclusions. The
basic folk theorem result without costly choices of automata is reported in Ru-
binstein (1986) and has been extended to algorithmic learning procedures by
Cartea et al (2022).

4This indi�erence to o�-path play is important also in the evolutionary theory of cooper-
ation, since players are indi�erent between cooperating unconditionally and the equilibrium
strategy of cooperating conditionally.
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There is also a substantial literature on the evolution of strategies in a large
population that enforce cooperation through punishment. Axelrod and Hamil-
ton (1981), Binmore and Samuelson (1992), Johnson, Levine and Pesendorfer
(2001), Dal Bo and Pujals (2015), and Juang and Sabourian (2021) are but a
few examples. That literature is based on a di�erent mechanism: cooperative
strategies do well against each other so have an evolutionary advantage.

The idea that of players reacting quickly but planning slowly is not new,
nor is the idea that the levels are important in the middle-run but reaction
in the long-run. This is the idea in Levine (1981), but due to unresolved
issues about observability the paper was never published. It appears also in
another unpublished paper, Salcedo (2015), who studies symmetric equilibria
of a special class of symmetric games. The details are slightly di�erent5 than
the �rst case I study here, that of observed automata. Never-the-less the idea
is the same. Most recently the idea appears in the work of Lamba and Zhuk
(2023) who like Salcedo (2015) focus on the case of observed automata in a
symmetric duopoly.6

The most closely connected other literature is the body of work by Abreu
and Pearce, for example Abreu and Pearce (2007), studying a game between a
small �xed number of players. That work uses reputation and renegotation to
introduce the key elements needed to break the folk theorem: commitment and
foregiveness. They obtain good but complex results. The goal of this paper,
by contrast, is to give an alternative and simpler construction applicable to the
case of AIs.

2. An Example

Before introducing the general model I want to talk through the simple
example of the prisoners' dilemma game in which the actions are to cooperate
or defect and the payo�s are given by

cooperate defect

cooperate 2, 2 −1, 3
defect 3,−1 0, 0

Players have a common discount factor in the form of a discount rate over
calendar time which we may normalize to one. I want to study a �folk theorem�
type of environment in which players can observe and respond to each other
quickly, but I want to distinguish between response time and decision time.
The idea of quick response is modeled by taking the length of a period ∆ to be
short in calendar time so that the discount factor e−∆ is close to one.

5The key di�erences are these: Salcedo does not assume an adjustment cost, assumes that
there is no limit on the complexity of automata, and derives the initial condition by having
the two players make an initial simultaneous choice of automata.

6Again some of the details are di�erent: they focus on Markov perfect equilibrium. As is
the case here they rule out cycles, although they do so by �at rather than through adjustment
cost.
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I now want to introduce the idea of decision time. The idea is that a player
designs an AI or trains a team to respond in a certain way, but that the design
decision or training takes place infrequently. We can think of a player as waking
up, committing to a particular response, then falling asleep for a long time while
the AI or team carries out the response plan. To be concrete, imagine that the
commitment, that is the period of being asleep, lasts for 2T periods and that
these overlap so that initially player 2 is committed for T periods and player 1
has just woken up. Think of this as a crude approximation to a Poisson process
that wakes the players - that will be the formal model subsequently. Here the
idea is that T is big in calendar time and speci�cally that T = τ/∆ where
calendar time τ is large.

For simplicity and concreteness, and indeed following the literature on evo-
lution in repeated games, suppose that the possible commitments are responses
to what the other player did last period. In technical terms these are automata.
There are four such automata: play the same as the other player last period,
that is, tit-for-tat, play the opposite of the other player last period, that is,
anti-tit-for-tat sometimes called tat-for-tit, or to always cooperate, or to always
defect. I suppose that player's automata are observable by the opponent.

I am now going to talk through the case where initially player 2 is committed
to alway defect. Player 1 as indicated, has just woken up and must decide which
of four responses to implement for the next 2T periods. During the �rst T of
those periods if player 1 plays tit-for-tat or always defect they get 0. If they play
anti-tit-for-tat or always cooperate they get −1. If τ is large then the bene�t
of getting 0 over T periods rather than −1 is greater than any conceivable gain
after T , so player 1 must commit to either tit-for-tat or always defect: for the
next T periods it makes no di�erence.

