Counterfactual Predictions

August 8, 2007

Abstract

The difficulties in properly anticipating key economic variables may encourage decision makers to rely on experts' forecasts. The forecasters, however, may not be certainly reliable. So, their forecasts must be empirically tested. This may induce experts to forecast strategically to pass the test.

A test can be ignorantly passed if a false expert, with no knowledge of the data generating process, can pass the test. Standard tests, if they are unlikely to reject correct forecasts, can be ignorantly passed. Tests that cannot be ignorantly passed must necessarily make use of future predictions (i.e., predictions based on data not yet realized at the time the forecasts are rejected). Such tests cannot be run if, as it is customary, forecasters only report the probability of next period's events given the observed data. This result shows that it is difficult to dismiss false, but strategic, experts. This result also suggests an important role of counterfactual predictions in the empirical testing of forecasts.

1. Introduction

Expectations of future events have long been recognized as a significant factor in economic activity (see Pigou (1927)). However, the processes by which agents form their beliefs remain largely unknown. The difficulties in anticipating key economic variables may encourage decision makers to rely on experts' forecasts. If informed, a professional forecaster can reveal the probabilities of interest to the decision makers; the decision makers benefit from these forecasts because they learn the relevant odds (i.e., they replace uncertainty with common risk). If uninformed, the forecaster (henceforth called Bob) may mislead the decision makers. Hence, it is important to check the quality of experts' forecasts. Assume that a tester (named Alice) tests Bob's forecasts empirically.

A standard test determines observable histories that are (jointly) unlikely under the null hypothesis that Bob's forecasts are correct. These data sequences are deemed inconsistent with Bob's forecasts and, if observed, lead to a rejection of the forecasts. This methodology is unproblematic if the forecasts are reported honestly. The main difficulty is that Bob, even if uninformed, might be capable of strategically manipulating Alice's test (i.e., capable of producing forecasts that will not be rejected by Alice's test, regardless of how the data turns out to be realized in the future).

There is a limited purpose in running a test that can be manipulated when the forecaster is strategic. Even in the extreme case that the forecaster has no knowledge regarding the data generating process, the outcome of the test will almost inevitably support the hypothesis that the forecasts are correct. Hence, the uninformed expert would not fear having his forecasts discredited by the data.

Consider a standard calibration test that requires the empirical frequencies of an outcome (say 1) to be close to p in the periods that 1 was forecasted with probability near p. Foster and Vohra (1998) show that the calibration test can be manipulated. So, it is possible to produce forecasts that, in the future, will prove to be calibrated, no matter which sequence of data is eventually observed. In contrast, Dekel and Feinberg (2006) and Olszewski and Sandroni (2007b) show the existence of empirical tests that do not reject the forecasts of an informed expert and that can reject the forecasts of an uniformed expert.¹

The tests proposed by Dekel and Feinberg (2006) and Olszewski and Sandroni

¹The existence of such a test was first demonstrated by Dekel and Feinberg (2006) under the continuum hypothesis. Subsequently, Olszewski and Sandroni (2006) constructed a test with the required properties (in particular dispensing with the continuum hypothesis).

(2007b) require Bob to deliver, at period zero, an entire theory of the stochastic process. By definition, a theory must tell Alice, from the outset, all the forecasts for the next period, conditional on any possible data set. Typically, a forecaster does not announce an entire theory but, instead, only publicizes a forecast in each period, according to the observed data. Dekel and Feinberg (2006) argued that asking for a theory at period zero may have been an important feature that enabled them to prove the existence of their test. Hence, a natural issue to consider is whether there exists a nonmanipulable test that does not require an entire theory, but rather uses only the forecasts made along the observed histories.

Assume that Bob, before any data is observed, delivers to Alice an entire theory of the stochastic process. Let's say that a test does not make use of future predictions if whenever a theory f is rejected at some history s_t (observed at period t) then another theory f', that makes the exact same predictions conditional on any data set at or before period t - 1, must also be rejected at history s_t . Now assume that instead of delivering an entire theory, Bob announces a forecast each period according to the observed data. Then, Alice cannot run a test that uses future predictions. So, we restrict attention to tests that do not use future predictions.

