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Abstract

[ introduce the idea of behavioral mechanism design where in addition to the usual
selfish players there are noisy players who play randomly and ethical players who
actively seek to maximize social welfare and are willing, up to a point, to “do their
bit” to achieve that goal. I calibrate this model using data on risk aversion and giving
in dictator games. I then use it to study twelve different (out of sample) experiments
involving stag hunt games, ultimatum bargaining games, and public goods games
with and without punishment. I show that this simple calibrated model makes sharp
predictions and does a good job both qualitatively and quantitatively in explaining
the data from those experiments. The theory also identifies quantitative anomalies
in the data pointing the way to future improvements. I conclude that this simple

calibrated model might be a good benchmark for other experiments.

1. Introduction

You and three friends are on your way to the experimental laboratory to meet
eight other students to be randomly matched to play an ultimatum bargaining game.
You and your friends are public spirited in the sense you would like to maximize the ex
ante expected utility of the participants - provided it is not too costly for yourselves.
You and your friends also know that while the other students are, like you, risk averse,
unlike you they are not so public spirited. About half are selfish and will try to get

what they can for themselves; the other half will have other agendas, such as worrying
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about what they will do over the weekend, or trolling the experimenter. Knowing
that you will get to play a number of times what should you and your friends agree
to do? This is a prototypical example of a behavioral mechanism design problem:
behavioral because in addition to selfish types there are two behavioral types: ethical
players like the friends in the example, and noise players with other agendas.

In this paper I analyze the behavioral mechanism design problem and provide
solutions for a number of games that have been played in real laboratories. In the
example, you and your friends should offer an even split as first mover, should accept
offers of four dollars or more, and for each dollar less increase the rejection rate by
about 30%. The striking fact is that in this and the other games I study the observed
play in the laboratory resembles the idealized solution of the behavioral mechanism
design problem both qualitatively and quantitatively. To be clear: it is unlikely
that if there are ethical players in these experiments they are able to collude or that
they know in advance what game they will play. Never-the-less play by experienced
participants in the laboratory experiments I study may reasonably be described “as
if” it is the solution to a behavioral mechanism design problem.

The setting for the formal model is a finite normal or extensive form game. In
that game players are drawn from a population with three types. Selfish types are
“standard” players who care only about their own utility. Noisy types are like behav-
ioral or commitment types in the reputation literature or noise traders in the finance
literature and play according to a fixed exogenous strategy. Ethical types are like eth-
ical or group rule-utilitarian voters. One the one hand they are willing (to an extent)
to sacrifice their individual utility for the common good. On the other hand they act
as mechanism designers, picking an equilibrium that maximizes social welfare and
optimally deploying their largesse. Below in the literature review I indicate that none
if these types are new, and that they are adopted from the existing literature.

The main application of the model is to calibrate it and propose it as a benchmark
for analyzing experimental data for standard stakes experiments involving college
student participants. A benchmark model in my view is a model that is not estimated
from data, but converts experimental instructions into quantitative predictions about
play. The point of a benchmark model is to detect anomalies: if the experiment
is what is predicted by the benchmark then there is little reason to search for new
theories or modify old ones. The standard Nash (or subgame perfect) model with

selfish risk neutral agents is an example of a benchmark model, and is widely used as



such. It is a low bar because vast numbers of anomalies are known and it is easy to
find new ones. The Levine (1986) calibrated model of signalling spite and altruism is
a benchmark model albeit it has not proved a very useful one. The Fehr and Schmidt
(1999) calibrated model is also a benchmark model and has proven more useful.

To use the behavioral mechanism design model as a benchmark model it must be
calibrated. In the calibrated version of the model T make the uniformity assumption
that all types are equally likely, the social welfare function puts equal weight on
all types, and the noise players maximize a measure of entropy at each information
set. In addition all players have the same risk averse utility function for money
income. This and the largesse of the ethical types are calibrated to data on individual
decisions for games that are non-strategic in the sense that strategies are ordered by
strict dominance. I particularly want to empasize the role of risk aversion because
efficiency creates a demand for insurance and this in turn means that “fair” allocations
are preferred to “unfair” ones.

Having provided a calibrated model I use it to benchmark twelve different ex-
perimental treatments. All are classical experiments that have been replicated many
times. The first application is to stag hunt for which there are four treatments. In
this application social preference in the form of largesse plays no role, but the role of
noise players and equilibrium selection is highlighted. In stag hunt theories lacking
noise players do poorly and despite the fact they do not make precise predictions are
wrong in the few predictions that they do make. The second application is to ultima-
tum bargaining for which there are two treatments. These experiments highlight the
role of risk aversion in generating a demand for fairness. They also provide evidence
that players are not merely reacting to unfair or unkind behavior by their opponents
but are acting as mechanism designers and actively seek to achieve social goals. The
final application is to public goods games with and without punishments of varying
costs. This application demonstrates how the constraint on largesse interacts with
the possibility of punishment to generate “the law of demand.” The ultimatum and
public goods contribution games are chosen not only to illustrate specific points about
the theory but because they have been widely used to assess models of social prefer-
ences. In each case the behavioral mechanism design benchmark is qualitatively and
quantitively on the mark, albeit with some quantitative anomalies that I explore.

What, then, is the marginal contribution of this paper to the existing literature?

First, with respect to theory, this paper advances a different point of view than most



existing models. With rare exceptions, behavioral models take account of psycholog-
ical factors such as desire for fairness, reciprocity and altruism and build theories of
what should be considered kindness and fairness. The theory here approaches these
issues from a different angle. Take the willingness to punish those who fail to con-
tribute to the common good. Standard behavioral theories build this into preferences
as a kind of desire for revenge against those who fail to do their fair share, who are
unkind, or in order to improve equity. In the mechanism design model here punish-
ment is a means to an end - ethical players are willing to punish others to provide
them with incentives to contribute to the common good. Fairness is not in conflict
with efficiency, but in the presence of risk aversion fairness is demanded by efficiency.
As I indicate below in the literature review this is not a new idea, but the model here
through its simplicity and starkness provides the basis for a benchmark calibration
which earlier models do not.

