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Abstract

We study perfect information games with an infinite horizon played
by an arbitrary number of players. This class of games includes infi-
nitely repeated perfect information games, repeated games with asyn-
chronous moves, games with long and short run players, games with
overlapping generations of players, and canonical non-cooperative mod-
els of bargaining.

We consider two restrictions on equilibria. An equilibrium is puri-
fiable if close by behavior is consistent with equilibrium when agents’
payoffs at each node are perturbed additively and independently. An
equilibrium has bounded memory if there exists K such that at most
one player’s strategy depends on what happened more than K periods
earlier. We show that only Markovian equilibria have bounded mem-
ory and are purifiable. Thus if a game has at most one long run player,
all purifiable equilibria are Markovian.

1 Introduction

Markov equilibria are widely used in the applied analysis of dynamic games,
in fields ranging from industrial organization1 to political economy.2 Their
appeal lies primarily in their simplicity and the sharp predictions obtained.3

∗University College London
†University of Pennsylvania
‡Princeton University
1See Maskin and Tirole (1987, 1988a,b), and Ericson and Pakes (1995).
2See Acemoglu and Robinson (2001).
3See Duffie, Geanakoplos, Mas-Colell, and McClennan (1994) and Maskin and Tirole

(2001) for reviews of these arguments.
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However principled reasons for restricting attention to Markov equilibria are
limited in the literature.4

This paper provides a foundation for Markov strategies for dynamic
games with perfect information that rests on two assumptions. First, we
make the restriction that all players (except possibly one) must use bounded
recall strategies, i.e., strategies that do not depend on the infinite past. Sec-
ond, we require equilibrium strategies to be “purifiable,” i.e., to also con-
stitute an equilibrium of a perturbed game with independent private payoff
perturbations in the sense of Harsanyi (1973). Our main result is that
Markov equilibria are the only equilibria which are bounded and purifiable.

The purifiability requirement reflects the view that our models are only
an approximation of reality, and there is always some private payoff informa-
tion. We make the modest requirement that there must be some continuous
perturbation such that the equilibrium survives. The boundedness require-
ment is of interest for two distinct reasons. First, in many contexts, it is
natural to assume that there do not exist two players who can observe the
infinite past: consider, for example, games between a long run player and
a sequence of short run players or in games with overlapping generations
players. Second, strategies that depend on what happens in the arbitrarily
distant past do not seem very robust to memory problems and/or noisy in-
formation. While we do not formally model this justification for focussing on
bounded memory strategy profiles, we believe it may make them interesting
objects of study.5

Our argument exploits special features of the games we study: only one
player moves at a time and there is perfect information. Perfect information
and the purifying payoff perturbations imply that if a player conditions upon
a past (payoff irrelevant) event at date t, then some future player must also
condition upon this event. Thus such conditioning is possible in equilibrium
only if the strategy profile exhibits infinite history dependence. We thus give
the most general version of an argument first laid out by Bhaskar (1998) in
the context of a particular (social security) overlapping generations game.
This argument does not apply with simultaneous moves since two players
may mutually reinforce such conditioning at the same instant, as we discuss
in point 5 on page 17.

4One exception is Bhaskar and Vega-Redondo (2002) who provides a rationale for
Markov equilibria in asynchronous choice games based on complexity costs.

5In a different context (repeated games with imperfect public monitoring), Mailath and
Morris (2002) and Mailath and Morris (2006) show that strategies based on infinite recall
are not “robust to private monitoring,” i.e, they cease to constitute equilibrium with even
an arbitrarily small amount of private noise added to public signals.
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Figure 1: The stage game for the chain store. The top payoff is the payoff
to the Entrant.

While perfect information games are special, many economic models fall
within the class of this paper, as noted briefly in the abstract and discussed
at length on page 7. In any case, the modeling choice between treating dy-
namic interactions as repeated simultaneous move games or repeated asyn-
chronous move games is often made for tractability and transparency. As
argued by Rubinstein (1991), some of our modeling choices should be un-
derstood as capturing players’ understanding of their situation rather than
a literal description of the environment. Our results highlight that boot-
strapping payoff irrelevant information into non-Markovian folk theorems is
sensitive to how the game is played.

2 A Long-Run Short-Run Player Example

Consider the following example of a repeated perfect information game, the
chain store game, played between a long run player and an infinite sequence
of short-run players. In each period, an entrant (the short run player) must
decide whether to enter or stay out. If the entrant stays out, the stage game
ends; if he enters, then the incumbent (the long run player) must decide
whether to accommodate or fight. The stage game is depicted in Figure
1. The short run player maximizes his stage game payoff while the long
run player maximizes the discounted sum of payoffs with discount factor δ
which is less than but close to 1. Let us assume that the short-run player
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only observes and thus can only condition on what happened in the last
period. The long run player has observes the entire history. We will require
equilibria to satisfy sequential rationality – each player must be choosing
optimally at every possible history.