The crucial point is this: tit-for-tat is in fact better than always defect.
Consider what happens when player 2 wakes up. If player 1 is playing always
defect then player 2 is in exactly the same position as player 1 at the beginning
of the game and in periods T + 1 to 2T both players will get 0. On the other
hand if player 1 is playing tit-for-tat then player 2 will prefer to either playing
tit-for-tat (with initial cooperation) or to always cooperate as both of these give
2, while anything else either cycles or gives 0. While in this game is possible to
work out that the cycles give strictly less than 2 this will not be true in general
games, so I am going to rule out cycles by �at, modifying the usual repeated
game setup by assuming an adjustment cost: if the current action is not the
same as the previous period action then utility is reduced by φiF > 0. If F is
large, then without further calculation we can conclude that player 2 is going to
cooperate and player 1 will get 2 between T + 1 to 2T , much better than the 0
from playing always defect, and since T is large, dominating anything after 2T .

Continuing on in this way, we see that player 2 will also commit to tit-for-tat
(with initial cooperation) and this will continue for the remainder of the game.
In other words: starting with player 2 committed to always defect, the unique
equilibrium is for player 1 to play tit-for-tat forever, and for player 2 to switch
to tit-for-tat as soon as possible. Player 1 makes a good o�er of cooperating to
player 2 and as soon as player 2 is able they accept the o�er and the outcome
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is e�cient. Most important: this is the only equilibrium and the folk theorem
has been broken in a favorable way.

3. The General Model

The simple example has a number of limitations, and I want to generalize it
while preserving some of the simplicity.

The general setting remains one of a in�nitely repeated two player �nite
game. In each period t = 1, 2, . . . players i ∈ {1, 2} choose observable actions
ait ∈ Ai a �nite set withM i elements and receive utility ui(ait, a

−i
t ). With respect

to payo�s ui(ait, a
−i
t ) I am going to assume a generic condition on payo�s I will

state later. More important, I will limit the class of games to safety games like
the prisoners' dilemma in which each player has a safety action ai in the sense
that this pure action guarantees that i gets a non-negative payo� and their
opponent gets a non-positive payo�. This implies that both employing safety
actions is a static Nash equilibrium in which each gets 0. It also implies that the
individually rational payo� for each is 0. Speci�cally, a pro�le a is individually
rational for i if ui(a) ≥ 0. There is also an adjustment cost: if ait 6= ait−1 then
utility is reduced by φiF > 0.

As noted, the prisoners' dilemma game is a safety game, where the safety
action is to defect, as are the related public goods contribution games in which
the individual gain from contributing is less than the cost and the safety action
is to not donate. However, the class of games is much larger. It includes Cournot
duopoly games with downward sloping demand and diminishing return to scale
in which it is optimal for each player to produce to capacity when the other
does and payo�s are pro�ts minus the irrelevant constant of pro�ts when both
produce to capacity. Here the safety action is to produce to capacity. It also
includes games with multiple equilibria, such as the 2x2 game with payo� matrix[

2, 2 −1, 1
1,−1 0, 0

]
.

Since in the class of safety games the mutual minmax point is a static Nash
equilibrium, when in�nitely repeated the simple Friedman (1971) Nash threats
folk theorem implies the Fudenberg and Maskin (1986) general folk theorem.

As in the example, players have a common discount factor in the form of a
discount rate over calendar time which is normalized to one. The length of a
period in calendar time is ∆ so that the discount factor is e−∆.

In the example I limited players commitments to one-period responses to
the other player. I am now going to broaden the class of commitments to allow
player i to choose within the class of Bi-state machines where Bi ≥ Ai is an
integer. A Bi-state machine consists of a �nite set of states Bi with Bi elements
together with mappings αi : Bi → Ai and βi : Bi×A−i → Bi.The �rst mapping
αi says what action the machine will choose in state bi ∈ Bi while the second
says what state the machine will move to next period when the current state
is bi and the opponent plays a−i. In the example the class of commitments
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consisted of the subset of 2-state machines for which βi(bi, a−i) = βi(a−i). I
refer to these as reactive machines as they only react to what the other player
did and not to their own past state or action. The class of feasible machines
for player i is a �xed subset Di of all Bi-state machines that includes at least
the reactive machines and with the property that for any βi every αi is feasible:
that is actions can be assigned to states in an arbitrary way. A commitment by
player i consists of a choice of a machine di ∈ Di together with an initial state
bi ∈ Bi.