A statistical test is *regular* if it rejects the actual data generating process with low probability and it makes no use of future predictions. A statistical test *can be ignorantly passed* if it is possible to strategically produce theories that are unlikely to be rejected on any future realizations of the data.²

We show that any regular statistical test can be ignorantly passed. This result shows that it is difficult to prevent the manipulation of empirical tests. Experts have incentives to be strategic and the data will not show that their forecasts were strategically produced to pass the test. This holds even under the extreme assumptions that the tester has arbitrarily long data sets at her disposal and the strategic forecaster knows nothing about the data generating process.

 $^{^{2}}$ We allow the uninformed expert to produce theories at random at period zero. Hence, the term "unlikely" here refers to the expert's randomization and not to the possible realizations of the data.

2. Related literatures

2.1. Counterfactual predictions

Counterfactual predictions have a significant function in several literatures. In game theory, beliefs off the play path are relevant in determining whether an equilibrium satisfies refinements such as perfection. Psychologists are interested in the direct impact on welfare of "want if" concerns (see Medvec, Madey, and Gilovich (1995)). Counterfactual predictions such as "what would be the salary of this woman if she were a man" are often made as an output of a statistical model. However, the use of a future prediction as an input to a statistical model is unusual.³ Consider a future prediction such as "if it rains tomorrow then it will also rain the day after tomorrow." It is difficult to test this prediction today because we have no data on it. So, it is counter-intuitive to make any use of this prediction today (and not the day after tomorrow) to determine the forecaster's type. Nevertheless, our results suggest a useful role for future predictions in the testing of forecasts.

2.2. Risk and uncertainty

An important distinction in economics is between risk and uncertainty.⁴ Risk refers to the case in which the available information can be properly summarized by probabilities, uncertainty refers to the case in which it cannot. In our model, Bob, if informed, faces risk. Alice and Bob, if uninformed, face uncertainty.⁵

As is well-known, the distinction between risk and uncertainty cannot be made within Savage's (1954) axioms. The large literature on uncertainty often produces alternative axiomatic foundations where this distinction can be made (See, among

³The use of counterfactual predictions is controversial (e.g., the literature of counterfactual history is seen as useful by some and as fantasies by others, see Fogel (1967) and McAfee (1983))

⁴The distinction is traditionally attributed to Knight (1921). However, LeRoy and Singell (1987) argue that Knight did not have in mind this distinction. Ellsberg (1961), in a well-known experiment, demonstrated that this distinction is empirically significant.

⁵This is significantly different from the case in which the tester is well, albeit imperfectly, informed. We refer the reader to Crawford and Sobel (1982) for a classic model of information transmission and to Morgan and Stocken (2003) and Sørensen and Ottaviani (2006) (among others) for cheap-talk games between forecasters and decision-makers. We also refer the reader to Dow and Gorton (1997), Ehrbeck and Waldmann (1996), Laster, Bennett and Geoum (1999) and Trueman (1988) (among others) for models in which professional forecasters have incentives to report their forecasts strategically.

others, Bewley (1986), Casadesus-Masanell et al. (2000), Epstein (1999), Ghirardato et al. (2004), Gilboa (1987), Gilboa and Schmeidler (1989), Klibanoff et al. (2005), Maccheroni et al. (2006), Olszewski (2007), Schmeidler (1989), Siniscalchi (2005), and Wakker (1989)). Unlike most of this literature, our objective here is not to provide a representation theorem for decisions under uncertainty nor to empirically test Savage's axioms, but rather to show how specific strategies can be used to effectively reduce or eliminate uncertainty.

2.3. Empirical tests of rational expectations

The rational expectations hypothesis has been subjected to extensive empirical testing. The careful examination of Keane and Runkle ((1990), (1998)) failed to reject the hypothesis that professional forecasters' expectations are rational (i.e., that the forecasts coincide with the correct probabilities).⁶ In this literature, the forecasts are assumed to be reported honestly and nonstrategically. So, the connection between our paper and this literature is tenuous. In addition, unlike most statistical models, we make no assumptions on how the data might evolve. These differences in the basic assumptions are partially due to the differences in objectives. The main purpose of our paper is not to test forecasts, but rather to demonstrate the properties that empirical tests must satisfy to be nonmanipulable.