Ahn (1997, Chapter 3) has studied this type of game, and shows that for
generic values of the discount factor, there is no pure strategy equilibrium
where entry is deterred. To provide some intuition, restrict attention to
stationary strategies. Since the entrant only observes the outcome of the
previous period, the entrant’s history is an element of H = {OUT,A, F}.
Consider a trigger strategy type equilibrium where the entrant enters after
accommodation in the previous period, and stays out otherwise. For this
to be optimal, the incumbent must play a strategy of the form: F as long
as he had not played A; A otherwise. Such a strategy is not sequentially
rational, because it is not optimal to play A when A had been played in the
previous period. For in this case, playing A secures a payoff of zero, while
a one step deviation to F earns −(1− δ)c+ δ, which is strictly positive for
high enough δ.

There are however mixed strategy equilibria where entry is deterred in
each period. One such equilibrium has the incumbent playing F with prob-
ability 1

2 , independent of history. The entrant is indifferent between IN and
OUT at any information set, given incumbent’s strategy. He plays OUT at
t = 1. At t > 1 he plays OUT after at−1 ∈ {OUT, F}; if at−1 = A, he plays
IN with probability q = (1 − δ + (1 − δ)c)/(1 − δ2 + δ(1 − δ)c), where q
was chosen to make the incumbent indifferent between accommodating and
fighting. In this equilibrium, the entrant’s beliefs about the incumbent’s
response is identical after the two one-period histories A and {OUT, F}.
Nevertheless, the entrant plays differently.

We now establish that this mixed strategy equilibrium cannot be purified
if we add small shocks to the game’s payoffs. So suppose that the entrant gets
a payoff shock εz̃t1 from choosing OUT while the incumbent gets a payoff
shock εz̃t2 from choosing F . We suppose each z2

i is drawn independently
across players and across time according to some known density with support
[0, 1]. The shocks are observed only by the player making the choice at the
time he is about to make it. A strategy for the entrant is

ρt : {OUT,A, F} × [0, 1]→ ∆(A1),

while a strategy for the incumbent is

σt : Ht × [0, 1]→ ∆(A2)
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(in principle, it could depend condition on history of past payoff shocks, but
this turns out to not matter). Note that ρt+1 does not condition on what
happened at t − 1. Fix a history ht = (h1, h2, ..., ht) ∈ Ht with ht = IN
(entry at date t) and zt2 (payoff realization for incumbent). For almost all
zt2, the incumbent has a unique pure best response. Since ρt+1 does not
condition on ht−1,

σt
((
ht−1, IN

)
, zt2
)

= σt

((
h̃t−1, IN

)
, zt2

)
for almost all zt2. So the incumbent does not condition on ht−1. Now the
entrant at t also has a payoff shock. Since the incumbent does not condition
on ht−1,

ρt(h
t−1, zt1) = ρt(h̃

t−1, zt1)

for almost all zt1.
We conclude that for any ε > 0, only equilibria in Markov strategies

exist. In this context, this implies that the backwards induction outcome of
stage game must be played in every period.

3 The Model

3.1 The Perfect Information Game

We consider an infinite dynamic game of perfect information, Γ. The game
has a recursive structure and may also have public moves by nature. The
set of players is denoted by N and the set of states by S, both of which
are countable. Only one player can move at any state, and we denote the
assignment of players to states by ι : S → N . This assignment induces
a partition {S(i) | i ∈ N} of S, where S(i) = {s ∈ S | ι(s) = i} is the
set of states at which i moves. Let A denote the countable set of actions
available at any state; since payoffs are state dependent, it is without loss
of generality to assume that the set of actions is state independent. Let
q (s′|s, a) denote the probability of state s′ following state s when action a is
played; thus q : S ×A→ ∆ (S). The initial distribution over states is given
by q(∅). Player i has bounded flow payoff ui : S × A → R and a discount
factor δi ∈ [0, 1). Total payoffs in the game are the discounted sum of flow
payoffs. The dynamic game is given by Γ =

{
S,N , ι, q, (ui)i∈N

}
.

