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Abstract

The difficulties in properly anticipating key economic variables may en-
courage decision makers to rely on experts’ forecasts. The forecasters, how-
ever, may not be certainly reliable. So, their forecasts must be empirically
tested. This may induce experts to forecast strategically to pass the test.
A test can be ignorantly passed if a false expert, with no knowledge

of the data generating process, can pass the test. Standard tests, if they
are unlikely to reject correct forecasts, can be ignorantly passed. Tests that
cannot be ignorantly passed must necessarily make use of future predictions
(i.e., predictions based on data not yet realized at the time the forecasts
are rejected). Such tests cannot be run if, as it is customary, forecasters
only report the probability of next period’s events given the observed data.
This result shows that it is difficult to dismiss false, but strategic, experts.
This result also suggests an important role of counterfactual predictions in
the empirical testing of forecasts.



1. Introduction

Expectations of future events have long been recognized as a significant factor
in economic activity (see Pigou (1927)). However, the processes by which agents
form their beliefs remain largely unknown. The difficulties in anticipating key
economic variables may encourage decision makers to rely on experts’ forecasts.
If informed, a professional forecaster can reveal the probabilities of interest to
the decision makers; the decision makers benefit from these forecasts because
they learn the relevant odds (i.e., they replace uncertainty with common risk).
If uninformed, the forecaster (henceforth called Bob) may mislead the decision
makers. Hence, it is important to check the quality of experts’ forecasts. Assume
that a tester (named Alice) tests Bob’s forecasts empirically.
A standard test determines observable histories that are (jointly) unlikely un-

der the null hypothesis that Bob’s forecasts are correct. These data sequences
are deemed inconsistent with Bob’s forecasts and, if observed, lead to a rejection
of the forecasts. This methodology is unproblematic if the forecasts are reported
honestly. The main difficulty is that Bob, even if uninformed, might be capable
of strategically manipulating Alice’s test (i.e., capable of producing forecasts that
will not be rejected by Alice’s test, regardless of how the data turns out to be
realized in the future).
There is a limited purpose in running a test that can be manipulated when

the forecaster is strategic. Even in the extreme case that the forecaster has no
knowledge regarding the data generating process, the outcome of the test will
almost inevitably support the hypothesis that the forecasts are correct. Hence,
the uninformed expert would not fear having his forecasts discredited by the data.
Consider a standard calibration test that requires the empirical frequencies of

an outcome (say 1) to be close to p in the periods that 1 was forecasted with
probability near p. Foster and Vohra (1998) show that the calibration test can
be manipulated. So, it is possible to produce forecasts that, in the future, will
prove to be calibrated, no matter which sequence of data is eventually observed.
In contrast, Dekel and Feinberg (2006) and Olszewski and Sandroni (2007b) show
the existence of empirical tests that do not reject the forecasts of an informed
expert and that can reject the forecasts of an uniformed expert.1

The tests proposed by Dekel and Feinberg (2006) and Olszewski and Sandroni

1The existence of such a test was first demonstrated by Dekel and Feinberg (2006) under the
continuum hypothesis. Subsequently, Olszewski and Sandroni (2006) constructed a test with
the required properties (in particular dispensing with the continuum hypothesis).

2



(2007b) require Bob to deliver, at period zero, an entire theory of the stochastic
process. By definition, a theory must tell Alice, from the outset, all the forecasts
for the next period, conditional on any possible data set. Typically, a forecaster
does not announce an entire theory but, instead, only publicizes a forecast in each
period, according to the observed data. Dekel and Feinberg (2006) argued that
asking for a theory at period zero may have been an important feature that enabled
them to prove the existence of their test. Hence, a natural issue to consider is
whether there exists a nonmanipulable test that does not require an entire theory,
but rather uses only the forecasts made along the observed histories.
Assume that Bob, before any data is observed, delivers to Alice an entire

theory of the stochastic process. Let’s say that a test does not make use of future
predictions if whenever a theory f is rejected at some history st (observed at period
t) then another theory f 0, that makes the exact same predictions conditional
on any data set at or before period t − 1, must also be rejected at history st.
Now assume that instead of delivering an entire theory, Bob announces a forecast
each period according to the observed data. Then, Alice cannot run a test that
uses future predictions. So, we restrict attention to tests that do not use future
predictions.
A statistical test is regular if it rejects the actual data generating process with

low probability and it makes no use of future predictions. A statistical test can be
ignorantly passed if it is possible to strategically produce theories that are unlikely
to be rejected on any future realizations of the data.2

We show that any regular statistical test can be ignorantly passed. This result
shows that it is difficult to prevent the manipulation of empirical tests. Experts
have incentives to be strategic and the data will not show that their forecasts
were strategically produced to pass the test. This holds even under the extreme
assumptions that the tester has arbitrarily long data sets at her disposal and the
strategic forecaster knows nothing about the data generating process.

2We allow the uninformed expert to produce theories at random at period zero. Hence, the
term “unlikely” here refers to the expert’s randomization and not to the possible realizations of
the data.
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2. Related literatures

2.1. Counterfactual predictions

Counterfactual predictions have a significant function in several literatures. In
game theory, beliefs off the play path are relevant in determining whether an
equilibrium satisfies refinements such as perfection. Psychologists are interested
in the direct impact on welfare of “want if” concerns (see Medvec, Madey, and
Gilovich (1995)). Counterfactual predictions such as “what would be the salary
of this woman if she were a man” are often made as an output of a statistical
model. However, the use of a future prediction as an input to a statistical model
is unusual.3 Consider a future prediction such as “if it rains tomorrow then it
will also rain the day after tomorrow.” It is difficult to test this prediction today
because we have no data on it. So, it is counter-intuitive to make any use of this
prediction today (and not the day after tomorrow) to determine the forecaster’s
type. Nevertheless, our results suggest a useful role for future predictions in the
testing of forecasts.

2.2. Risk and uncertainty

An important distinction in economics is between risk and uncertainty.4 Risk
refers to the case in which the available information can be properly summarized
by probabilities, uncertainty refers to the case in which it cannot. In our model,
Bob, if informed, faces risk. Alice and Bob, if uninformed, face uncertainty.5

As is well-known, the distinction between risk and uncertainty cannot be made
within Savage’s (1954) axioms. The large literature on uncertainty often produces
alternative axiomatic foundations where this distinction can be made (See, among

3The use of counterfactual predictions is controversial (e.g., the literature of counterfactual
history is seen as useful by some and as fantasies by others, see Fogel (1967) and McAfee (1983))

4The distinction is traditionally attributed to Knight (1921). However, LeRoy and Singell
(1987) argue that Knight did not have in mind this distinction. Ellsberg (1961), in a well-known
experiment, demonstrated that this distinction is empirically significant.