The model of coordinated overlapping commitments lasting 2T periods makes
little sense, and I adopted it solely for illustrative purposes. As indicated I do
want to assume that players wake up, take a decision, then fall asleep for a
long period of time, but the natural way to think of this is as stochastic and
asynchronous. Speci�cally, I want waking up to be triggered by independent
Poisson events for the two players where the probability of that event for player
i each period is ∆/(hiτ) > 0. For convenience, normalize hi < 1. As we do not
imagine that Poisson events arrive at exactly the same time, if both receive a
Poisson event in the same period a coin �ip determines which one received the
event ��rst.�

A player might also like to make sure that their opponent's machine is in the
�right� state prior to making a commitment, or if commitments are unobserved,
to test their opponent's machine to see what it does. To model this I assume
that after waking and prior to committing a player has N i periods of free play
in which they are not committed to any machine and can do what they like. For
simplicity and because under the subsequent assumptions it will happen very
rarely, I am going to assume that a player who wakes up during an opponents
free play goes back to sleep. This re�ects the reasonable idea that if your
opponent is not yet committed but in the process of doing so it makes sense to
wait and see what they are committed to before trying to make a commitment.
It avoids the complicated (but rarely needed) reasoning: if I do this free play
during my opponent's free play how will that alter their eventual commitment?
I want to emphasize, however, that while implicitly players observe whether the
other is awake the machines do not and cannot condition their play on Poisson
events for the other player.

This structure makes sense, but it also leads to an analysis that is similar
to the 2T coordinated overlapping commitments in the example: when player
−i wakes up the expected length of calendar time until the opponent wakes up
is h−iτ which I will assume is quite long. In this context it is useful to de�ne
the notion of a switch: this occurs when a player wakes up and �nds that their
opponent was the last to wake up.

Without loss of generality, we may continue to assume that the game be-
gins with player 1 having just woken up and an initial condition which is a
commitment (d2, b2) for player 2.

I am going to consider two assumptions about commitments. With observ-
able commitments when a player wakes up they directly observe the commitment
and current state of the opponent. This model is relevant: if the commitment
involves training a bureacracy to carry out a rule, it may be possible for the
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opponent to observe the training process. If the commitment involves coding
an AI, it may be possible for the opponent to see the code used by the AI. With
unobservable commitments the initial condition includes beliefs by player 1 in
the form of a probability distribution over the initial condition for player 2 and
subsequently a player can ony make observation based inferences about what
commitment the opponent has made.

A strategy σi for a player in this game is a history dependent choice of
commitment. The notion of equilibrium is sequential equilibrium. In the ob-
servable case the game has complete information so this reduces to subgame
perfect equilibrium in which the relevant subgames begin with a player waking
up and �nding that their opponent has a particular commitment. Regardless
of observability the game does have sequential equilibria. From Kreps and Wil-
son (1982) they exist for every time-truncated version of the game. Taking
the limit as in Fudenberg and Levine (1983) there is a convergent subsequence
of strategies and assessments that converge to a Nash equilibrium where play
following is optimal with respect to the limit of the assessments. As consistent
assessments cannot converge to a limit that is not consistent, this limit is a
sequential equilibrium.

4. The Main Results

First, I want to make sure that N i is su�ciently long to initalize the oppo-
nents machine. For initialization, observe that for a given initial condition b−i

some states in B−i may be inaccessible, for example, if b−i is an absorbing state.
However, the machine must cycle in at most B−i periods so an accessible state
can be attained by an input of length at most B−i. Hence I always assume

Assumption 4.1. N i ≥ B−i.

As the order of limits is important but hard to parse it is useful to make the
following de�nition

De�nition 4.2. F, τ are large and ∆F is small is short-hand meaning: For
the given game and �xed N i there exist τ > 0, F > 0 and for F > F and τ > τ
there exists ∆ > 0 and 0 < ∆F < ∆.

The crucial fact here is that after picking τ we pick ∆. The importance of ∆F
is this: after waking there is a period of free play of at most maxN i periods and
after that both players are committed to particular machines. These machines
will jointly cycle after some �xed additional time, at most B1B2 periods. Hence
there is a short-run epoch of up to N ≡ maxiN

i +B1B2 periods during which
very little can be said about how players play, followed by a cycle. As adjustment
costs can occur during this epoch from the point of view of average present value
the utility contribution of this epoch is proportional to ∆F . After the short-run
epoch ends cycles continue for roughly the calendar time between Poisson events
which is proportional to τ . When τ is very large the future after τ matter very
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little. The order of limits allow us then to choose ∆F su�ciently small that the
short-run epoch matter much less than that distant future.