The game starts in a state s0 at period 0 determined by q(∅) and the
history at period t ≥ 1 is a sequence of states and actions, Ht = (S × A)t.
Some histories may not be feasible: if after a history h = (sτ , aτ )tτ=0, the
state s has zero probability under q(· | st, at), then that state cannot arise



Foundation for Markov Equilibria; March 5, 2009 6

after the history h. Since infeasible histories arise with zero probability and
the set of all histories is countable, without loss of generality our notation
often ignores the possibility of infeasible histories. Let H0 = {∅} and H =
∪∞t=0H

t; we write h for a typical element of H, τ (h) for the length of the
history (i.e., τ (h) is the t for which h ∈ Ht), and H∞ = (S ×A)∞ for the
set of outcomes (infinite histories) with typical element h∞. We sometimes
write (h, s) for (h, sτ(h)) = (s0, a0; s1, a1; . . . , sτ(h)−1, aτ(h)−1; sτ(h)), with the
understanding that s = sτ(h). Player i’s payoff as a function of outcome,
Ui : H∞ → R, is

Ui (h∞) = Ui ((st, at)
∞
t=0) = (1− δi)

∞∑
t=0

δtiui(st, at).

A (behavioral) strategy for player i is a mapping bi : H × S(i) → ∆(A).
Write Bi for the set of strategies of player i. A strategy profile b = (bi)i∈N
can be understood as a mapping b : H × S → ∆ (A), specifying a mixed
action at every history. Write Vi (b | h, s) for player i’s expected continuation
utility from the strategy profile b at the history (h, s). This value is given
recursively by

Vi (b | h, s) =
∑
a∈A

bι(s) (a | h, s)

{
(1− δi)ui (s, a)

+δi
∑
s′∈S

q
(
s′ | s, a

)
Vi
(
b | (h, s, a) , s′

)}
.

We write Vi (b) ≡
∑
q(s | ∅)Vi (b| (∅, s)) for player i’s ex ante utility under

strategy profile b.

Definition 1 A strategy bi is Markovian if for each s ∈ S(i) and histories
h, h′ ∈ H of the same length (i.e., τ(h) = τ(h′)),

bi(h, s) = bi(h′, s).

A Markovian strategy is stationary if the two histories can be of different
lengths.

Remark 1 (Markov strategies) In this definition, we have taken the no-
tion of Markovian strategy as a primitive. The restriction to Markov strate-
gies is often motivated by the desire to restrict behavior to only depend
on the payoff relevant aspects of history. Maskin and Tirole (2001) define
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a payoff relevant partition over (same length) histories using payoff rele-
vance,6 and identify elements of the partition with Markov states. While in
general the payoff relevant partition is coarser than the partition induced
by the states S, a sufficient condition for the two partitions to agree is that
for every pair of states s, s′ ∈ S(i), ui(s, a) is not an affine transformation
of ui(s′, a) (Mailath and Samuelson, 2006, Proposition 5.6.2).7

�

Definition 2 Strategy profile b is a subgame perfect Nash equilibrium (SPNE)
if, for all s ∈ S, h ∈ H, and each i ∈ N and b′i ∈ Bi,

Vi((bi, b−i) | h, s) ≥ Vi((b′i, b−i) | h, s). (1)

If b is both Markovian and a SPNE, it is said to be a Markov equilibrium.
Many games fit into our general setting. Repeated perfect information

game (e.g. Rubinstein and Wolinsky (1995), Takahashi (2005)) fit: the state
w tracks where you are in the perfect information stage game; ui(wt, at) is
zero whenever (wt, at) results in a non-terminal node of the stage game,
and is the payoff at the terminal node otherwise. Stochastic games where
players move sequentially also fit: now the state w would stand either for
a node in the perfect information game, or the initial node of one of the
perfect information games. Doraszelski and Judd (2007) argue that this
class of games is computationally tractable and important. A finite game
of perfect information also fits: we simply add a terminal state. Perfect
information games played between overlapping generations of players are an
example (Kandori (1992), Bhaskar (1998) and Muthoo and Shepsle (2006)).
Extensive form games between long run and short run players, as studied in
the reputation literature, fit naturally (e.g. Fudenberg and Levine (1989);
Ahn (1997, Chapter 3)). A literature examines infinitely repeated games
with asynchronous moves, either with a deterministic order of moves (as in
Maskin and Tirole (1987, 1988a,b), Lagunoff and Matsui (1997) and Bhaskar
and Vega-Redondo (2002)) or with a random order of moves (as in Matsui
and Matsuyama (1995)).8 In both cases, the state is the profile of actions

6Loosely, the desired partition is the coarsest partition with the property that to every
profile measurable with respect to that partition, each player has a best response measur-
able with respect to that partition.