5This is significantly different from the case in which the tester is well, albeit imperfectly,
informed. We refer the reader to Crawford and Sobel (1982) for a classic model of information
transmission and to Morgan and Stocken (2003) and Sørensen and Ottaviani (2006) (among
others) for cheap-talk games between forecasters and decision-makers. We also refer the reader
to Dow and Gorton (1997), Ehrbeck and Waldmann (1996), Laster, Bennett and Geoum (1999)
and Trueman (1988) (among others) for models in which professional forecasters have incentives
to report their forecasts strategically.
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others, Bewley (1986), Casadesus-Masanell et al. (2000), Epstein (1999), Ghi-
rardato et al. (2004), Gilboa (1987), Gilboa and Schmeidler (1989), Klibanoff et
al. (2005), Maccheroni et al. (2006), Olszewski (2007), Schmeidler (1989), Sinis-
calchi (2005), and Wakker (1989)). Unlike most of this literature, our objective
here is not to provide a representation theorem for decisions under uncertainty
nor to empirically test Savage’s axioms, but rather to show how specific strategies
can be used to effectively reduce or eliminate uncertainty.

2.3. Empirical tests of rational expectations

The rational expectations hypothesis has been subjected to extensive empirical
testing. The careful examination of Keane and Runkle ((1990), (1998)) failed
to reject the hypothesis that professional forecasters’ expectations are rational
(i.e., that the forecasts coincide with the correct probabilities).6 In this literature,
the forecasts are assumed to be reported honestly and nonstrategically. So, the
connection between our paper and this literature is tenuous. In addition, unlike
most statistical models, we make no assumptions on how the data might evolve.
These differences in the basic assumptions are partially due to the differences in
objectives. The main purpose of our paper is not to test forecasts, but rather to
demonstrate the properties that empirical tests must satisfy to be nonmanipulable.

2.4. Testing strategic experts

As mentioned in the introduction, the calibration test can be ignorantly passed. In
fact, strong forms of calibration tests can be ignorantly passed. (See, for example,
Fudenberg and Levine (1999), Lehrer (2001), and Sandroni, Smorodinsky and
Vohra (2003).) Sandroni (2003), Vovk and Shafer (2005), Olszewski and Sandroni
(2007b) show general classes of tests that can be ignorantly passed.
We also refer the reader to Cesa-Bianchi and Lugosi (2006) for related results

and to the recent paper of Al-Najjar and Weinstein (2006) and Feinberg and
Stuart (2006) on comparing different experts and to Fortnow and Vohra (2006)
on testing experts with computational bounds.
So far, the literature has produced classes of tests that can be ignorantly

passed. The contribution of this paper is to show a complete impossibility result:
no regular test can feasibly reject a potentially strategic expert. These results
(combined with the results of Dekel and Feinberg (2006) and Olszewski and San-

6See Lowell (1986) for other results on empirical testing of forecasts.
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droni (2007b)) provide a definite separation between the cases in which the expert
delivers an entire theory and the case in which the expert delivers a forecast each
period.

3. Basic Set-Up

In each period one outcome, 0 or 1, is observed.7 Before any data is observed, an
expert, named Bob, announces a theory that must be tested. Conditional on any
t-history of outcomes st ∈ {0, 1}t, Bob’s theory claims that the probability of 1
in period t+ 1 is f(st).
To simplify the language, we identify a theory with its predictions. That

is, theories that produce identical predictions are not differentiated. Hence, we
define a theory as an arbitrary function that takes as an input any finite history
and returns as an output a probability of 1. Formally, a theory is a function

f : {s0} ∪ S∞ −→ [0, 1],

where S∞ =
∞[
t=1

{0, 1}t is the set of of all finite histories and s0 is the null history.

A tester, named Alice, tests Bob’s theory empirically. So, given a potentially
long string of data, Alice must reject or not reject Bob’s theory. Hence, a test
T is an arbitrary function that takes as an input a theory f and returns, as an
output, a set T (f) ⊆ S∞ of finite histories considered to be inconsistent with the
theory f . So, Alice rejects Bob’s theory f if she observes data that belongs to
T (f).8 Formally, a test is a function

T : F → S̄,

where F is the set of all theories and S̄ is the set of all subsets of S∞.
9

7It is immediate to extend the results to the case where there are finitely many possible
outcomes in each period.

8Instead of a test, Alice could offer a contract to Bob in which Bob’s reward is higher when
his theory is not rejected by the data (see Olszewski and Sandroni (2006b)).

9We assume that st ∈ T (f) implies that sm ∈ T (f) whenever m ≥ t and st = sm | t (i.e., st
are the first t outcomes of sm). That is, if a finite history st is considered inconsistent with the
theory f , then any longer history sm whose first t outcomes coincide with st is also considered
inconsistent with the theory f .
For simplicity, we also assume that st ∈ T (f) whenever sm ∈ T (f) for some m > t and every
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The timing of the model is as follows: at period zero, Alice selects her empirical
test T . Bob observes the test T and selects his theory f (also at period zero).10

In period 1 and onwards, the data is revealed and Bob’s theory is either rejected
or not rejected by Alice’s test at some point in the future.
Bob can be an informed expert who honestly reports to Alice the data generat-

ing process. However, Bob may also be an uninformed expert who knows nothing
about the data generating process. If so, Bob tries to strategically produce the-
ories with the objective of not being rejected by the data. Alice anticipates this
and wants a test such that Bob, if uniformed, cannot manipulate. Both the un-
informed expert and Alice face uncertainty: they do not have any knowledge on
the data generating process.
Although Alice tests Bob’s theory using a string of outcomes, we do not make

any assumptions on the data generating process (such as a Markov process, a
stationary process, or some mixing condition). This lack of assumptions over the
data generating process distinguishes our model from standard statistical models
and hence it requires some explanation. It is very difficult to demonstrate that
any key economic variable (such as inflation or GDP) follows any of these well-
known processes. At best, such assumptions can be tested and rejected. More
importantly assume that, before any data was observed, Alice knew that the
actual process belonged to a parametrizable set of processes (such as independent,
identically distributed sequences of random variables) then she could infer, almost
perfectly, the actual process from the data. Alice could accomplish all of this
without Bob. Therefore, the lack of assumptions over the data generating process
adds an element of coherence into a model of a forecaster and a tester.
Given that Bob must deliver an entire theory, Alice knows, at period zero,

Bob’s forecast conditional on any finite history. At period m ∈ N , Alice observes
the data sm ∈ {0, 1}m. Let st = sm | t be the first t outcomes of sm. Let
fsm = {f(st), st = sm | t, t = 0, ..,m} be a sequence of the actual forecasts made
up to period m, if sm is observed. Clearly, if Bob were required to produce only
a forecast each period then Alice would observe at period m only fsm and sm.

sm with st = sm | t. That is, if any m-history that is an extension of a finite history st is
considered inconsistent with the theory f , then the history st is itself considered inconsistent
with the theory f .
10The results of these paper can be extended to the case that Alice selects her test at random.