The second contribution of the paper is to the experimental literature. It provides
a simple qualitative and quantitative (and new) explanation of a wide variety of
experimental results and can be used as benchmark for detecting anomalies. It enables
us to ask and answer questions such as: is risk aversion is sufficient to explain the
demand for fairness or is there trade-off between efficiency and fairness?

The model has two ingredients: noise players and the idea that punishments are
issued in order to provide incentives. I provide evidence for both of these ideas. In
the stag hunt game models that lack noise players predict only that all players should
choose the same action. In fact after nine periods of play more than 27% fail to play
the modal action. In ultimatum bargaining models of fairness and kindness predict
that the frequency with which an offer should be rejected should not depend upon
how frequently that offer is made. In fact, in the same population, when the frequency
of $3.00 offers increases from 3% to 31% the frequency of rejections drops from 85%
to 14%. Mechanism design, by contrast, says that punishments should not be issued

if they do not accomplish the purpose of discouraging ungenerous offers.

2. Literature Review

As I indicated, the viewpoint of this paper has precedent and I would be remiss
not to acknowledge the extent to which it builds on my earlier work with Rohan
and Salvatore in Dutta, Levine and Modica (2021). That paper had ethical players
(there called acolytes) and selfish players; but no noise players. Instead it had a



noisy signalling technology that (as acknowledged in the paper) makes sense outside
the laboratory but not inside the laboratory. Although we did try to calibrate that
model, the calibration was clumsy due to the mismatch between the model and the
laboratory and there was very little out of sample testing of the calibration. Here
[ have dropped the signalling technology as it is irrelevant to the laboratory and
replaced it with noise players who are. This leads to a cleaner model and one that
can be calibrated using only data from non-strategic settings and used as a benchmark
(out of sample) in strategic settings.

The work here is also in the spirit of recent work, for example Fudenberg and
Karreskog Rehbinder (2024), exploring how experimental data can be explained by
models that are both simple and sensible. The idea of using a numerical target (here
welfare) to measure consistency of the theory with data is reminiscent of the idea of

measuring losses in Fudenberg and Levine (1997).

Ingredients of the Model: Ethical Players

As Iindicated, the features of the model are not new and the types of players have
ample precedent in the literature. In the empirical literature Coase (1960), Ostrom
(1990) and Townsend (1994) argue that small groups are good at self-organizing to
find solutions to mechanism design problems. The formal model of an ethical player
is taken directly from the literature on ethical voters, including the theoretical model
of Feddersen and Sandroni (2006) and the voting study of Coate and Conlin (2004).
Other theoretical and applied uses of these models can be found in Herrera, Morelli
and Nunnari (2016) and Levine and Mattozzi (2020) among others.

The idea that ethical players are willing to “do their bit” but only up to a limit is
also closely related to the experimental literature on “warm glow” giving. Examples
are Andreoni (1990) and Palfrey and Prisbrey (1997). It is similar also to the idea of

“revoking costs” used in the bargaining literature such as Dutta (2012).

Ingredients of the Model: Noise Players

As indicated, noise players are not new either. They have been extensively used
in the reputational literature, including but not limited to, Kreps and Wilson (1982),
Milgrom and Roberts (1982), Fudenberg and Levine (1989), and Mailath and
Samuelson (2001). Noise traders are widely used in the finance literature: a quick
overview can be found in the Palgrave article by Down and Gorton (2008). Noise

players are also related to the quantal response players of McKelvey and Palfrey



(1995) and especially the extensive form version in McKelvey and Palfrey (1998).
Their behavior is similar to the limiting case as sensitivity to incentives grows small.

Finally, the role of noise players has parallel in the notion of risk dominant equilib-
rium, especially in the evolutionary literature: see for example Kandori, Mailath and
Rob (1993), Young (1993), and more recently Peski (2010) among many others. Al-
though the time frame for evolution and mutations is quite different than considered

here, the role of noise is the same.

Psychological Models

As I have indicated the main alternative to the theory here are the many psycho-
logical theories of fairness and or reciprocity. In general these are qualitative analyses
of experimental data and are not suitable as benchmark models. To mention a few
of the more popular theories: Fehr and Schmidt (1999) and Bolton and Ockenfels
(2000) develop models of fairness with which they do qualitative analyses for a va-
riety of experiments, and Fehr and Schmidt (1999) do quantitative analyses as well.
Charness and Rabin (2002) introduce a psychological theory of fairness with many
factors and do a set of experiments determine which are the most important. Falk and
Fischbacher (2006) use higher order beliefs to model intentions and reciprocity. This
is primarily a qualitative analysis. Dufwenberg and Kirchsteiger (2004) similarly
model intentions, kindness and reciprocity. Along somewhat different lines Levine
(1986) models intentions that are inferred from type signalling and uses it to analyze

several experiments quantitatively.

Quantitative Calibration: Benchmark Models

As indicated, in addition to the selfish risk-neutral Nash model, there are two
models that are potential benchmark models.

Levine (1986) calibrates a type signalling model on ultimatum and a public goods
contribution game. There are two parameters describing the three types: altruistic,
spiteful, and selfish (constituting 52% of the population). There are two out of sample
analyses, that of the centipede game and that of a market game. Both are relatively
successful.

Fehr and Schmidt (1999) calibrate a preference for fairness from ultimatum game
data. There are two parameters one of which can take on four values and one three.
The calibration is not complete as they do not specify the correlation between the two

parameters. They conduct three out of sample analyses, that of a market game and



that of a public good contribution games with and without punishment. All three
are relatively successful. They also give a qualitative analysis of the trust game.

Fehr and Schmidt (1999) also examine dictator, which fails. Levine (1986) did
not discuss dictator, but it is easy to apply the model and it fails even worse than Fehr
and Schmidt (1999). By contrast, behavioral mechanism design does fine, although
this is not an out of sample test as the largesse of ethical players is calibrated from
dictator data.