2.4. Testing strategic experts

As mentioned in the introduction, the calibration test can be ignorantly passed. In fact, strong forms of calibration tests can be ignorantly passed. (See, for example, Fudenberg and Levine (1999), Lehrer (2001), and Sandroni, Smorodinsky and Vohra (2003).) Sandroni (2003), Vovk and Shafer (2005), Olszewski and Sandroni (2007b) show general classes of tests that can be ignorantly passed.

We also refer the reader to Cesa-Bianchi and Lugosi (2006) for related results and to the recent paper of Al-Najjar and Weinstein (2006) and Feinberg and Stuart (2006) on comparing different experts and to Fortnow and Vohra (2006) on testing experts with computational bounds.

So far, the literature has produced classes of tests that can be ignorantly passed. The contribution of this paper is to show a complete impossibility result: no regular test can feasibly reject a potentially strategic expert. These results (combined with the results of Dekel and Feinberg (2006) and Olszewski and San-

⁶See Lowell (1986) for other results on empirical testing of forecasts.

droni (2007b)) provide a definite separation between the cases in which the expert delivers an entire theory and the case in which the expert delivers a forecast each period.

3. Basic Set-Up

In each period one outcome, 0 or 1, is observed.⁷ Before any data is observed, an expert, named Bob, announces a theory that must be tested. Conditional on any *t*-history of outcomes $s_t \in \{0, 1\}^t$, Bob's theory claims that the probability of 1 in period t + 1 is $f(s_t)$.

To simplify the language, we identify a theory with its predictions. That is, theories that produce identical predictions are not differentiated. Hence, we define a *theory* as an arbitrary function that takes as an input any finite history and returns as an output a probability of 1. Formally, a theory is a function

$$f: \{s_0\} \cup S_{\infty} \longrightarrow [0,1],$$

where $S_{\infty} = \bigcup_{t=1}^{\infty} \{0, 1\}^t$ is the set of all finite histories and s_0 is the null history.

A tester, named Alice, tests Bob's theory empirically. So, given a potentially long string of data, Alice must reject or not reject Bob's theory. Hence, a *test* T is an arbitrary function that takes as an input a theory f and returns, as an output, a set $T(f) \subseteq S_{\infty}$ of finite histories considered to be inconsistent with the theory f. So, Alice rejects Bob's theory f if she observes data that belongs to T(f).⁸ Formally, a test is a function

$$T: F \to \bar{S}$$

where F is the set of all theories and \bar{S} is the set of all subsets of S_{∞} .⁹

For simplicity, we also assume that $s_t \in T(f)$ whenever $s_m \in T(f)$ for some m > t and every

 $^{^{7}\}mathrm{It}$ is immediate to extend the results to the case where there are finitely many possible outcomes in each period.

⁸Instead of a test, Alice could offer a contract to Bob in which Bob's reward is higher when his theory is not rejected by the data (see Olszewski and Sandroni (2006b)).

⁹We assume that $s_t \in T(f)$ implies that $s_m \in T(f)$ whenever $m \ge t$ and $s_t = s_m \mid t$ (i.e., s_t are the first t outcomes of s_m). That is, if a finite history s_t is considered inconsistent with the theory f, then any longer history s_m whose first t outcomes coincide with s_t is also considered inconsistent with the theory f.

The timing of the model is as follows: at period zero, Alice selects her empirical test T. Bob observes the test T and selects his theory f (also at period zero).¹⁰ In period 1 and onwards, the data is revealed and Bob's theory is either rejected or not rejected by Alice's test at some point in the future.

Bob can be an informed expert who honestly reports to Alice the data generating process. However, Bob may also be an uninformed expert who knows nothing about the data generating process. If so, Bob tries to strategically produce theories with the objective of not being rejected by the data. Alice anticipates this and wants a test such that Bob, if uniformed, cannot manipulate. Both the uninformed expert and Alice face uncertainty: they do not have any knowledge on the data generating process.