It suffices to assume that Bob properly anticipates the odds that Alice selects each test.
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3.1. Example

We now consider an example of an empirical test. Let Jt(st) be the t-th outcome
of st. Then, eR(f, sm) = 1

m

mX
t=1

[f(st−1)− Jt(st)]

marks the difference between the average forecast of 1 and the empirical frequency
of 1.
Alice could reject the theory f on all sufficiently long histories such that the

average forecast of 1 did not become sufficiently close to the empirical frequency
of 1. That is, fix η > 0 and a period m̄. Bob’s theory f is rejected on any history
sm (and longer histories sk with sm = sk | m) such that¯̄̄ eR(f, sm)¯̄̄ ≥ η and m ≥ m̄. (3.1)

The test defined above (henceforth called an eR−test) is notationally unde-
manding and can be used to exemplify general properties of empirical tests. Given
ε > 0 a pair (η, m̄) can be chosen such that if the theory f is correct (i.e., if the
predictions made by f coincide with the data generating process), then f will not
be rejected with probability 1− ε (i.e., (3.1) occurs with probability less than ε).
Hence, if Bob announces the data generating process, it is unlikely that he will be
rejected.
At periodm, the eR−tests reject or do not reject a theory based on the sequence

of the actual forecasts made up to period m − 1, fsm−1 , and the available data,
sm. Thus, the eR−tests do not use predictions for which there is no data.
Now assume that Bob is a false expert who knows nothing about the data

generating process. Assume that, at period zero, Bob announces a theory f that
satisfies:

f(st) = 1 if eR(f, st) < 0;
f(st) = 0.5 if eR(f, st) = 0;
f(st) = 0 if eR(f, st) > 0. (3.2)

It is immediate to see that if eR is negative at period t then, no matter whether
0 or 1 is realized at period t+1, eR increases. Conversely, if eR is positive at period
t then, no matter whether 0 or 1 is realized at period t + 1, eR decreases. So, eR
approaches zero as the data unfolds. It is easy to see that if m̄ is sufficiently large,
Bob can pass this test without any knowledge of the data generating process.
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The eR−tests may seem weak and a proof that some of them can be passed
without any relevant knowledge seemingly confirms this intuition. However, the
stronger calibration tests of Lehrer (2001) and Foster and Vohra (1998) can also
be passed without any knowledge of the data generating process.

4. Properties of Empirical Tests

Any theory f uniquely defines the probability of any set A ⊆ S∞ of finite histories
(denoted by P f(A)). The probability of each finite history sm is just the product

mY
t=1

hf(st) (4.1)

where st = sm | t, hf(st) := f(st−1) if Jt(st) = 1 and hf(st) := 1 − f(st−1) if
Jt(st) = 0.

Definition 1. Fix ε ∈ [0, 1]. A test T does not reject the truth with probability
1− ε if for any f ∈ F

P f(T (f)) ≤ ε.

A test does not reject the truth if the actual data generating process is unlikely
to be rejected. So, if Bob is an informed expert and announces his theory honestly,
then he will not be rejected with high probability.
Two theories f and f 0 are equivalent until period m if f(st) = f 0(st) for any

t−history st, t ≤ m. So, two theories are equivalent until period m if they make
the same predictions up to and at period m.

Definition 2. A test T does not make use of future predictions if, given any pair
of theories f and f 0 that are equivalent until period m, st ∈ T (f), t ≤ m, implies
st ∈ T (f 0).

A test does not make use of future predictions if, whenever a theory f is
rejected at an m−history sm, another theory f 0, that makes exactly the same
predictions as f until period m, must also be rejected at sm.
If, as is customary in professional forecasting, Bob is only required to produce a

forecast each period, then, at period m, Alice observes only the actual predictions
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fsm and the data sm. Hence, her test cannot make use of future predictions.
11

However, if Bob is required to deliver an entire theory at period zero then Alice’s
test could, in principle, make use of future predictions because she knows in
advance how Bob’s predictions would be conditioned on the data.

Definition 3. A regular ε−test does not make use of future predictions and does
not reject the truth with probability 1− ε.

In section 5, we show that standard statistical tests do not make use of future
predictions. This is to be expected, because statistical tests are meant to use data
and no data is yet available for future predictions.
Bob is not restricted to select a theory deterministically. He may randomize

when selecting his theory at period 0.12 Let a random generator of theories ζ be
a probability distribution over the set F of all theories. Given any finite history
st ∈ {0, 1}t let

ζ(st) := ζ({f ∈ F : st ∈ T (f)})
be the probability that ζ selects a theory that will be rejected if st is observed.

13

Definition 4. A test T can be ignorantly passed with probability 1− ε if there
exists a random generator of theories ζ such that for all finite histories st ∈ S∞

ζ(st) ≤ ε.

The random generator ζ may depend on the test T , but not on any knowledge
of the actual data generating process. If a test can be ignorantly passed, Bob
can randomly select theories that, with probability 1 − ε (according to Bob’s
randomization device), will not be rejected, no matter what data is observed.
Alice has no reason to run a test that can be ignorantly passed if the forecaster is
potentially strategic. Even in the extreme case that Bob completely ignores the
data generating process, the test will almost certainly fail to reject his theory, no
matter how the data unfolds.

11At period m, the data sm is available and the realized predictions are fsm = {f(st), st = sm
| t, t = 0., ...,m}. Other predictions are called counterfactual: The predictions f(s0t), s0t 6= sm | t
are called parallel predictions: f(s0t) is based on information s

0
t that was not observed at period

t. The predictions f(sn), n ≥ m+ 1, are not yet realized at period m and, hence, called future
predictions.
12Given that Bob (perhaps) randomizes only once at period zero, Alice cannot tell whether

the theory she just received was produced deterministically or at random.
13This definition requires a measurability provision on the sets {f ∈ F : st ∈ T (f)}. We will

restrict attention to random generators of theories ζ for which sets of this form are measurable.
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5. Main Result

Proposition 1. Fix ε ∈ [0, 1] and δ ∈ (0, 1− ε]. Any test T that does not reject
the truth with probability 1− ε and does not make use of future predictions can
be ignorantly passed with probability 1− ε− δ.

Proposition 1 shows a fundamental limitation of regular statistical tests. Any
regular test can be ignorantly passed. If Alice cannot make use of future predic-
tions (e.g., only actual predictions are announced by the forecaster), she has no
reason to run any test when confronted with a potentially strategic expert. These
tests will not reveal whether the expert is uninformed. This result holds even if
Alice possesses unboundedly large data sets and the fraudulent forecaster knows
nothing about the data generating process.14

Assume, for the moment, that Alice offers a formal contract to Bob defined
by a regular ε− test. In this contract, Bob receives a high payoff h if his theory
is not rejected and a low payoff payoff l if it is rejected. By proposition 1, this
contract is worth (approximately) the same to a completely informed expert as
to a completely uninformed expert (and so, presumably, as to partially informed
experts as well). Hence, Alice faces adverse selection and moral hazard problems
that are unmitigated by contracts. None of these contracts can feasibly screen
informed from uninformed experts. So, agents might anticipate that fraudulent
forecasts will not be dismissed. In the absence of an effective exogenous check
on the quality of the forecasts (that the data were supposed to provide), either
decision makers will not consult professional forecasters or fraudulent formation
of forecasts will become a wide-spread practice.
The difficulty pointed out in proposition 1 is difficult to circumvent if Alice has

no access to future predictions because the results holds for any regular empirical
test. Moreover, the result also holds for all future realizations of the data and so
it requires no knowledge over the data generating process. The only requirement
in proposition 1 is that Bob knows the regular tests that Alice uses. However,
even this requirement can be relaxed. It suffices to assume that Bob properly
anticipates the odds that Alice selects each regular test.