I should add that I have not analyzed a market game as done in those two papers
because that fruit is very low-lying: virtually any model predicts that with enough
competition we will see competitive equilibrium. In a similar vein I have avoided
analyzing games such as best shot where there is no real scope for social preferences,
where subgame perfection performs well, and where other theories do equally well.
The only exception is the public goods game without punishment: I include that to
provide a contrast to the games with punishment.

In both the Levine (1986) and Fehr and Schmidt (1999) models there can be
multiple equilibria so that the predictions of those theories are not sharp. T want to
emphasize that in contrast to these other models - including selfish risk neutral Nash
- the theory here makes sharp predictions. There is a single number - the optimal
social welfare - that is spit out be the model from experimental instructions and can
easily be compared to the theoretical data. The play leading to that optimum need
not be unique but often is, including in settings where the other models make few

useful predictions.

3. The Model

The setting is that of a game. Although this may be an extensive form game to
limit notation I formally describe only the normal form. There are n player roles
and each player role has a finite strategy space s € S® with payoffs u’(s?, s7%). Mixed
strategies are denoted by o* and u’(c) is the expected utility. Each player role is drawn
privately from a single population in which there are three types: (S)elfish, (N)oise
and (E)thical, where 7 € {S, N, E'} denotes the type and ¢, > 0 is the fraction of the
population that is type 7 with the obvious property that ¢ps+¢n-+¢r = 1. Player roles
are partitioned into classes of roles that are indistinguishable and mixed strategies for

a type are feasible if and only if they are symmetric within each class. For example,



in a fourteen player public goods contribution game with identical players there are
14 player roles, but players cannot distinguish what their “player number” is.

As expected the selfish types are standard players who try to maximize their utility
u'(s',s7) for the player role ¢ they are assigned. The noise type plays according to
a fixed probability distribution oy with o%;(s") > 0. The ethical players are public
spirited and act as mechanism designers, choosing incentive compatible strategies
for themselves and the selfish types to maximize a social welfare function as I now
explain.

To be specific, for given mixed strategies for each type o, denote the mixture by
o =)__¢;0,;. The mechanism design problem can be stated as a choice of og, 05 to

maximize the expected per capita social welfare function

E Z w doiul(ok,07)
T i n

where the welfare weights w, > 0 and > _w, = 1. For selfish types there are incentive

constraints for i = 1,...,n and s’ € S°
u'(o, 07 > u'(s, o).

In addition the willingness of the ethical players to contribute to the public cause
is not unlimited and the ethical players are characterized by a utility limit v, the
largesse, on how much they are willing to sacrifice. This gives additional incentive
constraints

N E )

Discussion of the Model

Two aspects of the model deserve mention. First, I have not assumed that the
welfare weights are all positive. It might be, for example, that the ethical players do
not care about the noise players, viewing them as being deviant. Or they might care
only about the welfare of the ethical types.

Second: the behavior of the ethical types (and possibly of the selfish types as
well) is not individualistic. Coate and Conlin (2004) refer to ethical voters as “group
rule-utilitarian” and this is accurate. That is, ethical players ask: what would we
like to happen (given the incentive constraints) and how can we do our share to

make it happen. In particular: even if v = 0, or, as is the case in stag-hunt if v is



irrelevant, if there are multiple equilibria the ethical players get to select the most
favorable equilibrium. It is for this reason that one of my applications is to the stag
hunt game. Ordinarily this is viewed as a failure of the hypothesis that most favorable
equilibria are selected. As I will show this is not the case for the calibrated behavioral
mechanism design model: the presence of the noise player changes the calculus of both

equilibrium and welfare and is consistent with what is seen in stag hunt experiments.

Incentive Constraints

The incentive constraints are applied after player roles have been assigned and
types determined, but, if the game is sequential, before moves take place. Hence
the equilibrium concept is Nash rather than subgame perfect. In this setting with
noise players who play everything with positive probabiity this distinction is meaning-
less: every information set feasible given a player’s strategy is reached with positive
probability, Bayes law always applies, and every Nash equilibrium is sequential.

The ez ante nature of the incentive constraints does have implications for the
behavior of the ethical types. That is, their willingness to accept a utility loss of
v is measured ex ante. For example, if they move second they may be required
in response to an unlikely move of the first player to take a greater loss than ~.
The ethical types are committed to do “whatever it takes” when the time comes,
provided the ex ante expected loss from doing so is not too great. I should note
that in experimental treatments where one round is chosen at random to be paid
the commitment is automatic: at the time the decision is made the action chosen is
purely hypothetical and will involve an actual loss only with some probability - after

the fact it is impossible to renege.

Ezxistence of a Solution

The one relevant theoretical fact is that the behavioral mechanism design problem

has a solution.

Theorem 3.1. The problem of maximizing social welfare subject to the incentive

constraints has a solution.

Proof. This follows if the expected utility functions are continuous in the strategies
and the constraint set is closed and non-empty. Continuity of expected utility in
strategies follows from the fact that the game is finite so they are multi-linear. The

constraint set is closed because the utility functions are continuous and the constraints
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are defined by weak inequalities. The only substantive issue is whether the constraint
set is non-empty. Since the noise players act as “nature” there is a Nash equilibrium
for the selfish and ethical players in which the ethical players act selfishly: this satisfies

all the counstraints. O

4. Overview

Before analyzing the experiments in detail I first give an overview of the calibrated
model and results. The utility function u(m) for monetary payoffs and ~ are calibrated
to data. This is done below, but I want to indicate that this calibration is for standard
stakes with students as participants: those are the applications I am going to consider.
I suspect that for other stakes and with other populations this calibration would not
“work.” In addition the theory is an equilibrium theory and we only observe something
resembling equilibrium in the laboratory when participants have an adequate chance
to play and learn. Consequently, in the applications I will only look at data from late

stages of repeated matches.