7Maskin and Tirole (2001) use cardinal preferences to determine payoff equivalence,
and hence the presence of affine transformations.

8To incorporate the Poisson process of opportunities to change actions, as in Matsui
and Matsuyama (1995), we would have to incorporate a richer timing structure into our
model. But the extension would be inessential.
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c1 c2 d
c1 11, 11 6, 9 −20, 20
c2 9, 6 10, 10 −20, 20
d 20,−20 20,−20 0, 0

Figure 2: Payoffs for an augmented prisoner’s dilemma.

of players whose actions are fixed, and ui(wt, at) is the stage game payoff.
Canonical non-cooperative model of bargaining where, in each period, one
proposer makes an offer and other players decide sequentially whether to
accept or reject the offer also fit, with both deterministic order of moves
(Rubinstein (1982)) and random order (Chatterjee, Dutta, Ray, and Sen-
gupta (1993)).

Example 1 (An asynchronous move example) Consider the augmented
prisoners’ dilemma illustrated in Figure 2. With asynchronous moves, player
1 moves in odd periods and player 2 in even periods (since time begins at
t = 0, player 2 makes the first move). State and action sets are S = A =
{c1, c2, d}.

Suppose the initial state is given by c1. The game admits multiple sta-
tionary Markov perfect equilibria, as well as nonstationary Markov perfect
equilibria.

There are two stationary pure strategy Markov perfect equilibria: Let
b∗ : S → A be the Markov strategy given by b∗(s) = s. It is straightforward
to verify that b∗ is a perfect equilibrium for δ ∈

[
1
2 ,

20
31

]
. Let b† : S → A

be the Markov strategy given by b†(c1) = b†(c2) = c2 and b†(d) = d. It is
straightforward to verify that b† is a perfect equilibrium for δ ∈

[
1
2 ,

2
3

]
.

Finally, denote by bα : S → ∆(A) the Markov strategy given by bα(c1) =
α◦ c1 +(1−α)◦ c2, bα(c2) = c2, and bα(d) = d. Suppose it is player i’s turn.
At (h, c2), the payoff from following bα is

Vi(bα | h, c2) = 10. (2)

At (h, c1), the payoff from choosing c1, and then following bα, is

(1− δ)11 + δα{(1− δ)11 + δVi(bα | (h, c1, c1), c1)}
+ δ(1− α){(1− δ)6 + δVi(bα | (h, c1, c1), c2)}, (3)

while the payoff from choosing c2, and then following bα, is

(1− δ)9 + δVi(bα | (h, c1), c2)}. (4)
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In order for player i to be willing to randomize, (3) must equal (4), with
this common values being Vi(bα | h, c1). Since Vi(bα | (h, c1), c2) = 10, (4)
implies Vi(bα | h, c1) = 9 + δ, and solving (3) for α yields

α =
(4δ − 2)
(5− δ)δ

. (5)

This is a well defined probability for δ ≥ 1
2 . Moreover, bα, for α satisfying

(5), is a Markov perfect equilibrium for δ ∈
[

1
2 ,

2
3

]
.

For any time t, the nonstationary Markov strategy specifying for periods
before or at t, play according to b∗, and for periods after t, play according
to bα, for α satisfying (5), is a Markov perfect equilibrium for δ ∈ (1

2 ,
2
3).
F

3.2 The Perturbed Game

We now allow for the payoffs in the underlying game to be perturbed, as
in Harsanyi (1973). We require that the payoff perturbations respect the
recursive payoff structure of the infinite horizon game, i.e., to not depend
upon history except via the state: Let Z be a full dimensional compact
subset of R|A| and write ∆∗ (Z) for the set of measures with support Z
generated by strictly positive densities.9 At each history (h, s), a payoff
perturbation z ∈ Z is independently drawn according to µs ∈ ∆∗(Z). The
payoff perturbation is observed by only ι(s), i.e., the player moving at s. If
this player chooses action a, his payoff is augmented by εza, where ε > 0.
Thus players’ stage payoffs in the perturbed game depend only on the current
state, action and payoff perturbation (s, a, z) and are given by

ũi (s, a, z) =

{
ui (s, a) + εza, if i = ι(s),
ui (s, a) , otherwise.

We denote the perturbed game by Γ (ε, µ).
To describe strategies, we first describe players’ information more pre-

cisely. Write Ti(h, s) for the collection of periods at which player i moved
(and thus observed a payoff perturbation), i.e.,

Ti(h, s) ≡ {k ∈ {0, 1, . . . , τ(h)} | ι(sk) = i}.
9Our analysis only requires that the support be in Z, but notation is considerably

simplified by assuming Z is the support.
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At the public history (h, s), in the perturbed game player i = ι(s) has private
information

zTi(h,s) ≡ (zk)k∈Ti(h,s) ∈ Z
Ti(h,s).