14We wish to emphasize two features of proposition 1. First, it does not assume that ε is
“small”.
Additionally, it need not be assumed that the test does not reject the truth, in particular,

that an informed expert must be truthful. It is enough to assume that for every theory f ∈ F
there exists a theory ef ∈ F such that P f (T ( ef)) ≤ ε, i.e. that an informed expert is able to pass
the test. We actually prove this version of proposition 1 in the appendix.
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5.1. Intuition of Proposition 1

Fix a regular ε−test T . This test, as every test, is a limit of tests Tm, m = 1, 2, ...,
such that Tm makes the decision whether to reject a theory or not in period
m or earlier. Consider the following zero-sum game between Nature and Bob:
Nature’s pure strategy is an infinite sequence of outcomes. Bob’s pure strategy is
a theory. Bob’s payoff is one if his theory is never rejected (by the test Tm) and
zero otherwise. Both Nature and Bob are allowed to randomize.
By the assumption that T does not reject the truth with probability 1− ε, for

every mixed strategy of Nature, there is a pure strategy for Bob (to announce the
theory f that coincides with Nature’s strategy) that gives him a payoff of 1 − ε
or higher. Hence, if the conditions of Fan’s (1954) MinMax are satisfied, there is
a (mixed) strategy ζ

m
for Bob that ensures him a payoff arbitrarily close to 1− ε,

no matter what strategy Nature chooses. In particular, for any history st ∈ S∞
that Nature can select, Bob’s payoff is arbitrarily close to 1− ε.
Fan’s MinMax theorem requires Nature’s strategy space to be compact and

the payoff function to be lower semi-continuous with respect to Nature’s strategy.
The topology that makes Nature’s strategy space compact is the weak−* topology.
The assumption that Tm makes the decision in period m or earlier, guarantees the
lower semi-continuity of the payoff function.15

A limit, ζ, of (a subsequence) of these mixed strategies ζ
m
, m = 1, 2, ..., exists

because the set of Bob’s mixed strategies is compact in the weak−* topology.
However, ζ does not necessarily guarantee that Bob’s theory will not be rejected
with probability 1− ε, no matter which data is observed. To this end, one must
use a specific sequence of tests Tm; in particular, the sets of the form {f ∈ F :
sm ∈ Tm(f)} must be open in the weak−* topology. The assumption that T
makes no use of future predictions is critical for the construction of a sequence of
test Tm, m = 1, 2, ..., with this property.

6. Empirical tests

The purpose of this section is to show that the assumptions of proposition 1
are satisfied by standard statistical models. We do not explicitly analyze every
statistical model ever produced, but provide a few simple examples; however, we

15If Bob’s payoff depended on the test T instead of Tm, then the payoff function would not
necessarily be lower semi-continuous.
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hope that these examples suffice because the arguments that we put forward seem
to be general.
Asymptotic tests are common in statistics. These tests work as if Alice eventu-

ally had an infinite string of data and could decide whether or not to reject Bob’s
theory at infinity. Naturally, asymptotic tests can be approximated by tests that
can reject theories in finite time (as defined in Section 2). In this section, we
present a few examples of common asymptotic tests. We show that they can be
approximated by regular tests.
Fix δ ∈ (0, 0.5). Given a theory f, let fδ be an alternative theory16 defined by

fδ(st) =

⎧⎨⎩ f(st) + δ if f(st) ≤ 0/5;

fδ(st)− δ if f(st) > 0/5.

A straightforward martingale argument shows that, P f−almost surely17,

P fδ(st)

P f(st)
−→
t→∞

0.

That is, under the null hypothesis (that P f is the data generating process), the
likelihood of P fδ becomes much smaller than the likelihood of P f . The likelihood
test rejects theory f in favor of the alternative theory fδ if the likelihood ratio

P fδ(st)

P f(st)

does not approach zero.
Let R(f) be the set of infinite histories such that the likelihood ratio does not

approach zero. Say that a test T is harder than the likelihood test if R(f) ⊆
T (f).18 So, rejection by the likelihood test implies rejection by the test T .

Proposition 2. Given ε > 0, there exists a regular ε−test T that is harder than
the likelihood test.

16The alternative hypothesis need not be a single theory. This assumption is made for sim-
plicity only.
17Naturally, we refer here to the probability measure P f defined on the space of infinity

histories. See the appendix for a precise definition.

18Formally, T (f) comprises finite histories, so in the inclusion R(f) ⊂ T (f), as wel as in
several other places, we identify T (f) with set of all infinite extensions of histories from T (f).
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By proposition 1, the test T can be ignorantly passed with probability 1− ε.
Hence, by proposition 2, the likelihood test can be ignorantly passed with arbitrar-
ily high probability. This is a surprising result because, without any knowledge
of the data generating process, it is not obvious whether the theory f or the al-
ternative theory fδ will eventually produce a higher likelihood. However, a false
expert can produce theories that, no matter which data is realized, will prove
in the future (with arbitrarily high chance) to generate a much higher likelihood
than the alternative theories.
Of course, the unexpected result is proposition 1. proposition 2, in contrast,

is a natural finding. An intuition is as follows: P f -almost surely, the likelihood
ratio approaches zero. Hence, with arbitrarily high probability, the likelihood
ratio must remain small if the string of data is long enough. Let T be the test
that rejects the theory f whenever the likelihood ratio is not small and the string
of data long. By construction, the test T is harder than the likelihood test and
does not reject the truth with high probability. Moreover, the test T does not
make use of future predictions because the likelihood ratio depends only on the
forecasts made along the observed history.
The basic idea in proposition 2 is not limited to the likelihood test. Other

asymptotic tests can also be associated with harder regular tests. We conclude
this section with the analysis of calibration tests. Let It−1 be an indicator function
that depends on the data up to period t− 1 (i.e., st−1) and the predictions made
up to period t− 1 (i.e., f(sk), sk = st−1 | k, k ≤ t− 1). For example, It−1 can be
equal to 1 if f(st−1) ∈ [ jn ,

j+1
n
] for some j < n and zero otherwise. Alternatively,

It−1 can be equal to 1 if t is even and 0 if t is odd. Consider an arbitrary countable
collection Ii = (Ii0, ..., Iit−1, ...), i ∈ N, of indicator functions. The calibration test
requires that for all i ∈ N

1

m

mX
t=1

[f(st−1)− Jt(st)]Iit−1 −→
m→∞

0. (6.1)

These calibration tests require a match between average forecasts and empirical
frequencies on specific subsequences. These subsequences could be, as in Foster
and Vohra (1998), those in which the forecasts are near p ∈ [0, 1]. Then the test
requires the empirical frequencies of 1 be close to p in the periods that followed a
forecast of 1 that was close to p. Alternatively, these subsequences could also be,
as in Lehrer (2001), periods in which a certain outcome was observed. In general,
the calibration test rejects a theory f if (6.1) does not hold.