The Calibrated Model

The besides the monetary payoff function, which is given by the experimental
instructions, the mechanism design problem depends upon the utility u(m) for mon-
etary payoffs m, the largesse 7 of ethical players, the weights w, in the social welfare
function, the fractions of types ¢,, and the strategy of the noise types oy.

Here is the calibrated model. Utility is given by
u(m) =1—(14+m/C)'"*

where C' = 40 and p = 9. If there are 7 paid rounds then largesse in each round
is u~!(y) = $1.00/7. For the utility weights and fractions the simplest assumption
and the one I will adopt is the uniformity hypothesis: this is w, = ¢, = 1/3. For
the behavior of the noise players oy I will adopt the maximum entropy hypothesis.
I first partition and order the actions at each information set by weak dominance.
Within each weak dominance class actions are chosen with equal probability; and each
weak dominance class has the same probability as the combination of all lower weak
dominance classes. For example, the probability some weakly undominated strategy

is chosen is equal to the probability that some weakly dominated strategy is chosen.
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Results

The strong prediction made by solving the mechanism design problem concerns
welfare. This is reported below in Table 4.1 for the three experiments and twelve

treatments analyzed in this paper.?

|

| period(s) | theory | data | actual err | SGP err | FS err |

n=2p 7 $1.18 | $1.18 $0.00 $0.22*
n =2s 5) $1.18 | $0.91 $0.27 $0.39*
stag | n =14 10 $0.64 | $0.60 $0.04 $0.70*
n=15 10 $0.60 | $0.66 | —$0.06 $0.64*
n =16 10 $0.60 | $0.61 —$0.01 $0.69*
ale 11O obs | 21 —40 | $3.45 | $3.46 | $—0.01 $0.06 $1.36
obs 21 — 40 $3.45 | $3.43 $0.02 $0.09 $1.39
no pun 10 $1.51 | $1.51 $0.00 —$0.01
pun 1 10 $1.81 | $1.64 $0.17 —$0.14
pub | pun 2 10 $1.88 | $1.78 $0.10 —$0.28 | $0.63*
pun 3 10 $1.91 | $1.99 —$0.08 —$0.49 | $0.42*
pun 4 10 $1.92 | $1.91 $0.01 —$0.41 | $0.50*

Table 4.1: Welfare
n in stag hunt is number of players, for n = 2 the s denotes strangers and p partners
in ultimatum bargaining no obs is the standard treatment and obs is the treatment
where the play of another player is observed
in the public goods game pun represents the punishment factor (or no punishment)

The experiments are stag (hunt), ult(imatum bargaining) and pub(lic good con-
tributions). Welfare is reported in certainty equivalent units by applying u~! to the
expected utility of a player in the game generated by the theory. I then computed the
actual utility from the data in the same units and the difference between the theory
and the data (actual err). This in itself proves little: it is possible to develop theories
that generate predictions that do not depend upon the data at all: for example, the
maximum possible payoff in the game. It is important to know that there is a wide
range of possible predictions for welfare, that is, that the theory can be wrong. To
this end, as I explain in Online Appendix 2, I computed welfare for two other bench-

mark theories, selfish risk neutral subgame perfect equilibrium (subgame perfection

2To avoid informational overload I do not report standard errors here. They are discussed in
the context of specific experiments in the text and in Online Appendix 4. They add little to the
information presented in the table.
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or SGP) and the calibrated Fehr and Schmidt (1999) (FS) model. In the final two
column I then computed the error for each of these other theories. In cases where
there were multiple equilibrium (marked with a *) T followed Fehr and Schmidt (1999)
and picked the most efficient one.

For one game, the public good game with no punishment, all the theories agree
that there will be very little contribution. In nine of the other eleven experiments the
actual error is no more than $0.10 in absolute terms. By contrast, the other theories
come within $0.10 of empirical welfare only for subgame perfection in ultimatum
bargaining and generally have much larger errors. Overall, I take this to mean that
behavioral mechanism design does fairly well in predicting welfare.

In the table I have highlighted the two anomalies identified by the calibrated
model. These are the stag hunt game with strangers (players are randomly matched
each period) and the punishment factor one public goods game. These I will ex-
amine below, but for the moment note that the first and worst anomaly, the stag
hunt anomaly, occurs with relatively inexperienced players who got to play only five
periods. For the punishment factor one public goods game both subgame perfection
and Fehr-Schmidt do better than mechanism design underpredicting welfare by $0.14
rather than overpredicting it by $0.17, but none of thsee theories do terribly well.

The one case in which an alternative theory does relatively well - subgame per-
fection in ultimatum bargaining - is, unfortunately, a case of the broken clock being
right twice a day: subgame perfection makes two offsetting errors. On the one hand
it underpredicts the generousity of offers, predicting $1.00 offers as against at least
$3.63 in the data. This lowers welfare. On the other hand it also underpredicts rejec-
tions, predicting that no offers will be rejected, while the actual rejection rate in the
data is about 20%. This raises welfare and the two errors more or less cancel out. In
contrast the Fehr-Schmidt model does poorly with ultimatum welfare, overpredicting
by more than $1.25. Unlike subgame perfection Fehr-Schmidt gets the distribution
of offers fairly accurate for one of the two ultimatum games, but overpredicts welfare
because it gets the rejection rate too low. This shows that the details are important,
and I will go through the details of the mechanism design model shortly.

Before turning to the details of the theory and data, I must explain how the

calibration is done.
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5. Benchmark Calibration for Long-Term Play

The utility u(m) for monetary payoffs m, the largesse v of ethical players, the
welfare weights w,, the fractions of types ¢, and the strategy of the noise types oy
all must be calibrated. As indicated for the utility weights and fractions are not
calibrated to data, rather I adopt the uniformity hypothesis: this is w, = ¢, = 1/3.
Similarly as I describe below the strategy of the noise players is derived from the
maximum entropy hypothesis. Then I calibrate o and u(m), as these are needed for
calibrating ~y, and conclude by calibrating ~.