A behavior strategy for player i in the perturbed game, b̃i, specifies player
i’s mixed action b̃i(h, s, zTi(h,s)), at every history (h, s) with s ∈ S(i) and for
every realization of i’s payoff perturbations zTi(h,s). The set of all behavior
strategies for player i is denoted B̃i.

A vector of realized payoff perturbations is written z, with the dimension
implied by context. Thus, z = (zTi(h,s))ni=1 is the vector of all realized payoff
perturbations at the history (h, s) .

The definition of sequential rationality requires us to have notation to
cover unreached information sets. Write

T−i (h, s) =
⋃
j 6=i

Tj (h, s)

for the set of dates at which player i does not observe the payoff pertur-
bations. A belief assessment for player i specifies, for every feasible history
h ∈ H and s ∈ S(i), a belief

πh,si ∈ ∆
(
ZT−i(h,s)

)
(6)

over the payoff perturbations zT−i(h,s) that have been observed by other
players at history (h, s). Note that, as suggested by the structure of the
perturbed game, we require that these beliefs are independent of player i’s
private payoff perturbations, zTi(h,s); beyond this requirement, we impose no
further restrictions (such as that the payoff shocks are independent across
the other players or periods)—see Remark 2.

Player i’s “value” function is recursively given by, for a given strategy
profile b̃,

Ṽi(b̃ | h, s, z) =
∑
a∈A

bι(s)(a | h, s, zTι(s)(h,s))

(1− δi)ũi(s, a, zτ(h))

+δi
∑
s′∈S

q(s′ | s, a)
∫
Ṽi(b | (h, s, a), s′, (z, z))µs

′
(dz)

]
.

Since player i does not know all the coordinates of z, player i’s expected
payoff from the profile b̃ is given by∫

Ṽi(b̃ | h, s, (zTi(h,s), zT−i(h,s))) πh,si (dzT−i(h,s)). (7)
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Definition 3 Strategy b̃i is a sequential best response to (b̃−i, πi), if for each
h ∈ H, s ∈ S(i), zTi(h,s) ∈ ZTi(h,s), and b̃′i ∈ B̃i,∫

Ṽi((b̃i, b̃−i) | h, s, (zTi(h,s), zT−i(h,s))) πh,si (dzT−i(h,s))

≥
∫
Ṽi((b̃′i, b̃−i) | h, s, (zTi(h,s), zT−i(h,s))) π

h,s
i (dzT−i(h,s)).

Strategy b̃i is a sequential best response to b̃−i if strategy b̃i is a sequential
best response to (b̃−i, πi) for some πi.

Definition 4 A strategy b̃i is shock history independent if for all h ∈ H,
s ∈ S(i), and shock histories zTi(h,s), ẑTi(h,s) ∈ ZTi(h,s),

b̃i(h, s, zTi(h,s)) = b̃i(h, s, ẑTi(h
′,s)), a.a. z ∈ Z,

whenever zτ(h) = ẑτ(h).

Lemma 1 If b̃i is a sequential best response to any b̃−i, then b̃i is a shock
history independent strategy.

Proof. Fix a player i, h ∈ H, w ∈ Wi and payoff perturbation history
zTi(h,s) with zτ(h) = z. Player i’s next period expected continuation payoff
under b̃ from choosing action a this period, Vi(a, b̃−i, πi | h, s), is given by∑
s′

q(s′ | s, a)
∫∫

max
b̃i

Vi(b̃i, b̃−i | (h, s, a), s′, z, z′) µs
′
(dz′)πh,s

′

i (dzT−i(h,s)).

Since b̃−i and πh,s
′

i do not depend on player i’s shocks before period τ(h),
zTi(h,s), the maximization implies that Vi(a, b̃−i, πi | h, s) also does not
depend on those shocks. Thus, his total utility is

(1− δi)[ui(s, a) + εza] + δiVi(a, b̃−i, πi | h, s).

Since Z has full dimension and µs is absolutely continuous, player i can
only be indifferent between two actions a and a′ for a zero measure set of
z ∈ Z. For other z, there is a unique best response, and so it is shock history
independent.