Finally, as the goal is to confront equilibrium with e�ciency it is useful to
say what sort of e�ciency is under consideration.

De�nition 4.3. A pro�le a is constrained e�cient if it is Pareto e�cient among
all pure pro�les that are individually rational for both players.

There are two main results concerning the observable and unobservable case
respectively.

Observable Theorem. If F, τ are large and ∆F is small then with observable
commitments and any initial condition

(i) every sequential equilibrium converges to some â in the sense that after
at most two switches middle-run play on the equilibrium path is always â.

(ii) the limit â is constrained e�cient

This �rst result shows that observable commitments break the folk theorem
a good way by leading to long run constrained e�ciency. Notice that this does
not break the usual version of the folk theorem which refers to average present
value payo�s: about these we can say very little. Rather, the Friedman (1971)
folk theorem, which is relevant for safety games that are repeated in the ordinary
sense, has an obvious corollary: for any pure pro�le â that Pareto dominates
a static Nash equilibrium for all su�ciently large discount factors (small ∆s in
this context) there is a subgame perfect equilibrium in which â is always played
on the equilibrium path. That is: in the long-run anything can happen. That
version breaks with observable commitments. By contrast it remains unchanged
with unobservable commitments.

Unobservable Theorem. For any pure pro�le â that is individually rational
then with unobservable commitments there exists an initial condition such that
if F, τ are large and ∆F is small then there is a sequential equilibrium in which
â is always played along the equilibrium path.

5. Preliminaries

Before proving the main theorems it is useful to develop some key results
concerning optimal play. It is convenient �rst to de�ne several constants

De�nition 5.1. λτ = (1/h1) + (1/h2)− (1/(h1h2τ))
recall that N ≡ maxiN

i +B1B2.
The scale of the stage game Γ > 0 is the largest utility di�erence between

any two pro�les.
The mixed action setAi for player i are the mixed strategies that are divisible

by an integer less than or equal to B1, B2. The grain of the stage game is

γ ≡ min
i∈{1,2}

min
ai 6=ãi∈Ai,α−i 6=α̃−i∈A−i

|ui(ai, αi)− ui(ãi, α̃−i|

.
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I can now state the generic assumption on payo�s. This is a strong no-ties
condition.

Assumption 5.2. γ > 0.

Note that this is su�cient for the results, but not necessary, as it does not
hold in the example, although of course it does for arbitrarily small perturba-
tions.

Next, it is useful to de�ne particular epochs.

De�nition 5.3. The short-run is an epoch begining with one player waking
up until the completion of the �rst cycle of committed machines or until some
player wakes up. The middle-run is from the completion of the �rst cycle of
committed machines until some player wakes up. The long-run is the in�nite
epoch following the medium run. According to this de�nition there may be
several short-runs before a medium run, but every medium run is followed by a
long-run.

The idea is that average expected present value can be computed by comput-
ing it separately for each epoch and providing separate bounds for each epoch.
Speci�cally the following bounds are proven in the Appendix

Lemma 5.4. There exist constants ζ, ζ > 0 for all τ ≥ 1, F ≥ Γ (recall that Γ

is the scale of payo�s) and ∆ ≤ 1/(λ12N) such that
(short-run) ΓS the importance of the short-run de�ned as the greatest dif-

ference in average expected present value over all short-run periods between any
two di�erent strategies satis�es ΓS ≤ ζ∆F .

(middle-run �ow) γ(∆, τ) the value of a steady state �ow de�ned as the
average expected present value during a middle run with a steady state yielding
a single unit of utility each period satis�es γ(∆, τ) ≥ ζ.

(middle-run cycle)ξM the value of a cycle de�ned as the greatest averaged
expected present value for player i during a middle run that has a non-trivial
cycle for player i satis�es ξM ≤ Γ− ζF .

(long-run) L(∆, τ, σ) the long run value de�ned as the average expected
present value after the next wake-up of a single unit of utility each period satis�es
1/(1 + ζτ) ≥ L(∆, τ, σ) ≥ ζ/τ .