I want to emphasize that in this calibration I have taken data from standard
experiments using best practices that have been replicated many times. In addition I
use only data from non-strategic settings. By this [ mean games where strategies are
ordered by strict dominance with respect to monetary payoffs: dictator and public

goods contribution games.

Entropy Mazximation in the Agent Normal Form

Strictly speaking I do not calibrate oy at all, rather I assume that it is noisy
in the sense of maximizing a measure of entropy. As it is the behavior of noise
players that matters, it makes sense to talk of behavior strategies and the most
straightforward assumption is that the noise players randomize uniformly over actions
at each information set. This leads to absurd play in some settings, so I instead adopt
the maximum entropy hypothesis which I now describe.

To motivate the maximum entropy hypothesis, consider the public goods game
with punishment studied by Fehr and Gachter (2000). Here in the second stage of
a game a player must decide how to allocate 20 “punishment points” among three
opponents. These are costly both to the punisher and the punished.

What does this structure means in terms of the information set where punishment
is allocated? There is one action in which no punishment points are allocated. There
are three actions in which one punishment point is allocated among the three oppo-
nents, and in general there are (k+ 1)(k + 2)/2 actions which allocate k& punishment
points among three opponents. The point is that a uniform distribution over actions
at this information set implies that large numbers of punishment points are far more
likely than small numbers because there are many more ways to allocate them. In
particular the probability that six or fewer punishment points are assigned is less

than 5% while the probability that 16 or more punishments points are assigned is
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more than 50%. This is not reasonable and is grossly inconsistent with the play of
laboratory participants.

To provide a more “reasonable” description of the play of noise players, I instead
categorize actions and assume that entropy is first maximized between categories,
then within categories. Specifically, working in the agent normal form so as to deal
with behavior strategies and actions at information sets, for each information set
I at which player ¢ is playing, strategies can be divided into those that are weakly
dominated W(I) and those that are not N°(I). By zero order reasonableness I mean
that it should not be more likely to play a weakly dominated strategy than a weakly
undominated strategy:

Pr(N(I)) > Pr(W(1)).

This criterion should be applied recursively: we can define W'(I) as the subset of
NO(I) that are weakly dominated by a strategy in N°(I) and N'(I) as those which
are not, and continuing in this way define W*(I), N*(I) until we run out of strategies.

The reasonableness constraints are
Pr(N*(I)) > Pr(W*(1)).

The maximum entropy hypothesis then asserts that entropy should be maximized
among categories subject to the reasonableness constraints: this says that the con-
straints should bind and that each category except the last has half the probability
of the preceding category with the final two categories having equal weight. It then
asserts that entropy within each category should be maximized so that actions within
each category are chosen with equal probability.

In the example the maximum entropy hypothesis gives rise to the punishment
strategy for the noise players: the probability of issuing £ punishment points is
(1/2)%! for k < 19 and (1/2)?° for k = 20. For each level of punishment & there are
3% ways of allocating those punishments among three opponents, and each of these

has equal probability.

Risk Aversion
It has long been observed that players are risk averse over the small stakes in
laboratory experiments. Risk aversion plays a key role in the theory both because

there are risks and because it induces a demand for fairness. That is, if agents are
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risk averse, maximizing ez ante expected utility of a player means that an equal split
provides both players with insurance. The social optimality of the equal split plays a
key role in the analysis of ultimatum bargaining.

To get a particular utility function I followed Fudenberg and Levine (2011) who
derive a “short-run” laboratory utility function in a way that is consistent with risk
aversion outside the laboratory. Specifically, this is the CES or constant relative risk

aversion function
u(m) =1— (1+m/C)7

where C' = $40.00 is an estimate of daily “pocket cash” and p is a coefficient of relative
risk aversion determined from laboratory choices over gambles. The bottom line here
is that I take p =9.0 .

To calibrate p I used data from two different experimental approaches: the risky
investment approach of Gneezy and Potters (1997) and the multiple price list ap-
proach popularized by Holt and Laury (2002). These methods are discussed in the
review paper Charness, Gneezy and Imas (2013) and are the two methods used as
objective measures of risk aversion in the large scale standardized survey of Snowberg
and Yariv (2021). In both cases I used data from the original papers.

Gneezy and Potters (1997) give 84 participants an endowment of $1.20 and ask
them to decide how much to invest in a risk project that pays nothing with probability
2/3 and pays 3.5 times the investment with probability 1/3. They played nine times:
the average investment was x = $0.30 and did not vary much from round to round.

Differentiating the objective function
(2/3)u(1.20 — ) + (1/3)u(1.20 — =z + (3.5)x)

with respect to z, equating to zero, substituting x = $0.30, and solving for p yields
the estimate p = 8.7.

Second, following Fudenberg and Levine (2011), I use data from Holt and Laury
(2002)’s normal stakes experiments. They provide 187 participants with a menu of
paired lottery choices where the first is a lottery between $2.00 and $1.60 the second
between $3.85 and $0.10. The menu gives different probabilities between the first and
second prize. They find when the odds are 50 — 50 that 70% of participants take the
safe choice, while when the odds are 60 — 40 only 45% of participants take the safe
choice. For the first lottery indifference requires p = 4.2 and for the latter p = 12.5.
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The median individual lies between these two, presumably closer to the top. This is
generally consistent with the p = 8.7 from the Gueezy and Potters (1997), so, to
avoid spurious precision, I take p = 9. Such an individual is indifferent on the Holt
and Laury (2002) list at 56 — 44.

Those familiar with the literature on risk aversion in the laboratory may be puzzled
by the fact that these values of p are much higher than appear in other studies. This
is because I have assumed a “wealth” of C' = $40.00 while other studies assume much
smaller “wealth.” With larger wealth risk aversion must be larger to fit the data.
Over the relevant range it makes little difference what utility function is fit to the
data. In Appendix 1 I have plotted along with the calibrated utility function a CARA
utility function fit to the Gneezy and Potters (1997) data: it looks the same over the
relevant range of zero to ten dollars.