14



Proposition 3. Given ε > 0, there exists a regular ε−test T 0 that is harder than
the calibration test.

The intuition of proposition 3 is the same as that of proposition 2. A sophis-
ticated law of large numbers shows that, under the null hypothesis that P f is the
data generating process, almost surely, the calibration scores in (6.1) eventually
approach zero. Hence, with arbitrarily high probability, these calibration scores
must remain small if the string of data is long enough. Let T 0 be the test that
rejects the theory f whenever the calibration scores are not small and the string
of data is long. By construction, the test T 0 is harder than the calibration test
and does not reject the truth with high probability. Moreover, the test T 0 does
not make use of future predictions because the calibration scores depend only on
the forecasts made along the observed history.
By Propositions 1 and 3, the calibration tests can be ignorantly passed with

arbitrarily high probability. Hence, a false expert can produce forecasts that,
in the future, once the data is revealed, will prove to be calibrated. This result
combines the Foster and Vohra (1998) result (where the indicator function depends
only on the forecasts) and the Lehrer (2001) result (where the indicator function
depends only on the data). However, the examples presented here (likelihood and
calibration tests) are just illustrations of the general point that several statistical
tests can be associated with harder regular tests.

7. Conclusion

Strategic manipulation of tests is difficult to prevent. An expert can strategically
produce forecasts that, once the data is revealed, will not be rejected by any given
regular empirical test. This holds even under the extreme assumptions that the
expert knows nothing about the data generating process, and that the tester has
unbounded data at her disposal.
However, if forecasters must deliver an entire theory of a stochastic process,

then tests that make use of future predictions can be employed. Some of these
tests can dismiss false experts without dismissing informed experts. These results
suggest the necessity of providing theories for a successful screening of correct
forecasts from strategically produced forecasts.
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8. Proofs

We use the following terminology: Let Ω = {0, 1}∞ be the set of all paths, i.e.,
infinite histories. Given a path s, let s | t be the first t coordinates of s. A cylinder
with base on st ∈ {0, 1}t is the set C(st) ⊂ {0, 1}∞ of all infinite extensions of st.
We endow Ω with the topology that comprises of unions of cylinders with finite
base. Let =t be the algebra that consists of all finite unions of cylinders with
base on {0, 1}t. Denote by N the set of natural numbers. Let = is the σ-algebra
generated by the algebra =0 :=

S
t∈N

=t, i.e., = is the smallest σ−algebra which

contains =0.
Let ∆(Ω) the set of all probability measures on (Ω,=). We endow ∆(Ω) with

the weak−* topology and with the σ−algebra of Borel sets, (i.e., the smallest
σ−algebra which contains all open sets in weak−* topology). Let ∆∆(Ω) be the
set of probability measures on ∆(Ω). We endow ∆∆(Ω) also with the weak−*
topology. It is well-known that ∆(Ω) and ∆∆(Ω) are compact metric spaces. It
is also well known that there is a correspondence between theories f ∈ F and
probability measures P ∈ ∆(Ω). Every theory f determines uniquely by (4.1)
a measure P f . We refer to P f ∈ ∆(Ω) as the probability measure associated
with the theory f ∈ F. The other way round, every probability measure P ∈
∆(Ω) determines a probability of 1 conditional on any finite history st such that
P (C(st)) > 0.
As in the main text, we identify T (f) with set of all infinite extensions of

histories from T (f).

Definition 5. A test T is called finite if for every theory f there exists a number
m ∈ N such that st ∈ T (f), where t > m, if and only if st | m ∈ T (f).

Definition 6. A test T does not reject an informed expert with probability 1− ε
if for every theory f ∈ F there exists a theory ef ∈ F such that

P f(T ( ef)) ≤ ε.

Definition 7. A test T1 is harder than the test T2 if for any f ∈ F , st ∈ T2(f)
implies that st ∈ T1(f).

Definition 8. A set F 0 ⊆ F is δ−dense in F, δ > 0, if for every theory g ∈ F
there exists a theory f ∈ F 0 such that

sup
A∈=

¯̄
P f(A)− P g(A)

¯̄
< δ.
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8.1. Proof of Proposition 1

We will use the following three lemmas. Let X be a metric space. Recall that a
function u : X → R is lower semi-continuous at an x ∈ X if for every sequence
(xn)

∞
n=1 converging to x:

∀ε>0 ∃n ∀n≥n u(xn) > u(x)− ε.

The function u is lower semi-continuous if it is lower semi-continuous at every
x ∈ X.

Lemma 1. Let U ⊂ X be an open set where X is a compact metric space. Equip
X with the σ−algebra of Borel subsets. Let ∆(X) be the set of all probability
measures on X. Equip ∆(X) with the weak−* topology. The function H :
∆(X)→ [0, 1] defined by

H(P ) = P (U)

is lower semi-continuous.

Proof: See Dudley (1989), Theorem 11.1.1(b).

Theorem 8.1. (Fan (1953)) Let X be a compact Hausdorff space, which is a
convex subset of a linear space, and let Y be a convex subset of linear space (not
necessarily topologized).19 Let G be a real-valued function on X × Y such that for
every y ∈ Y , G(x, y) is lower semi-continuous with respect to x. If G is also
convex with respect to x and concave with respect to y, then

min
x∈X

sup
y∈Y

G(x, y) = sup
y∈Y

min
x∈X

G(x, y).

The following lemma follows from the proof of proposition 1 in Olszewski and
Sandroni (2007c); we provide the proof only completeness of presentation.

Lemma 2. Fix ε ∈ [0, 1] and δ ∈ (0, 1 − ε]. Let T be a finite test that does
not reject an informed expert with probability 1 − ε. Then, the test T can be
ignorantly passed with probability 1− ε− δ.