A shock history independent strategy (ignoring realization of z of mea-
sure 0) can be written as

b̃i : H × S(i)× Z → ∆ (A) .
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If all players are following shock history independent strategies, we can
recursively define value functions for a given strategy profile b̃ that do not
depend on any payoff shock realizations:

V ∗i (b̃ | h, s) =
∫ ∑

a∈A
b̃ι(s)(a | h, s, z)

[
(1− δi)ũi(s, a, z)

+δi
∑
s′∈S

q(s′ | s, a)V ∗i (b̃ | (h, s, a), s′)

]
µs(dz). (8)

It is now immediate from Lemma 1 that beliefs over unreached informa-
tion sets are essentially irrelevant in the notion of sequential best responses,
because, while behavior can in principle depend upon prior payoff shocks,
optimal behavior does not.

Lemma 2 A profile b̃ is a profile of mutual sequential best responses if,
and only if, for all i, b̃i is shock history independent, and for each h ∈ H,
s ∈ S(i) and b̃′i ∈ B̃i,

V ∗i ((b̃i, b̃−i) | h, s) ≥ V ∗i ((b̃′i, b̃−i) | h, s). (9)

Remark 2 Because the perturbed game has a continuum of possible payoff
shocks in each period, and players may have sequences of unreached infor-
mation sets, there is no standard solution concept that we may appeal to.
Our notion of sequential best response is very weak (not even requiring that
the beliefs respect Bayes’ rule on the path of play). The only requirement is
that each player’s beliefs over other players’ payoff shocks be independent
of that player’s shocks. For information sets on the path of play, this re-
quirement is implied by Bayes’ rule. Tremble-based refinements imply such
a requirement at all information sets, though they may imply additional
restrictions across information sets. This requirement is not implied by the
notion of “weak perfect Bayesian equilibrium” from Mas-Colell, Whinston,
and Green (1995), where no restrictions are placed on beliefs off the equi-
librium path: this would allow players to have different beliefs about past
payoff perturbations depending on their realized current payoff realization.

However, Lemma 2 implies that once we impose mutuality of sequential
best responses, any additional restrictions have no restrictive power. It is
worth noting why no belief assessment πh,si appears either in the description
of V ∗i , (8), or in Lemma 2: Player i’s expected payoff from the profile b̃, given
in (7), is the expectation over past payoff shocks of other players, zT−i(h,s),
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as well as all future payoff shocks. Critically, in this expectation, as implied
by the structure of the perturbed game, it is assumed that all future shocks
are distributed according to µ, and are independent of all past shocks.

�

Given Lemma 2 and the discussion in Remark 2, the following definition
is natural:

Definition 5 A perfect Bayesian equilibrium is a profile of mutual sequen-
tial best responses.

The definition of Markovian shock history independent strategies natu-
rally generalizes that for the unperturbed game: a strategy b̃i is Markovian
if for each s ∈ S(i), for almost all z ∈ Z, and histories h, h′ ∈ H with
τ(h) = τ(h′),

b̃i(h, s, z) = b̃i(h′, s, z).

Definition 6 A shock history independent strategy b̃i has K-recall if for
each s ∈ S(i), histories h, h′ ∈ H satisfying τ(h) = τ(h′) = t, and almost
all z ∈ Z,

b̃i(h, s, z) = b̃i(h′, s, z)

whenever (sk, ak)t−1
k=t−K = (sk, ak)t−1

k=t−K . A strategy bi has infinite recall
if it does not have K-recall for any K. A Markovian strategy is a 0-recall
strategy (there being no restriction on h and h′).

A K-recall strategy is stationary if the two histories can be of different
lengths.

The following is the key result of the paper.

Lemma 3 If b̃i is a sequential best response to b̃−i and does not have K-
recall, then for some j 6= i, b̃j does not have (K + 1)-recall.

Proof. If b̃i does not have K-recall, then there exist h and h′ with
τ (h) = τ (h′) = t ≥ K and s ∈ S(i)

(sk, ak)t−1
k=t−K = (s′k, a

′
k)
t−1
k=t−K

and
b̃i (h, s, z) 6= b̃i

(
h′, s, z

)
(10)

for a positive measure of z.
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Suppose that b̃j has (K+1)-recall for each j 6= i. Since histories (h, s, a)
and (h′, s, a) agree in the last K + 1 periods, player i’s continuation value
from playing action a at (h, s) and at (h′, s) is the same, for all s′:

V ∗i ((b̃i, b̃−i) | (h, s, a), s′). = V ∗i ((b̃i, b̃−i) | (h′, s, a), s′).

Hence, player i’s total expected utility from choosing action a at either (h, s)
or (h′, s) is

(1− δi)ũi(s, a, z) + δi
∑
s′∈S

q(s′ | s, a)V ∗i ((b̃i, b̃−i) | (h, s, a), s′).