One additional remark is important for interpreting the numerical values of welfare

and utility: they are reported in certainty equivalent units, that is, by applying v~

Largesse

How willing are ethical players to sacrifice for the common good, or to say the
same thing, what is 7?7 To answer this question I use data only from non-strategic
settings where actions are completely ordered by strict dominance with respect to
monetary payoffs: these are the dictator game, the one shot Prisoner’s Dilemma
game, and public goods contribution games without punishment. The bottom line is
that if there are 7 paid rounds then I take u~'(y) = $1.00/7.

I am interested in games where experienced players have played many times. A
robust finding from many studies is that willingness to give declines substantially over
time. Figure 5.1 below plots contributions over time from Fehr and Gachter (2000)’s
repeated public goods contribution game with about 66 strangers, and another with
about 44 partners. In the final period the two are quite similar and the average of
the two p = 0.268 T take to be the long-term ratio. For comparative purposes I also
show the fraction of the population cooperating in Dal Bo (2005)’s one-shot prisoner’s
dilemma game with 390 strangers. This is quantitively quite similar to the Fehr and
Gachter (2000) stranger treatment and stabilizes in about the 7th round with the

average over the last four rounds equal to 0.242.
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Giving as Fraction of First Period
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Figure 5.1: Willingness to Give Declines with Experience

I view the long-term ratio p as discount factor that multiplies giving in a first
time game to determine giving for a pool of experienced players. To determine first
time giving [ use data from the dictator game.

In the dictator game one player allocates a fixed amount between themselves and
one other player. The basic source of information about dictator is the Engel (2011)
meta-study based on 83 papers with a total of 20,813 observations. The key relevant
finding is that with student participants the donation rate is about 25%. The most
common dictator game in the laboratory is for $10 stakes where giving is in whole
dollars.

In the standard $10 dictator game with students in the laboratory Engel (2011)’s
data indicates we can expect an average contribution of $2.50. Discounting this
by p = 0.268 and taking account of the fact that the experienced noise players each
contribute on average $1.00 yields the formula for the willingness of the ethical players
to contribute

u ' (y) = 3(2.50)p — 1 = 1.00. (5.1)

The given value of v makes sense when one round is chosen randomly to be paid.
When all rounds are paid it makes sense that the given value of v applies to the entire
game. That is, if the game is played ten times it makes no sense that each time it
is played the ethical players are willing to sacrifice $1.00, but rather that they are
willing to sacrifice that much over the entire course of play, that is, $0.10 for each
round. More generally, if there are 7 paid rounds I take u~!(vy) = $1.00/7.

I note that there is an issue with the v constraint failing to bind which would
invalidate these computations - in Online Appendix 1 I show that the calculations

here are robust to this concern.



18

6. Stag Hunt

The first experiments I analyze are the stag hunt games of Van Huyck, Battalio
and Beil (1990) designed to illustrate how coordination on efficient equilibria can
fail. This class of games is interesting because the standard benchmark theories Fehr-
Schmidt and subgame perfection have little to say about these games, and what little
they do say is wrong.

The games studied in Van Huyck, Battalio and Beil (1990) are simultaneous move
n player games in which each player chooses effort in dollars from ¢' = {0.10,0.20, ..., 0.70}.
The monetary payoff of ¢ is given by

m'(¢',q") = .60 + 2.0min{¢’} — ¢".

Players are paid for every period. There are two treatments: one with a large fixed
population that plays for ten periods with n € {14,15,16}. Three sessions were
conducted with n = 16 and two each with n = 14,15. The other treatment is for a
small population with n = 2: this is done both with a fixed population (partners)

and randomly matched players (strangers).

Qualitative Analysis. In the stag hunt game no individual player, nor even a third
of them, have a substantial chance of raising the minimum, so social preferences
including largesse play no role. Rather it is the play of the noise players together with
equilibrium selection that is crucial. With a large population (14 or more players) the
chances one player messes it up for everyone by choosing a low effort is high and it is
impossible to sustain high levels of effort. With a small population the chance of the
one other player messing it up is not so great and high effort levels are sustainable.
Hence the theory predicts low effort levels in the large population and high effort
levels in the small population. This is characteristic of stag hunt experiments. Risk
dominance makes similar predictions but involves hypothetical players as opposed to
noise players. Characteristic of noise players is that, unlike in other theories, there
should be dissidents who fail to play the modal action, and indeed that nearly a
third of the population should be dissidents. This is, in fact, true. Note that this
analysis provides a strong rationale for explicitly including noise players in substantial
numbers: if noise players and equilibrium selection were added to existing models such
as Nash equilibrium or models of social preferences the results would be identical to

those found here.
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Description of the Solution. In all cases the mechanism design problem has a unique
solution. All the selfish and noise players choose the same target level of effort.
When n = 2 noise players are rare and every target effort level is an equilibrium.
Welfare is increasing in the target and so the optimum is maximal effort $0.70. When
n = 14,15,16 the chances of at least one noise player are high and there are only
equilibria with low effort levels. Specifically, when n = 14 the effort levels $0.10, $0.20
are equilibria and the optimum is $0.20. When n = 15,16 the only equilibrium is
$0.10 so this is the optimum.

Below in Table 6.1 T summarize the theoretical solution and the data from the

final period of play. Note that the maximum attainable joint money payoff is $1.30

per player.
welfare mean effort . ..
n | strangers theory ‘ data | theory ‘ Tota period | participants
2 yes 1.18 1.18 0.60 0.64 7 28
2 no 1.18 0.91 0.60 0.53 ) 16
14 no 0.64 0.60 0.27 | 0.19 10 28
15 no 0.60 0.66 0.20 0.14 10 30
16 no 0.60 0.61 0.20 0.18 10 48

Table 6.1: Summary of Stag Hunt

Qualitatively the theory does extremely well capturing the fact that welfare and
effort are higher with fewer players. Quantitatively the theory does reasonably well:
however when n = 2 with strangers the theoretical welfare is substantially greater
than welfare in the data.