19Fan allows for X and Y that may not be subsets of linear spaces. We, however, apply his
theorem only to subsets of linear spaces.
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Proof: Let X = ∆(Ω). Let Y be the subset of ∆(F ) of all random generator
of theories with finite support. So, an element ζ of Y can be described by a
finite sequence of theories {f1, ..., fn} and positive weights {π1, ..., πn} that add
up to one (i.e., ζ selects Pi with probability πi, i = 1, ..., n). Let the function
G : X × Y → R defined by

G(P, ζ) :=
nX
i=1

πiP (T (fi)
c). (8.1)

We now check that the assumptions of Fan’s theorem are satisfied. Since T is
a finite test, the set T (f)c is open for every f ∈ F . Therefore, by Lemma 1,

P (T (f)c)

is a lower semi-continuous function of P . Thus, for every ζ ∈ Y , the func-
tion G(P, ζ) is lower semi-continuous on X as a weighted average of lower semi-
continuous functions.
By definition, G is linear on X and Y , and so it is convex on X and concave on

Y . By the Riesz and Banach-Alaoglu Theorems, X is a compact space in weak−*
topology; it is a metric space, and so Hausdorff, (see for example Rudin (1973),
Theorem 3.17).
Thus, by Fan’s Theorem,

min
P∈∆(Ω)

sup
ζ∈∆(F )

G(P, ζ) = sup
ζ∈∆(F )

min
P∈∆(Ω)

G(P, ζ).

Notice that the left-hand side of this equality exceeds 1 − ε, as the test T is
assumed not to reject an informed expert with probability 1 − ε; indeed, for
a given P ∈ ∆(Ω), take ζ such that ζ({f}) = 1, where f is any theory with
P f = P . Therefore the right-hand side exceeds 1− ε, which yields the existence
of a random generator of theories ζ ∈ ∆(F ) such that

G(P, ζ) > 1− ε− δ

for every P ∈ ∆(Ω). Taking, for any s, the measure P such that P ({s}) = 1, we
obtain that

ζ({f ∈ F : ∀t∈N st /∈ T (f)}) > 1− ε− δ.

¥
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Let γ be a sequence of positive numbers (γt)
∞
t=1. Given γ, let R be a sequence

of finite sets (Rt)
∞
t=1 such that Rt ⊂ (0, 1), t ∈ N, and

∀x∈[0,1] ∃r∈Rt |x− r| < γt.

Given R, let F = (Fm)
∞
m=1 be a sequence of subsets of F defined by

Fm =
©
f ∈ F : ∀t=0,...,m ∀st∈{0,1}t (or st=s0 if t=0) f(st) ∈ Rt+1

ª
. (8.2)

It is convenient to define a supporting subset sequence F = (Fm)
∞
m=1 as a se-

quence of subsets of F such that ?? is satisfied for some sequence of finite sets
R = (Rt)

∞
t=1. It is also worth pointing out that in any supporting subset sequence,

Fm ⊃ Fm+1.

Lemma 3. For every δ > 0, there exists a supporting subset sequence F =
(Fm)

∞
m=1 such that Fm is δ−dense in F for every m = 1, 2, ...

Proof: For now consider an arbitrary sequence of positive numbers γ =
(γt)

∞
t=1. Given g ∈ F take f ∈ Fm such that

∀t=0,...,m ∀st∈{0,1}t (or st=s0 if t=0) |f(st)− g(st)| < γt

and
∀t=m+1,...∀st∈{0,1}t f(st) = g(st).

We now show that there exists a sequence (γt)
∞
t=1 such that¯̄

P f(C(sr))− P g(C(sr))
¯̄
<

δ

2
(8.3)

for every cylinder C(sr). Indeed,¯̄
P f(C(sq))− P g(C(sq))

¯̄
=
¯̄
hf(s1) · ... · hf(sq)− hg(s1) · ... · hg(sq)

¯̄
,

where q = min{r,m+ 1}, and¯̄
hf(s1) · ... · hf(sq)− hg(s1) · ... · hg(sq)

¯̄
≤

≤ (hg(s1) + γ1) · ... ·
¡
hg(sq) + γq

¢
− hg(s1) · ... · hg(sq) ≤

≤
"

qY
t=1

(1 + γt)− 1
#
≤
" ∞Y
t=1

(1 + γt)− 1
#
,
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where sk = sr | k for k < r. The first inequality follows from the fact that

|(a1 + b1) · ... · (aq + bq)− a1 · ... · aq| ≤ (a1+ |b1|) · ... · (aq+ |bq|)−a1 · ... ·aq (8.4)

for any sets of numbers a1, ..., aq > 0 and b1, ..., bq; apply (8.4) to ak = hg(sk) and
bk = hf(sk)−hg(sk), k = 1, ..., q. The second inequality follows from the fact that
the function

(a1 + b1) · ... · (aq + bq)− a1 · ... · aq
is increasing in a1, ..., aq for any sets of positive numbers a1, ..., aq and b1, ..., bq.
So, (8.3) follows if we take a sequence (γt)

∞
t=1 such that

∞Y
t=1

(1 + γt) < 1 +
δ

2
.

We now show that a slightly stronger condition

∞Y
t=1

(1 + 2γt) < 1 +
δ

4

guarantees that
¯̄
P f(U)− P g(U)

¯̄
< δ/2 for every union of cylinders U , not only

for every single cylinder.
Indeed, suppose first that there is an n such that U is a union of cylinders with

base on st with t ≤ n. Since every cylinder with base on st can be represented as
the union of two cylinders with base on s0t+1 = (st, 0) and s00t+1 = (st, 1) respec-
tively, the set U is the union of a family of cylinders C with base on histories of
length n. Thus,¯̄

P f(U)− P g(U)
¯̄
≤

X
C(sn)∈C

¯̄
P f(C(sm))− P g(C(sm))

¯̄

≤
X

C(sn)∈C

[(hg(s1) + γ1) · ... · (hg(sn) + γn)− hg(s1) · ... · hg(sn)] ≤

≤
X

sn∈{0,1}n
[(hg(s1) + γ1) · ... · (hg(sn) + γn)− hg(s1) · ... · hg(sn)] =

=
X

sn∈{0,1}n
(hg(s1) + γ1) · ... · (hg(sn) + γn)− 1 =
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=
X

sn−1∈{0,1}n−1
(hg(0) + γ1) · (hg(0, s1) + γ2) · ... · (hg(0, sn−1) + γn) +

+
X

sn−1∈{0,1}n−1
(hg(1) + γ1) · (hg(1, s1) + γ2) · ... · (hg(1, sn−1) + γn)− 1 ≤

≤ [hg(0) + γ1 + hg(1) + γ1] ·

·max
½ P

sn−1∈{0,1}n−1 (h
g(0, s1) + γ2) · ... · (hg(0, sn−1) + γn) ,P

sn−1∈{0,1}n−1 (h
g(1, s1) + γ2) · ... · (hg(1, sn−1) + γn)

¾
− 1 =

= [1 + 2γ1]·

·max
½ P

sn−1∈{0,1}n−1 (h
g(0, s1) + γ2) · ... · (hg(0, sn−1) + γn) ,P

sn−1∈{0,1}n−1 (h
g(1, s1) + γ2) · ... · (hg(1, sn−1) + γn)

¾
− 1.

We can estimate each sum in this last display in a similar manner to that we have
used to estimate

P
sn∈{0,1}n (h

g(s1) + γ1) · ... · (hg(sn) + γn); we can continue in
this fashion to conclude that¯̄

P f(U)− P g(U)
¯̄
≤
"

nY
t=1

(1 + 2γt)− 1
#
<

δ

4
.