For almost all z, there will be a unique a maximizing this expression, con-
tradicting our premise (10).

Corollary 1 If b̃ is a perfect Bayesian equilibrium of the perturbed game,
then either b̃ is Markovian or at least two players have infinite recall.

3.3 Purification in the Games of Perfect Information

We now consider the purifiability of rationalizable strategies in the unper-
turbed game. Fix a strategy profile b of the unperturbed game. We say
that a sequence of current shock strategies b̃ki in the perturbed game con-
verges to a strategy bi in the unperturbed game if expected behavior (taking
expectations over shocks) converges, i.e., for each h ∈ H, s ∈ Si and a ∈ A,∫

b̃ki (a | h, s, z)µs(dz)→ bi(a | h, s)

Definition 7 The strategy profile b is purifiable if there exists µ : S →
∆∗(Z) and εk → 0, such that there is a sequence of profiles {b̃k}∞k=1 con-
verging to b, with b̃k a perfect Bayesian equilibrium of the perturbed game
Γ(µ, εk) for each k.

We immediately have the following:

Proposition 1 If b is a purifiable SPNE in which no more than one player
has infinite recall, then b is Markovian.
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4 Discussion

1. PURIFIABILITY OF MARKOV EQUILIBRIA. All Markovian equi-
libria are purifiable: we can simply pick the noise distribution to sup-
port exactly the Markov behavioral strategy we are purifying.

We expect suitably regular Markov equilibria to satisfy stronger puri-
fiability properties. It is worth noting that—if we are allowed enough
freedom in picking the noise—we can purify anything without any
regularity arguments.

To make this precise, we proceed as follows: We restrict attention to
finite (N) players and finite states; and generalize the payoff pertur-
bation so that each player gets a payoff perturbation as each decision
node, so µ : S → ∆∗(ZN ). We also weaken the notion of purification,
allowing the distribution µ to depend on k.

Definition 8 The strategy profile b is weakly purifiable if there exists
εk → 0 and, for each k, µk : S → ∆∗(ZN ), such that there is a
sequence of profiles {b̃k}∞k=1 converging to b, with b̃k a perfect Bayesian
equilibrium of the perturbed game Γ(µ, εk) for each k.

Claim 1 Suppose there is a finite number of players, N , and S is
finite. Every Markov equilibrium in the unperturbed game is weakly
purifiable.

SKETCH OF PROOF.

Let b : S → ∆ (A) be any Markov equilibrium of the unperturbed
game. Write A∗ (s) for the set of actions that are best responses
(perhaps weak best responses) at state s. Fix a sequence of Markov
strategy profiles bk such that bk → b (i.e., bk (a | s)→ b (a | s) for each
a and s) with the support of bk (· | s) equal to A∗ (s).

Write Vi (b′ | s) for the expected payoff to player i from b′ in the un-
perturbed game starting in state s. Recall that Z, a full dimensional
compact subset of RA, is the support of the payoff shocks. Let’s make
the normalization that the 0 vector is in the interior of Z. For each ac-
tion a, write Z∗ (a, s) for the collection of payoff shock profiles favoring
action a among those played with positive probability, i.e.,

Z∗ (a, s) =
{
z ∈ ZN |zaι(s) > za

′

ι(s) for all a′ ∈ A∗ (s) , a′ 6= a
}

.
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Note that the union of the closures of the sets (Z∗ (a, s))a∈A is ZN ,
i.e.,

∪a∈Acl (Z∗ (a, s)) = ZN .

Write a∗ (z, s) for the action satisfying z ∈ Z∗(a, s). (Such an action
is unique for almost all z, choose arbitrarily when it is not unique.)
For each s ∈ S and k, set

∆k
i (s) = (1− δi)

∑
a∈A

(
b (a | s)− bk (a | s)

)
ui (s, a)

Now choose εk ∈ R+ and µk (s) ∈ ∆
(
ZN
)

with a strictly positive
density such that

Eµk(s)

(
z
a∗(z,s)
i

)
= ∆k

i (s)

and, for each a ∈ A∗ (s)

Pr
µk(s)

(Z∗ (a, s)) = bk (a|s) .

(I assert that this is feasible; is this obvious?). Since bk → b we
can choose these so that εk → 0. Now consider the perturbed game
Γ
(
µk, εk

)
. Consider the strategy profile b̃k given by

b̃kι(s) (a|s, z) =
{

1, if z ∈ Z∗ (a, s)
0, if z ∈ Z∗ (a′, s) , for any a′ ∈ A∗ (s) , a′ 6= a

It does not matter what b̃ does on the (zero measure) boundaries of
the sets Z∗ (a, s). I claim this is a PBE of the perturbed game (i.e.,
each b̃ki is a sequential best response to b̃k−i) and that b̃k converges to
b.