Although Alice tests Bob's theory using a string of outcomes, we do not make any assumptions on the data generating process (such as a Markov process, a stationary process, or some mixing condition). This lack of assumptions over the data generating process distinguishes our model from standard statistical models and hence it requires some explanation. It is very difficult to demonstrate that any key economic variable (such as inflation or GDP) follows any of these wellknown processes. At best, such assumptions can be tested and rejected. More importantly assume that, before any data was observed, Alice knew that the actual process belonged to a parametrizable set of processes (such as independent, identically distributed sequences of random variables) then she could infer, almost perfectly, the actual process from the data. Alice could accomplish all of this without Bob. Therefore, the lack of assumptions over the data generating process adds an element of coherence into a model of a forecaster and a tester.

Given that Bob must deliver an entire theory, Alice knows, at period zero, Bob's forecast conditional on any finite history. At period $m \in N$, Alice observes the data $s_m \in \{0,1\}^m$. Let $s_t = s_m \mid t$ be the first t outcomes of s_m . Let $f_{s_m} = \{f(s_t), s_t = s_m \mid t, t = 0, ..., m\}$ be a sequence of the actual forecasts made up to period m, if s_m is observed. Clearly, if Bob were required to produce only a forecast each period then Alice would observe at period m only f_{s_m} and s_m .

 s_m with $s_t = s_m \mid t$. That is, if any *m*-history that is an extension of a finite history s_t is considered inconsistent with the theory f, then the history s_t is itself considered inconsistent with the theory f.

¹⁰The results of these paper can be extended to the case that Alice selects her test at random. It suffices to assume that Bob properly anticipates the odds that Alice selects each test.

3.1. Example

We now consider an example of an empirical test. Let $J_t(s_t)$ be the *t*-th outcome of s_t . Then,

$$\widetilde{R}(f, s_m) = \frac{1}{m} \sum_{t=1}^{m} [f(s_{t-1}) - J_t(s_t)]$$

marks the difference between the average forecast of 1 and the empirical frequency of 1.

Alice could reject the theory f on all sufficiently long histories such that the average forecast of 1 did not become sufficiently close to the empirical frequency of 1. That is, fix $\eta > 0$ and a period \overline{m} . Bob's theory f is rejected on any history s_m (and longer histories s_k with $s_m = s_k \mid m$) such that

$$\left|\widetilde{R}(f, s_m)\right| \ge \eta \text{ and } m \ge \bar{m}.$$
 (3.1)

The test defined above (henceforth called an R-test) is notationally undemanding and can be used to exemplify general properties of empirical tests. Given $\varepsilon > 0$ a pair (η, \bar{m}) can be chosen such that if the theory f is correct (i.e., if the predictions made by f coincide with the data generating process), then f will not be rejected with probability $1 - \varepsilon$ (i.e., (3.1) occurs with probability less than ε). Hence, if Bob announces the data generating process, it is unlikely that he will be rejected.

At period m, the R-tests reject or do not reject a theory based on the sequence of the actual forecasts made up to period m - 1, $f_{s_{m-1}}$, and the available data, s_m . Thus, the \tilde{R} -tests do not use predictions for which there is no data.

Now assume that Bob is a false expert who knows nothing about the data generating process. Assume that, at period zero, Bob announces a theory f that satisfies:

$$f(s_t) = 1 \quad \text{if} \quad R(f, s_t) < 0; f(s_t) = 0.5 \quad \text{if} \quad \widetilde{R}(f, s_t) = 0; f(s_t) = 0 \quad \text{if} \quad \widetilde{R}(f, s_t) > 0.$$
(3.2)

It is immediate to see that if \widetilde{R} is negative at period t then, no matter whether 0 or 1 is realized at period t+1, \widetilde{R} increases. Conversely, if \widetilde{R} is positive at period t then, no matter whether 0 or 1 is realized at period t+1, \widetilde{R} decreases. So, \widetilde{R} approaches zero as the data unfolds. It is easy to see that if \overline{m} is sufficiently large, Bob can pass this test without any knowledge of the data generating process.