(reversal) δiRthe importance of a reversal de�ned as the expected discount
factor from commitment until a reversal before player i wakes up again satis�es
δiR ≥ ζ/(1 + ζτ).

These bounds imply the following key result that holds regardless of assump-
tions about observability.

Theorem 5.5. If F, τ are large and ∆F is small and a player i has beliefs that
are a point mass on (d−i, b−i) that player must commit to a machine that plays
a constant action âi in the middle-run. If this machine yields a steady state â
against (d−i, b−i) then â must yield the highest utility among all steady states
that are feasible with respect to (d−i, b−i).
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Proof. The automaton that plays the safety action no matter what yields at
least 0 utility each period. Suppose instead that a machine is chosen that does
not result in a constant action in the middle-run. By Lemma 5.4 (middle-run
cycle) during the middle-run this gives utility at most Γ− ζF per period, from

(short-run) ζ∆F during the short-run and from (long-run) Γ/(1+ζτ) during the
long-run, so for small ∆F and large τ is negative. This shows that a constant
action must be chosen.

Next, observe that the middle-run di�erence gain of the best middle-run
steady state â and any other steady state a by (middle-run �ow) is at least γζ.

By contrast the short-run loss from â is at most ζ∆F and long-run loss at most
Γ/(1 + ζτ) so again for small ∆F and large τ the total loss is less than γζ so
that a cannot be optimal.

6. Observable Commitments

Observable Theorem. If F, τ are large and ∆F is small then with observable
commitments and any initial condition

(i) every sequential equilibrium converges to some â in the sense that after
at most two switches middle-run play on the equilibrium path is always â.

(ii) the limit â is constrained e�cient

Proof. We know from Theorem 5.5 that when the commitment decision by i is
made the choice is between di�erent ai that will be constant in the middle-run.
The same will be true of the opposing player when a reversal occurs. Hence
after the �rst reversal the middle-run must be a steady state where both players
play a constant action.

Assume that the �rst reversal has occured. If i's commitment allows it is
possible that the best choice for −i causes a cycle for i: as shown in the proof
of Theorem 5.5 this is no good, it would be better to o�er −i a steady state:
this can be done, for example, by the strategy of just playing the chosen ai no
matter what.

What steady states a might be o�ered by i given a current steady state a?
Let â maximize i's stage game utility over pure pro�les subject to −i getting at
least u−i(a) and zero. Consider the reactive machine for player i that responds
to a−i with ai, to â−i with âi and respond to anything else with the safety
action. Hence for player −i the constant action a−i results in the steady state
a, the constant action â−i results in the steady state â and any other constant
action a−i results in the steady state (ai, a−i). Of these by construction â is
best and so is chosen. Also â - as it maximizes i's utility subject to −i getting
at least the utility from a and is individually rational - is constrained e�cient.

In the middle-run clearly no result better than â is possible. If ui(a) =
ui(â) then the genericity condition says the two must be the same, so the only
alternative is to choose a steady state a with ui(a) < ui(â). This loses at least
γζ per period in the middle-run by Lemma 5.4 (middle-run �ow). As the short-

run gain by (short-run) is at most ζ∆F and the long-run gain by (long-run) at
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most Γ/(1 + ζτ) for large F, τ this is no good. Hence â will be played in the
middle-run.

Finally, an o�er ã by i might be made that would be accepted and give less
utility than â. By (middle-run �ow) this would lose at least γζ per period in
the middle-run following reversal, so including the short-run and long-run after
reversal choosing large F and τ as in the previous paragraph we can assure
that the loss would be at least γζ/2 following reversal. However, potentially the
alternative o�er might incur less cost and provide more bene�t in the short-run
prior to reversal: by (short-run) this is at most ζ∆F . The loss that o�sets this
gain must be discounted by no more than ζ/(1 + ζτ) by Lemma 5.4 (reversal)
as it occurs only following reversal. Hence the loss in average present value is at
least γζ2/(2(1+ζτ)). Here is where the order of limits is crucial: recall that ∆F
is chosen after τ . Hence it may be chosen so small that the loss after reversal is
greater than the gain in the immediate short-run. Hence the o�er should be â.

Once the steady state on the equilibrium path is constrained e�cient, there
is nowhere to go: there is no �better o�er� that can be made to the opposing
player, so they keep that middle-run steady state.