Now, suppose that U is the union of an arbitrary family of cylinders C. Rep-
resent U as

U =
∞[
n=1

Un

where Un is the union of cylinders C ∈ C with base on st with t ≤ n. Since
the sequence {Un : n = 1, 2, ...} is ascending,

¯̄
P f(U)− P f(Un)

¯̄
< δ/8 and

|P g(Un)− P g(U)| < δ/8 for large enough n. Thus,¯̄
P f(U)− P g(U)

¯̄
≤
¯̄
P f(U)− P f(Un)

¯̄
+

+
¯̄
P f(Un)− P g(Un)

¯̄
+ |P g(Un)− P g(U)| < δ/2.

Finally, observe that
¯̄
P f(A)− P g(A)

¯̄
< δ for every A ∈ =. Indeed, take a set

U ⊃ A, which is a union of cylinders, such that
¯̄
P f(U)− P f(A)

¯̄
, |P g(U)− P g(A)|

< δ/4. Since
¯̄
P f(U)− P g(U)

¯̄
< δ/2,¯̄

P f(A)− P g(A)
¯̄
≤
¯̄
P f(U)− P f(A)

¯̄
+
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+
¯̄
P f(U)− P g(U)

¯̄
+ |P g(U)− P g(A)| < δ.

¥

Given a test T and a period m ∈ N , define the test Tm by

st ∈ Tm(f) if t < m and st ∈ T (f) or t ≥ m and st | m ∈ T (f);
st /∈ Tm(f) otherwise.

Given a test T, a period m ∈ N and a supporting subset sequence F, define
the test T Fm by

st /∈ T Fm(f) if f ∈ Fm and st /∈ Tm(f);
st ∈ T Fm(f) otherwise.

Lemma 4. Fix an arbitrary finite history st ∈ S∞, a supporting subset sequence
F, a period k ∈ N and a test T that does not make use of future predictions. The
set

{f ∈ F : st ∈ T Fk (f)}
is open in the weak−* topology.20

Proof: We can assume without loss of generality that t = k. Indeed, for
t > k, st ∈ T Fk (f) if and only if st | k ∈ T Fk (f); for t < k, st ∈ T Fk (f) if and only if
sk ∈ T Fk (f) for every sk with sk | t = st, and there is only a finite number of such
extensions sk.
By the definition of T Fk , sk ∈ T Fk (f) for every f /∈ Fk. Take now any f ∈ Fk.

Since T that does not make use of future predictions then Tk and T Fk do not
make use of future predictions either. Thus, the test uses as an input only on the
predictions made by a theory f up to period k whether a history sk belongs to
T Fk (f).
If f ∈ Fk then there is only a finite number of possible predictions©

f(es0)} ∪ {f(es1) : es1 ∈ {0, 1}1} ∪ ... ∪ f(esk) : esk ∈ {0, 1}k−1ª
that the theory f can make up to period k. The set of possible predictions can be
divided into two subsets, say A andB, such that if a theory makes predictions from
A, then sk ∈ T Fk (f), and if a theory makes predictions from B, then sk /∈ T Fk (f).

20This is the key place in the proof, where we use the assumption that the test T does not
make use of future predictions. This assumption is essential here. If a test T makes use of future
predictions, then the set {f ∈ F : st ∈ TFk (f)} is typically not open in the weak−* topology.
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Thus, {f ∈ F : sk /∈ T Fk (f)} consists of the theories that make predictions from
the set B. By the finiteness of B, the set {f ∈ F : sk /∈ T Fk (f)} is closed in in the
weak−* topology. Therefore, every set of the form {f ∈ F : sk ∈ T 0k(f)} is open
in the weak−* topology. ¥

Lemma 5. Fix δ > 0 and a test T that does not make use of future predictions
and does not reject an informed expert with probability 1 − ε. There exists a
supporting subset sequence F and a random generator of theories ζ such that

ζ({f ∈ F : st ∈ T Fk (f)}) ≤ ε+ δ for every st ∈ S∞ and period k ∈ N.

Proof: For every period m ∈ N, the test Tm does not reject the truth with
probability 1− ε because the test T is harder than the test Tm.
By Lemma 3, let F be a supporting subset sequence such that Fm is δ/4−dense

in F , for every m ∈ N.
So, T Fm is a finite test that does not reject the informed expert with probability

1− ε− δ/4. It now follows from Lemma 2 (applied to ε0 = ε+ δ/4 and δ0 = δ/4)
that there exists a random generator of theories ζm ∈ ∆∆(Ω) such that for all
finite histories st ∈ S∞,

ζm({f ∈ F : st ∈ T Fm(f)}) ≤ ε+ δ/2.

Notice now that the test T Fm+1 is harder than the test T
F
m (because Tm+1 is

harder than Tm and Fm ⊃ Fm+1). Thus, if m ≥ k then

ζm({f ∈ F : st ∈ T Fk (f)}) ≤ ε+ δ/2 for all st ∈ S∞.

By the compactness of ∆∆(Ω), there exists a convergent subsequence of the
sequence (ζm)

∞
m=1, also indexed by m, with a limit ζ ∈ ∆∆(Ω), i.e., ζm −→

m→∞
ζ (in

the weak−* topology).
By Lemma 4, {f ∈ F : st ∈ T Fk (f)} is an open set. It now follows from Lemma

1 that ξ({f ∈ F : st ∈ T Fk (f)}) is a lower semi-continuous function of ξ ∈ ∆∆(Ω).
Hence, there is an m ∈ N such that if m ≥ m then

ζm({f ∈ F : st ∈ T Fk (f)}) ≥ ζ({f ∈ F : st ∈ T Fk (f)})− δ/2,

and so
ζ({f ∈ F : st ∈ T Fk (f)}) ≤ ε+ δ.

¥

23



Lemma 6. Let T be a test that does not make use of future predictions and
does not reject an informed expert with probability 1− ε. There exists a random
generator of theories ζ such that

ζ({f ∈ F : st ∈ Tk(f)}) ≤ ε for every st ∈ S∞ and period k ∈ N.

Proof: By lemma 5, for every j ∈ N, there exists a random generator of
theories ζj and a supporting subset sequence Fj such that

ζj({f ∈ F : st ∈ T F
j

k (f)}) ≤ ε+
1

j
for every st ∈ S∞ and period k ∈ N.

Note that the supporting subset sequence Fj is defined by a sequence γj of
positive numbers (γjt)

∞
t=1 such that

{f ∈ F : st /∈ T F
j

k (f)} ⊆ {f ∈ F : st /∈ T F
j+1

k (f)

f ∈ Fjk =⇒ f ∈ Fj+1k

Fjk ⊆ F
j+1
k

Rj ⊆

Let γ be a sequence of positive numbers (γt)
∞
t=1. Given γ, let R be a sequence

of finite sets (Rt)
∞
t=1 such that Rt ⊂ (0, 1), t ∈ N, and

∀x∈[0,1] ∃r∈Rt |x− r| < γt.