The \widetilde{R} -tests may seem weak and a proof that some of them can be passed without any relevant knowledge seemingly confirms this intuition. However, the stronger calibration tests of Lehrer (2001) and Foster and Vohra (1998) can also be passed without any knowledge of the data generating process.

4. Properties of Empirical Tests

Any theory f uniquely defines the probability of any set $A \subseteq S_{\infty}$ of finite histories (denoted by $P^{f}(A)$). The probability of each finite history s_{m} is just the product

$$\prod_{t=1}^{m} h^f(s_t) \tag{4.1}$$

where $s_t = s_m \mid t, h^f(s_t) := f(s_{t-1})$ if $J_t(s_t) = 1$ and $h^f(s_t) := 1 - f(s_{t-1})$ if $J_t(s_t) = 0$.

Definition 1. Fix $\varepsilon \in [0, 1]$. A test T does not reject the truth with probability $1 - \varepsilon$ if for any $f \in F$

$$P^f(T(f)) \le \varepsilon.$$

A test does not reject the truth if the actual data generating process is unlikely to be rejected. So, if Bob is an informed expert and announces his theory honestly, then he will not be rejected with high probability.

Two theories f and f' are equivalent until period m if $f(s_t) = f'(s_t)$ for any t-history s_t , $t \leq m$. So, two theories are equivalent until period m if they make the same predictions up to and at period m.

Definition 2. A test T does not make use of future predictions if, given any pair of theories f and f' that are equivalent until period $m, s_t \in T(f), t \leq m$, implies $s_t \in T(f')$.

A test does not make use of future predictions if, whenever a theory f is rejected at an m-history s_m , another theory f', that makes exactly the same predictions as f until period m, must also be rejected at s_m .

If, as is customary in professional forecasting, Bob is only required to produce a forecast each period, then, at period m, Alice observes only the actual predictions

 f_{s_m} and the data s_m . Hence, her test cannot make use of future predictions.¹¹ However, if Bob is required to deliver an entire theory at period zero then Alice's test could, in principle, make use of future predictions because she knows in advance how Bob's predictions would be conditioned on the data.

Definition 3. A regular ε -test does not make use of future predictions and does not reject the truth with probability $1 - \varepsilon$.

In section 5, we show that standard statistical tests do not make use of future predictions. This is to be expected, because statistical tests are meant to use data and no data is yet available for future predictions.

Bob is not restricted to select a theory deterministically. He may randomize when selecting his theory at period $0.^{12}$ Let a random generator of theories ζ be a probability distribution over the set F of all theories. Given any finite history $s_t \in \{0, 1\}^t$ let

$$\zeta(s_t) := \zeta(\{f \in F : s_t \in T(f)\})$$

be the probability that ζ selects a theory that will be rejected if s_t is observed.¹³

Definition 4. A test T can be ignorantly passed with probability $1 - \varepsilon$ if there exists a random generator of theories ζ such that for all finite histories $s_t \in S_{\infty}$

$$\zeta(s_t) \le \varepsilon$$

The random generator ζ may depend on the test T, but not on any knowledge of the actual data generating process. If a test can be ignorantly passed, Bob can randomly select theories that, with probability $1 - \varepsilon$ (according to Bob's randomization device), will not be rejected, no matter what data is observed. Alice has no reason to run a test that can be ignorantly passed if the forecaster is potentially strategic. Even in the extreme case that Bob completely ignores the data generating process, the test will almost certainly fail to reject his theory, *no matter how the data unfolds*.

¹¹At period m, the data s_m is available and the realized predictions are $f_{s_m} = \{f(s_t), s_t = s_m | t, t = 0, ..., m\}$. Other predictions are called counterfactual: The predictions $f(s'_t), s'_t \neq s_m | t$ are called parallel predictions: $f(s'_t)$ is based on information s'_t that was not observed at period t. The predictions $f(s_n), n \geq m + 1$, are not yet realized at period m and, hence, called future predictions.

¹²Given that Bob (perhaps) randomizes only once at period zero, Alice cannot tell whether the theory she just received was produced deterministically or at random.