7. Unobservable Commitments

Unobservable Theorem. For any pure pro�le â that is individually rational
then with unobservable commitments there exists an initial condition such that
if F, τ are large and ∆F is small then there is a sequential equilibrium in which
â is always played along the equilibrium path.

Proof. What is a sequential equilibrium in this context? In each subform after
player i wakes that player has an assessment in the form of a probability distri-
bution over the commitment pairs (d−i, b−i) of the opponent. The set of player
strategies has not changed, and there are two requirements of sequentiality: �rst
that in each subform the �subgame� induced by the assessment the strategies
are a Nash equilibrium and second that the assessments satisfy a consistency
requirement. In this setting the consistency requirement is rather simple: there
are two kinds of commitment pairs by −i: those that are consistent with the
history of play and past assessments those that are not. Those that are not
must be assigned zero probability. The requirement for the remainder is that if
a player wakes several times in a row and the history had positive probability in
the previous assessment the relative probabilities within the currently consistent
set must not be changed.

De�ne the â-trigger machine to be the reactive machine that reacts to â−i

with âi and plays ai otherwise: by assumption there is a such a machine. The
initial condition is that player 2 is committed to the â-trigger plan and this is
assessed to be the case by player 1 with probability 1.

Next de�ne a subform to be normal if play is consistent with each player
using a feasible commitment that results during the middle run with the steady
state of â and prior to the next waking of either player the player who least
recently committed has always played âi or ai. A normal history is one in which
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every subform has been normal. In any subform following a normal history the
assessment is a point mass on an opponent commitment that is consistent with
the history and would respond to any other action other than âi or ai with a−i,
and that plays a constant middle-run action of ã−i with ui(ai, ã−i) ≤ ui(â).
Since i only played âi or ai during a normal history because for any given
state process any mapping α−i to actions is feasible such a commitment exists.
The assessment is by construction consistent. De�ne a strategy for normal
histories to use âi during free play, then commit to the â-trigger machine with
initial condition â−i. For all other histories pick some sequential equilibrium,
which one does not matter. Notice that the proposed assessments are certainly
consistent and the path of play for these strategies is always â as required by
the theorem. The point is to prove that when F, τ are large and ∆F at standard
histories no player wants to deviate.

For normal histories assessments are always point masses so Theorem 5.5
applies so that players must commit to a middle-run constant best response.
According to their beliefs they can attain the middle-run steady state â, steady
states of the form (ai,a−i) or steady states of the form (ai, ã−i). If ui(ai, ã−i) =
ui(â) then by the generic payo� assumption (ai, ã−i) = â so the �nal case is
redudant and in all cases â is best. The â-trigger machine gives this steady
state, and given the proposed equilibrium strategies the opponent −i is actually
using the â-trigger machine. Under these circumstances can i do better than
the â-trigger machine?

One possibility is to choose an alternative strategy that plays the same way,
for example, always play â: this results in the same future, so no gain. Another
is to induce a middle-run cycle when a−i is played. By the usual argument this
is a bad idea.

The �nal possibility is to incur a short-run loss in hopes of a better future:
by playing di�erently now, perhaps the opponent can be convinced that there
is a better deal when there is another reversal. The short run lasts at most N
periods and gains at most Γ per period, since it must play di�erently, must lose

at least F in one of those periods, so for ∆ ≤ 1 and F ≥ Γ at least e−N∆Γ in
average present value. Hence if an alternative strategy is to be pro�table would
have to garner that pro�t by convincing the opponent after the next switch not
to continue playing the steady state â but instead switch to some more desirable
steady state (from i's point of view). The problem is that whatever i does −i
(who is in fact using the â-trigger machine) is only going to play â−i or a−i

so the subform will continue to be normal and −i is going to assess that any
action other than â−i or a−i is going to be responded to with ai. Hence the
only possible middle run steady states will be â, (ai,a−i) and â is by assumption
strictly better for −i so they will choose that.

This leaves the issue of whether there might be some future short-run gain
that pays for the current short-run loss. This gain is at most ΓN∆ in average
present value at the beginning of that future short-run. However, by Theorem
5.4 the long-run bound implies that this is discounted by at most 1/(1 + ζτ), so

in �rst period average present value no greater than ΓN∆/(1 + ζτ). For �xed
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Γ, N and su�ciently large τ this is smaller than the short-run average present

value initial loss of at least e−N∆Γ . Hence this is not optimal either.