I turn now to a more detailed analysis of the mechanism design problem in these

stag hunt games.

The Large Population Game
I should start by noting that the large population games are played with a fixed

set of players: a partners rather than strangers treatment. However, data is from the
final period so that there are no repeated game effects.

To solve the mechanism design problem observe that there are no weakly dom-
inated strategies, so that the noise players randomize uniformly over contributions.

Using this, I compute the utility of a selfish player for a particular contribution under
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the assumption that that no selfish or ethical player is choosing a smaller contribu-
tion: I refer to this as the popular minimum, as it is the minimum for 2/3rds of
the population, although it need not be the minimum at all when noise players are
accounted for. As the combinatorics of the noise players is complicated, I computed
utility by matching players in a Monte Carlo simulation with 1,000,000 draws. The

results are below in Table 6.2 for the case n = 16.

‘ popular minimum ‘ n =16 ‘ welfare ‘

0.70 0.27 0.36
0.60 0.37 0.43
0.50 0.46 0.50
0.40 0.56 0.55
0.30 0.64 0.60
0.20 0.695 0.63
0.10 0.700 0.60

Table 6.2: Large Population Game: Selfish Payoff

It follows from these utilities that for selfish players each wants to reduce the
popular minimum: the only equilibrium behavior is for all to contribute the minimum
$0.10. In Online Appendix 3 I show that this is also the optimum for the ethical
players.

From Table 6.2 it should be clear that the equilibrium at $0.10 rather than at
$0.20 is delicate: this is why I used the full risk averse utility function even though
risk aversion is minor over these stakes. With n = 14 there is an equilibrium at $0.20
as well as $0.10 and this would be chosen by the ethical players.

Also from Table 6.2 observe that the gain in social welfare of moving from $0.10
to $0.20 is small: it is about $0.03. This highlights a limitation of the mechanism
design: while the prediction of welfare is strong, even if equilibrium is unique it may
be delicate in the sense that a small perturbation of the parameters may cause it to
jump. Moreover, it seems unrealistic that an equilibrium could jump with respect to
such a tiny change: in the n = 14 game the loss to a selfish player to erroneously
choosing effort $0.10 rather than $0.20 is less than half a cent, and if even a modest
fraction of them wrongly decide $0.10 is best they all want to switch. This is known
problem with mechanism design: it allows the designer to choose equilibria that are

not terribly robust.
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Dissidents

Consider the Fehr-Schmidt and subgame perfection theories. For these minimum
games fairness is not at issue and a player with social preferences behaves no differently
than a selfish player: there is no benefit from increasing effort above the minimum
or decreasing effort below the minimum. In other words, in the usual way with
coordination games, every common effort level is an equilibrium. The only prediction
made by these theories is that there should be no dissidents in the sense that every
player should play the modal effort level. In Table 6.3 below I provide information
about the modal effort levels for the n = 15,16 games and the fraction of dissidents.
As can be seen the prediction of no dissidents fails badly as more than a quarter of the
population are dissidents. By contrast the behavioral mechanism design benchmark
makes precise and correct predictions about the modal effort levels and matches the

number of dissendents in the large population games quite well.

modal effort dissidents
theory | data | theory | data

(15,16 [ 010 [0.10 | 29% [ 27% |

n

Table 6.3: Dissidents are those not choosing the modal effort

It is interesting also to take a look at what the dissidents do. Below in Figure
6.1 I plot the theoretical (n = 15 or n = 16) and empirical distribution (all large
population sessions pooled) of contributions conditional on contributing more than
$0.10. As is assumed, the theory is flat. What is interesting is the data: there is a
slight bias towards lower contributions and against intermediate contributions. What
is striking though is the high fraction who are contributing the maximum: $0.70.
This is especially the case since in no round of any session was the minimum ever
close to $0.70. Perhaps these noise players are making a statement?

I should indicate that the data here is weak. There are 106 observations and 7 of
them have effort $0.70. In the theory each player has a 1/3 chance of being a noise
player, and a noise player has a 1/7 chance of providing effort $0.70. The binomial
probability of getting 7 or more such draws in 106 trials is fairly large by the standards
of statistical significance: 13.3%.
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Figure 6.1: Dissidents

Small Population Game

To compute the unique equilibrium in the small population game, the popular
minimum payoff from Table 6.2 is recomputed for n = 2 in Table 6.4 below using
10,000 Monte Carlo draws. Here there is a Nash equilibrium at $0.70 and as it max-
imizes welfare it is chosen by the ethical players giving the unique solution reported
below in Table 6.4.

’ popular minimum ‘ n =2 ‘ welfare ‘

0.70 1.09 1.18
0.60 1.05 1.11
0.50 1.00 1.03
0.40 0.94 0.94
0.30 0.87 0.84
0.20 0.79 0.72
0.10 0.70 0.60

Table 6.4: Small Population

In the small population game and the partners treatment the theory does well. I
will therefore focus on the strangers treatment in which players play against randomly
matched opponents. This is the worst anomaly in Table 4.1. Since the individual
matches were not reported T used a Monte Carlo to randomly match the players
10,000 times in order to compute welfare from the data.

As observed above when n = 2 in the strangers treatment the theory predicts
too high a level of welfare and too low a rate of dissidence. However, in addition
to relatively little data (16 observations) the game was played only 5 times so the

participants cannot be considered experienced. It is important then to ask: how has
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the game progressed over time? Did they start by trying to cooperate at s' = 0.70
and then this gradually unravelled? Or has cooperation increased over time so that as
experience is gained play more closely resembles the prediction of the theory. Below
in Table 6.5 I report the distribution of play between the first and fifth round: by
every measure play is moving towards that predicted by the theory as player become

increasingly successful at coordinating on $0.70.