¹³This definition requires a measurability provision on the sets $\{f \in F : s_t \in T(f)\}$. We will restrict attention to random generators of theories ζ for which sets of this form are measurable.

5. Main Result

Proposition 1. Fix $\varepsilon \in [0, 1]$ and $\delta \in (0, 1 - \varepsilon]$. Any test T that does not reject the truth with probability $1 - \varepsilon$ and does not make use of future predictions can be ignorantly passed with probability $1 - \varepsilon - \delta$.

Proposition 1 shows a fundamental limitation of regular statistical tests. Any regular test can be ignorantly passed. If Alice cannot make use of future predictions (e.g., only actual predictions are announced by the forecaster), she has no reason to run any test when confronted with a potentially strategic expert. These tests will not reveal whether the expert is uninformed. This result holds even if Alice possesses unboundedly large data sets and the fraudulent forecaster knows nothing about the data generating process.¹⁴

Assume, for the moment, that Alice offers a formal contract to Bob defined by a regular ε - test. In this contract, Bob receives a high payoff h if his theory is not rejected and a low payoff payoff l if it is rejected. By proposition 1, this contract is worth (approximately) the same to a completely informed expert as to a completely uninformed expert (and so, presumably, as to partially informed experts as well). Hence, Alice faces adverse selection and moral hazard problems that are unmitigated by contracts. None of these contracts can feasibly screen informed from uninformed experts. So, agents might anticipate that fraudulent forecasts will not be dismissed. In the absence of an effective exogenous check on the quality of the forecasts (that the data were supposed to provide), either decision makers will not consult professional forecasters or fraudulent formation of forecasts will become a wide-spread practice.

The difficulty pointed out in proposition 1 is difficult to circumvent if Alice has no access to future predictions because the results holds for any regular empirical test. Moreover, the result also holds for all future realizations of the data and so it requires no knowledge over the data generating process. The only requirement in proposition 1 is that Bob knows the regular tests that Alice uses. However, even this requirement can be relaxed. It suffices to assume that Bob properly anticipates the odds that Alice selects each regular test.

 $^{^{14}}$ We wish to emphasize two features of proposition 1. First, it does not assume that ε is "small".

Additionally, it need not be assumed that the test does not reject the truth, in particular, that an informed expert must be truthful. It is enough to assume that for every theory $f \in F$ there exists a theory $\tilde{f} \in F$ such that $P^f(T(\tilde{f})) \leq \varepsilon$, i.e. that an informed expert is able to pass the test. We actually prove this version of proposition 1 in the appendix.

5.1. Intuition of Proposition 1

Fix a regular ε -test T. This test, as every test, is a limit of tests T_m , m = 1, 2, ..., such that T_m makes the decision whether to reject a theory or not in period m or earlier. Consider the following zero-sum game between Nature and Bob: Nature's pure strategy is an infinite sequence of outcomes. Bob's pure strategy is a theory. Bob's payoff is one if his theory is never rejected (by the test T_m) and zero otherwise. Both Nature and Bob are allowed to randomize.

By the assumption that T does not reject the truth with probability $1 - \varepsilon$, for every mixed strategy of Nature, there is a pure strategy for Bob (to announce the theory f that coincides with Nature's strategy) that gives him a payoff of $1 - \varepsilon$ or higher. Hence, if the conditions of Fan's (1954) MinMax are satisfied, there is a (mixed) strategy ζ_m for Bob that ensures him a payoff arbitrarily close to $1 - \varepsilon$, no matter what strategy Nature chooses. In particular, for any history $s_t \in S_{\infty}$ that Nature can select, Bob's payoff is arbitrarily close to $1 - \varepsilon$.

Fan's MinMax theorem requires Nature's strategy space to be compact and the payoff function to be lower semi-continuous with respect to Nature's strategy. The topology that makes Nature's strategy space compact is the weak—* topology. The assumption that T_m makes the decision in period m or earlier, guarantees the lower semi-continuity of the payoff function.¹⁵

A limit, ζ , of (a subsequence) of these mixed strategies ζ_m , m = 1, 2, ..., exists because the set of Bob's mixed strategies is compact in the weak—* topology. However, ζ does not necessarily guarantee that Bob's theory will not be rejected with probability $1 - \varepsilon$, no matter which data is observed. To this end, one must use a specific sequence of tests T_m ; in particular, the sets of the form $\{f \in F : s_m \in T_m(f)\}$ must be open in the weak—* topology. The assumption that Tmakes no use of future predictions is critical for the construction of a sequence of test T_m , m = 1, 2, ..., with this property.