8. Learning and Forgiving

It can be argued that the folk theorem result for the unobservable commit-
ment case is de�cient because with point beliefs players have no reason to try to
learn the commitment of their opponent. This is not a new issue in equilibrium
theory: point beliefs are instrumental also in the chain-store paradox, and it
was to break the tyranny of point beliefs that the gang-of-four introduced com-
mitted types and the reputational model. Indeed: there are a number of ways
of perturbing a model to get rid of point beliefs: players trembling, the logistic
response used in quantal response equilibrium, global games, and so forth.

In the current setting it is convenient to perturb beliefs directly as is some-
times done in the de�nition of trembling hand perfect equilibrium. Speci�cally,
suppose that player i has a �xed distribution µi over feasible opponent commit-
ments that puts weight at least µon each one. Let µ̃it be a sequentially rational
assessment for player i at wake-up time, and de�ne a belief-perturbed equilib-
rium as a best response in each sub-form following wake-up to the perturbed
assessment (1 − ε)µ̃it + εµi. Now when a player wakes up they no longer have
point beliefs, so have an incentive to learn their opponent's commitment.

The problem is: belief perturbation is not good enough. Suppose in par-
ticular instead of the trigger automaton used in the proof of the Unobservable
Theorem there are also automata that respond not only to opponent play last
period, but also to own play last period. One such automaton is the grim-trigger
machine. This looks �rst to see if the player themselves played the safety action
last period and if so plays the safety action, otherwise it plays as the trigger
machine. The point unless you conform against a grim-trigger machine you will
be punished with the safety action forever. If we replace the trigger-machines
in the proof of the Unobservable Theorem with grim-trigger machines it goes
through unchanged, but is now robust to small ε belief perturbations: if ε is
small the chance of triggering the safety action is so large that it is sub-optimal
to experiment. Nobody tests the doomsday machine on purpose.

By contrast with grim-trigger machines, reactive machines are forgiving:
after a �xed period of time they ignore what the opposing player did and the
fact is that is no bene�t from threatening to punish forever rather than to
merely punish enough: there is a reason nobody has produced a doomsday
machine. Given this, it makes sense assume that players are forgiving in the
sense that are restricted to using reactive machines and that this is common
knowledge (along with the length of history that these machines are limited to).
The importance of being forgiving has been documented in other contexts: the
evolutionary advantage of forgiveness is indicated in the simulations of Axelrod
and Hamilton (1981) and the theory of Fudenberg and Maskin (1990). It is
also found in the laboratory work of Fudenberg, Dreber and Rand (2012).

A key fact about reactive machines is that they are not only forgiving, but
they are steady state machines in the sense that given a constant opponent
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action after a �xed period of time they respond with a steady state. As cycles
are still a very bad idea a player is interested in which steady states are o�ered
in the middle-run. This can easily be determined by running each constant
sequence long enough and seeing what the opponent does.7 Once this is done
beliefs are point beliefs and the proof of the Observable theorem remain valid:
the folk theorem is again broken and there is again long-run e�ciency.

If we �x ε before choosing ∆ small then the cost of testing is not prohibitive.
Since it is assumed that F ≥ Γ the cost of testing a constant action for player
i is at most (B−i + 1)F∆. Moreover, if there is an action that has not been
tested for which an opponent choice could yield a better payo� than the best
known steady state there is at least an εµ probability that this steady state is
available according to the perturbed beliefs. As shown in the proof of Observable
Commitments, the gain if this better steady state is available is at least γζ/2.
In other words, the expected gain from testing is at least εµγζ/2. Hence if ∆F
is su�ciently small it is optimal to conduct the test.

In short: with belief-perturbed payo�s and reactive machines the folk theo-
rem is again broken and there is again long-run e�ciency.

7In general, as shown by Levine and Szentes (2006), determining an opponent machine by
testing it is problematic. This is not the case for reactive machines as testing it against every
su�ciently long sequence shows exactly which machine it is. However, such extensive testing
is not needed simply to determine the steady states.
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Appendix

Recall that λτ = (1/h1) + (1/h2)− (1/(h1h2τ)) so that λτ∆/τ is the prob-
ability that some player wakes up each period. Note that λ1 ≤ 1.