] \ 1st round \ 5th round \ theory ‘

minimum = 7 10% 25% 51%
minimum > 4 39% 66% 73%
minimum = 1 44% 12% 6.5%

dissidents 69% 50% 29%

Table 6.5: Evolution of Play Over Time

Overview

The most important anomalies are

e In the n = 14 game the equilibrium has mode 0.20 rather than 0.10 as in the
data.

e With n = 2 in the strangers treatment the theory indicates far more coordina-

tion than in the data.
e The distribution of the dissidents is very different in the data than in the theory.

None of these anomalies are terribly important.

7. Ultimatum Bargaining

Many ultimatum bargaining experiments have been conducted with similar results.
In ultimatum bargaining game the first mover proposes the division of a fixed amount
of money, usually $10.00, and the second mover either accepts and both are paid as
agreed, or rejects and both get nothing. Here I analyze data from Duffy and Feltovich
(1999) for the important reason that players got to play 40 times rather than the usual
10. This is important because play after round 10 is different than earlier, but remains
largely constant during the final 30 periods indicating that this is “the long-run” with

experienced players. The experimental design is also a clean one with the standard
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$10 stakes, offers in whole dollars, no zero offer, and one randomly chosen round
paid. The whole dollars greatly eases the analysis of the data: when offers are in $.05
increments we see things like a single offer of $4.60 rejected and one of $4.55 accepted.
In other words, to make sense of it the data has to be aggregated into cells and this
is always fraught.

Another useful feature of Duffy and Feltovich (1999) is that there are two treat-
ments: one the standard treatment (nobs, 32 participants), and a second in which
players get to observe the results of one other match each period (obs, 40 participants)
- a treatment that they and I expect to enhance learning. In all cases I use data from
the final 30 rounds.

Qualitative Analysis. Ultimatum bargaining highlights the importance of risk aver-
sion in generating a demand for fairness. Without noise players the ethical players
would simply insist on the efficient outcome which is an equal split and back this up
by rejecting less generous offers. Without noise players this punishment is entirely
hypothetical and has no cost. With noise players enforcing more generous offers in-
creases the number of offers that must be rejected, so imposes a social cost offsetting
the gain in fairness. Hence the theory predicts that offers should be generous but
many should fall short of an equal split. This is characteristic of ultimatum game
experiments. The theory also predicts a substantial rejection rate, also characteristic

of ultimatum experiments.

Description of the Solution. The behavioral mechanism design problem has a unique
solution for this game. There is a target for the selfish first mover. This is supported
by the ethical players rejecting offers less generous than the selfish target at an in-
creasing rate. The rejection rate should be as small as possible subject to incentive
compatibility. These facts are proven in Appendix 2. I then compute that the welfare
maximizing target is $4.00 for the selfish players while the ethical players themselves
offer $5.00.

I report the key statistics of the solution below and contrast it with the data for
both the obs and nobs treatments. For the rejection rate I also reported for the obs
treatment the final 10 periods only. This is to verify that the noise as measured by

rejected offers is not declining over time.
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mean offer rejection rate welfare
theory \ obs \ nobs | theory \ obs \ nobs \ obs 10 | theory \ obs \ nobs

| 483 [446]363 ] 018 [020] 019 ] 018 | 3.45 [3.46 ] 3.43 |

Table 7.1: Ultimatum Bargaining

For welfare and the rejection rate the theory and data match well. The mean

offers for the obs treatment is reasonably close to the theory but the mean offer for
the nobs treatment is anomalous.

Offer Distribution
Figure 7.1 below provides detail with the theoretical and empirical offer densities.

Offer Density Offer Density
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fraction of offers
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06

0.4
fraction of offers
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3\\‘
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Figure 7.1: Observed Offers (left), Unobserved Offers (right)

The empirical distribution for the obs case looks similar to the theory. The nobs
case looks much like the obs case but with offers shifted a dollar to the left except for
a modest number that remain at $5.00. In othe words, the nobs case looks as if the
target for the selfish players is 3 rather than 4 and that the majority of the ethical
players are offering $4.00 rather than $5.00.

Play in the obs case looks quite different than the theory. I want to emphasize,

however, that there is very little welfare loss in doing this. Theoretically welfare

should be $3.51 and in the obs case it is $3.49, not much worse. To understand this
better I compute below in Table 7.2 below the welfare corresponding to each target
offer for the selfish type. This was needed in any case to find the optimum. Note
that the constraint only binds on the ethical players when target is $1.00 in which
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[ target | 5 [ 4 | 3 | 2 [ 1 |
| welfare | 3.41 [ 3.45 | 3.42 | 3.33 [ 3.17 |

Table 7.2: Welfare

case they must offer $4.00 rather than $5.00 as they do for the other targets. As can
be seen setting a target of $3.00 rather than $4.00 results in the same small drop in
welfare as in the obs treatment. The same cannot be said for other targets: as the
target is lowered below $3.00 welfare drops off fairly rapidly.

The $3.00 target mechanism also does not match the obs data since all the ethical
players are offering $5.00. Again, however, the welfare consequences of their the
ethical players switching to $4.00 is quite small: I computed this and it lowers welfare
from $3.42 to $3.40.

I note that Duffy and Feltovich (1999) argue that the difference between the two
treatments is because the learning process is changed by the additional information
about other player’s play. That makes sense the context of mechanism design as well:
I do not imagine that the players make some sort of exact calculation of the solution
to the mechanism design problem in their heads, although I imagine they have some
general ideas, such as “we must reject bad offers so as to encourage good ones.” In
particular ethical players may be unsure what “their bit” is supposed to be: some may
think $5.00 while others think $4.00 would be enough. Observing the offers of others
might well convince those making $4.00 offers that they are not doing their bit, and
so switch to $5.00 offers.

Good Offers

There is an anomaly in the offer distribution that is hard to see in the figures.
That is that there are far too many good offers. The theory predicts 16.7% of all offers
with be for $6.00 or more. In the data this is true for only 20 out of 1080. Moreover,
the same as has been found in hundreds of ultimatum experiments: the only apparent
exception is the experiment conducted with the whale hunting Lamalera reported in
Henrich et al (2004). In that case