Given R, let F = (Fm)
∞
m=1 be a sequence of subsets of F defined by

Fm =
©
f ∈ F : ∀t=0,...,m ∀st∈{0,1}t (or st=s0 if t=0) f(st) ∈ Rt+1

ª
. (8.5)

Given that T 0k is harder than Tk,

ζ({f ∈ F : st /∈ Tk(f)}) ≥ 1− ε− δ.

Proof of proposition 1
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Let χk : F −→ {0, 1} be the indicator function that is equal to 1 if st /∈ Tk(f)
and zero otherwise. The last inequality can be written asZ

χkdζ ≥ 1− ε− δ.

Moreover, χk ↓ χ as k goes to ∞, where χ : F −→ {0, 1} is the indicator
function equal to 1 when st /∈ T (f) and zero otherwise. By the monotone converge
theorem, Z

χdζ ≥ 1− ε− δ

which means that ζ({f ∈ F : st /∈ T (f)}) ≥ 1− ε− δ.¥

8.2. Proof of Propositions 2 and 3

Let EP and V ARP be the expectation and variance operator associated with P ∈
∆(Ω). Let (Xi)

∞
i=1 be a sequence of random variables such thatXi is =i-measurable

and its expectation conditional on =i−1 is zero (i.e., E
P {Xi | =i−1} = 0); more-

over, let the sequence of conditional variances V ARP {Xi | =i−1} be uniformly
bounded (i.e., V ARP {Xi | =i−1} < M for some M > 0). We define

Sm :=
mX
i=1

Xi and Ym :=
Sm
m

.

Lemma 7. For every ε0 > 0 and j ∈ N there exists m̄(j, ε0) ∈ N such that

P

µ½
s ∈ Ω : ∀m≥m̄(j,ε0) |Ym(s)| ≤

1

j

¾¶
> 1− ε0.

Proof: By definition, Sm is a martingale. By Kolmogorov’s inequality (see
Shiryaev (1996), Chapter IV, §2), for any δ > 0,

P

µ½
s ∈ Ω : max

1≤m≤k
|Sm(s)| > δ

¾¶
≤ V ar(Sk)

δ2
≤ kM

δ2
.21

21Shiryaev (1996) shows this result for independent random variables, but it’s extension to
martingales is well-known.
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Let Mn := max
2n<m≤2n+1

Ym. Then,

P

µ½
s ∈ Ω :Mn(s) >

1

j

¾¶
≤ P

µ½
s ∈ Ω : max

2n<m≤2n+1
|Sm(s)| >

1

j
2n
¾¶
≤

≤ P

µ½
s ∈ Ω : max

1≤m≤2n+1
|Sm(s)| >

1

j
2n
¾¶
≤ 2Mj2

2n

4n
= 2Mj2

1

2n
.

Therefore,

∞X
n=m∗

P

µ½
s ∈ Ω :Mn(s) >

1

j

¾¶
≤ 2Mj2

∞X
n=m∗

1

2n
< ε0 (for a sufficiently large m∗).

Let m̄(j, ε0) = 2m
∗
for this sufficiently large m∗. By definition,½

s ∈ Ω : ∀m≥m̄(j,ε0) |Ym(s)| ≤
1

j

¾c

⊆
∞[

n=m∗

½
s ∈ Ω :Mn(s) >

1

j

¾
.

Hence,

P

µ½
s ∈ Ω : ∀m≥m̄(j,ε0) |Ym(s)| ≤

1

j

¾¶
> 1− ε0.

¥

Proof of Proposition 2 Let

Zt(s) = log

µ
hfδ(st)

hf(st)

¶
, st = s | t.

Then, for some η > 0 and for some M > 0,

EP f {Zt | =t−1} < −η and V ARP f {Zt | =t−1} < M.

The first inequality (on conditional expectation) follows directly from Smorodin-
sky (1971), Lemma 4.5, page 20, and Lehrer and Smorodinsky (1996), Lemma
2. The second inequality (on conditional variance) follows directly from the fact
that hfδ(st) ∈ [δ, 1 − δ] and the fact that the functions −plog(p) and p (log(p))2

are bounded on [0, 1].
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Let Xi = Zi−EP f {Zi | =i−1} . Let j ∈ N be a natural number such that 1
j
<

η
4
. Let m̄(j, ε) be defined as in Lemma 4. The test T is defined by

C(sm) ⊆ T (f) if
mX
k=1

Zk(s) > −m
η

2
whenever m ≥ m̄(j, ε) and sm = s | m.

Note that(
s ∈ Ω : ∀m≥m̄(j,ε)

¯̄̄̄
¯ 1m

mX
k=1

³
Zk(s)−EP f {Zk | =k−1} (s)

´¯̄̄̄¯ ≤ 1j
)
⊆ (T (f))c

because
1

m

mX
k=1

Zk(s) ≤
1

j
− η < −η

2

implies
mX
k=1

Zk(s) < −t
η

2
.

By Lemma 4,
P f ((T (f))c) > 1− ε.

Hence, the test T does not reject the truth with probability 1−ε. By definition,
the test T does not use future predictions (in fact, whether the test T rejects a
theory or not at st depends only on the forecasts f(sk), sk = st | k, k < t). Finally,
notice that

tX
k=1

Zk(s) = log

µ
P fδ(st)

P f(st)

¶
, st = s | t.

Hence, if s /∈ T (f) then

log

µ
P fδ(st)

P f(st)

¶
−→
t→∞
−∞

which implies that s /∈ R(f).¥

Proof of Proposition 3 Let

X i
t(s) = [f(st−1)− Jt(st)]Iit−1, st = s | t,

and

Si
m :=

mX
t=1

X i
t and Y i

m :=
Si
m

m
.

27



Let now εj,i, (j, i) ∈ N2, be such that εj,i > 0 and

∞X
i=1

∞X
j=1

εj,i < ε.

Given that EPf {X i
t | =t−1} = 0) and V ARP {Xi | =i−1} are uniformly bounded,

let m̄(j, εj,k) be defined as in Lemma 4. The test T
0 is defined by

C(sm) ⊆ T 0(f) if
¯̄
Y i
m(s)

¯̄
>
1

j
whenever m ≥ m̄(j, εj,i).

By Lemma 4,

∞X
i=1

∞X
j=1

P f

µ½
s ∈ Ω :

¯̄
Y i
m(s)

¯̄
>
1

j
for some m ≥ m̄(j, εj,i)

¾¶
< ε.

So,
P f
¡
(T 0(f))

c¢
> 1− ε.

Hence, T 0 does not reject the truth with probability 1− ε. By definition, the test
T does not use future predictions. Finally, notice that s /∈ T 0(f) implies¯̄

Y i
m(s)

¯̄
≤ 1

j
for all m ≥ m̄(j, εj,i) and (j, i) ∈ N2.

Hence, for all i ∈ N, |Y i
m(s)| −→

m→∞
0.¥
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