2. EXISTENCE OF MARKOV EQUILIBRIA. A large literature ad-
dresses the question of existence of Markov equilibria: see Duffie, Geanako-
plos, Mas-Colell, and McClennan (1994), Escobar (2008) and Doraszel-
ski and Escobar (2008).

3. UNIQUENESS OF MARKOV EQUILIBRIA. There will often be mul-
tiple Markov equilibria in our class of games: see, for example, Maskin
and Tirole (1988a). But this multiplicity of Markov equilibria does not
allow us to sustain any additional outcomes.
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4. HARSANYI PURIFICATION. ”Purification” has had two multiple
meanings in the literature (see Morris (2008)). One question asked in
the literature is when can we guarantee that there exists an essentially
pure equilibrium in a game by adding noise to payoffs (e.g., Radner
and Rosenthal (1982)). It is trivially true that our perturbation en-
sures that there is an essentially pure equilibrium (we build in enough
independence to guarantee that this is the case). We follow Harsanyi
(1973) in being interested in the relation between equilibria of the
unperturbed game and equilibria of the perturbed game. But our def-
inition of “purifiability” is very weak: we require only that there exists
a sequence of equilibria of a sequence perturbed games that converge
to the desired behavior. Harsanyi (1973) showed (for static games)
the much stronger that (under some regularity conditions) every equi-
librium was the limit of a sequence of equilibria in every sequence
of perturbed games. This suggests a stronger definition of purifia-
bility in our context. Strategy profile b is Harsanyi purifiable if, for
every µ : S → M and εk → 0, the

(
µ, εk

)∞
k=1

perturbed games have
a sequence of strategy profiles b̃k converging to b, with b̃ki a sequen-
tial best response to b̃k−i in Γ

(
µ, εk

)
for each i. We conjecture that

with additional regularity assumptions, Markovian equilibria will be
Harsanyi purifiable: Doraszelski and Escobar (2008) provided condi-
tions for the Harsanyi purifiability of Markovian equilibria; while their
class of games they study do not encompass those in the present paper,
it seems possible to extend their results.

5. SIMULTANEOUS MOVES. Our results do not extend to games where
more than one player moves at a time, e.g. repeated synchronous move
games. Mailath and Morris (2002) and Mailath and Olszewski (2008)
give examples of finite recall strategy profiles which are strict and
therefor purifiable. In this context, one might conjecture a weaker
result that purifiability would rule out the “belief-free” strategies de-
veloped is the recent literature (Piccione (2002), Ely and Välimäki
(2002) and Ely, Hörner, and Olszewski (2005)). Bhaskar, Mailath,
and Morris (2008) show that the one period recall strategies of Ely
and Välimäki (2002) are purifiable via one period recall strategies in
the perturbed game; however, they are purifiable via infinite recall
strategies. The purifiability of such belief free strategies via finite re-
call strategies remains an open question.

6. ENDOGENOUS IDENTIFICATION OF MARKOVIAN STRUCTURE.
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We constructed a game where the publicly observed state w was a suf-
ficient statistic for everything payoff relevant in the game. Maskin
and Tirole (2001) describe how one can identify the coarsest possible
description of a state that is sufficient statistic for payoff relevance in
the continuation. If the game we were studying turned out to have a
courser payoff relevant, our arguments in favor of Markov perfection
would apply to that coarser state space also.

7. INESSENTIAL ELEMENTS IN THE MODELLING. A number of
simplifying assumptions were made in our formulation to lighten the
notation, and could easily be relaxed. There is no need to have the
same support for the noise in different states. The length of time
between moves could be random (for example, reflecting a Poisson
process of arrival of revision opportunities). Our model could easily
be enriched to allow for this.

8. TECHNOLOGICAL RESTRICTION ON MEMORY. We maintained
the assumption of perfect information in our formal analysis. In many
applications, such as those discussed on page 3.1, it is natural to as-
sume that some players observe only a finite history of play. This will
(technologically) rule out equilibria with infinite memory. In princi-
ple, allowing imperfect observation of play could create finite memory
equilibria that would not have been equilibria with infinite memory.
However, the arguments that we presented apply also if players have
restricted memory.

9. RATIONALIZABILITY. Our argument was stated for equilibrium,
but could be extended to apply to versions of rationalizability for this
class of games that maintained sequential rationality and the key fea-
ture that players’ beliefs about other players’ past payoff shocks were
not correlated with their current payoff shocks.
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