Lemma. there exist constants ζ, ζ > 0 for all τ ≥ 1, F ≥ Γ and ∆ ≤ 1/(λ12N)
such that

(short-run) ΓS ≤ ζ∆F
(middle-run �ow) γ(∆, τ) ≥ ζ
(middle-run cycle) ξM ≤ Γ− ζF
(long-run) 1/(1 + ζτ) ≥ L(∆, τ, σ) ≥ ζ/τ

Proof. Short-run. Recall that ΓS is the greatest di�erence in average expected
present value over all short-run periods between any two di�erent strategies.
The greatest di�erence between any two strategies in any individual period is
Γ + F . If we compute the average expected present value assuming that each
wakepup event triggers N periods of such a di�erence this overcounts the actual
periods since after free play a new wakeup event could occur before the current
short-run concludes. As we are interested in an upper bound on ΓS we compute
accordingly an upper bound on the loss

ΓS ≤ (1− e−∆)

(
1 +

∞∑
t=1

(λτ∆/τ)e−∆t

)
N(Γ + F )

=
(
1− e−∆ + e−∆λτ∆/τ

)
N(Γ + F )

≤ 2 (1 + λ1)N (∆F )

giving the �rst result.
Middle-run �ow

Recall that γ(∆, τ) is the average expected present value during a middle
run with a steady state yielding a single unit of utility each period. This is

γ(∆, τ) = (1− e−∆)
∞∑
t=0

e−∆t(1− λτ∆/τ)t

=
τ

e−∆λτ∆
1−e−∆ + τ

≥ 1

λ1
1/(λ12N)

1−e−1/(λ12N)
+ 1

where the �nal step uses the fact that ∆/(1 − e−∆) is increasing in ∆. This
gives the middle-run �ow result.

Middle-run cycle

Recall that ξM is the greatest average expected present value for player i
during a middle run that has a non-trivial cycle for player i. We may take N as
a bound on the length of the cycle and assume that the loss from at least one



17

switch F occurs at the end of the cycle. Hence, the average expected present
value is at most Γ minus a lower bound on the probability that the cycle is not
interupted by a wake up event (1−Nλτ∆/τ). This gives

ξM ≤ Γ− (1−Nλτ∆/τ)(1− e−∆)e−N∆F/N ≤ Γ− (1−Nλ1∆)e−N∆F/N

≤ Γ− e−(1/2)

2N
F

giving the middle-run cycle result.
Long-run

Recall that L(∆, τ, σ) is the average expected present value of a unit utility
�ow after the next wake-up and we want both an upper and lower bound.

L(∆, τ, σ) = e−N
i∆
∞∑
t=0

e−∆t(λτ∆/τ) (1− λτ∆/τ)
t

=
e−N

i∆λτ∆/τ

1− e−∆ + e−∆λτ∆/τ
.

The lower bound is given by lower bound

L(∆, τ, σ) =
e−N

i∆λτ∆/τ

1− e−∆ + e−∆λτ∆/τ
≥ e−N

i∆λτ∆/τ

∆ + λτ∆/τ
=
e−N

i∆λτ/τ

1 + λτ/τ
≥ e−1/(2λ1)λ1/τ

and the upper bound

L(∆, τ, σ) =
e−N

i∆λτ∆/τ

1− e−∆ + e−∆λτ∆/τ
≤ e−∆λτ∆/τ

1− e−∆ + e−∆λτ∆/τ

=
1

(τ/λτ∆)(e∆ − 1) + 1

as ∆ ≤ 1 we have e∆ − 1 ≥ e∆ so

≤ 1

(e/λ1)τ + 1
.

Reversal

Recall that δiR is the expected discount factor from commitment until a
reversal before player i wakes up again. In period t this is the probability −i
wakes up ∆/(h−iτ) times the probability that neither player had woken up
before, and we add up over periods to get

δiR =

∞∑
t=0

e−∆t(∆/(h−iτ))
(
(1−∆/(h1τ))(1−∆/(h2τ))

)t
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=
∆/(hiτ)

1− e−∆ + ∆e−∆/(h1τ) + ∆e−∆/(h2τ)− (∆e−∆/τ)2/(h1h2)
.

We are interested in a lower bound, and since ∆e−∆/τ ≤ 1

δiR ≥
∆/(max{h1, h2}τ)

∆ + 4∆e−1/(λ12N)/(min{h1, h2}τ)
=

1

max{h1, h2}
1

τ + 4e−1/(λ12N)/min{h1, h2}

proving the reversal result.
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