6. Empirical tests

The purpose of this section is to show that the assumptions of proposition 1 are satisfied by standard statistical models. We do not explicitly analyze every statistical model ever produced, but provide a few simple examples; however, we

¹⁵If Bob's payoff depended on the test T instead of T_m , then the payoff function would not necessarily be lower semi-continuous.

hope that these examples suffice because the arguments that we put forward seem to be general.

Asymptotic tests are common in statistics. These tests work as if Alice eventually had an infinite string of data and could decide whether or not to reject Bob's theory at infinity. Naturally, asymptotic tests can be approximated by tests that can reject theories in finite time (as defined in Section 2). In this section, we present a few examples of common asymptotic tests. We show that they can be approximated by regular tests.

Fix $\delta \in (0, 0.5)$. Given a theory f, let f_{δ} be an alternative theory¹⁶ defined by

$$f_{\delta}(s_t) = \begin{cases} f(s_t) + \delta & \text{if } f(s_t) \le 0/5; \\ \\ f_{\delta}(s_t) - \delta & \text{if } f(s_t) > 0/5. \end{cases}$$

A straightforward martingale argument shows that, P^{f} -almost surely¹⁷,

$$\frac{P^{f_{\delta}}(s_t)}{P^f(s_t)} \xrightarrow[t \to \infty]{} 0.$$

That is, under the null hypothesis (that P^f is the data generating process), the likelihood of $P^{f_{\delta}}$ becomes much smaller than the likelihood of P^f . The likelihood test rejects theory f in favor of the alternative theory f_{δ} if the likelihood ratio

$$\frac{P^{f_{\delta}}(s_t)}{P^f(s_t)}$$

does not approach zero.

Let R(f) be the set of infinite histories such that the likelihood ratio does not approach zero. Say that a test T is harder than the likelihood test if $R(f) \subseteq T(f)$.¹⁸ So, rejection by the likelihood test implies rejection by the test T.

Proposition 2. Given $\varepsilon > 0$, there exists a regular ε -test T that is harder than the likelihood test.

¹⁶The alternative hypothesis need not be a single theory. This assumption is made for simplicity only.

¹⁷Naturally, we refer here to the probability measure P^f defined on the space of infinity histories. See the appendix for a precise definition.

¹⁸Formally, T(f) comprises finite histories, so in the inclusion $R(f) \subset T(f)$, as wel as in several other places, we identify T(f) with set of all infinite extensions of histories from T(f).

By proposition 1, the test T can be ignorantly passed with probability $1 - \varepsilon$. Hence, by proposition 2, the likelihood test can be ignorantly passed with arbitrarily high probability. This is a surprising result because, without any knowledge of the data generating process, it is not obvious whether the theory f or the alternative theory f_{δ} will eventually produce a higher likelihood. However, a false expert can produce theories that, no matter which data is realized, will prove in the future (with arbitrarily high chance) to generate a much higher likelihood than the alternative theories.

Of course, the unexpected result is proposition 1. proposition 2, in contrast, is a natural finding. An intuition is as follows: P^{f} -almost surely, the likelihood ratio approaches zero. Hence, with arbitrarily high probability, the likelihood ratio must remain small if the string of data is long enough. Let T be the test that rejects the theory f whenever the likelihood ratio is not small and the string of data long. By construction, the test T is harder than the likelihood test and does not reject the truth with high probability. Moreover, the test T does not make use of future predictions because the likelihood ratio depends only on the forecasts made along the observed history.

The basic idea in proposition 2 is not limited to the likelihood test. Other asymptotic tests can also be associated with harder regular tests. We conclude this section with the analysis of calibration tests. Let \mathcal{I}_{t-1} be an indicator function that depends on the data up to period t-1 (i.e., s_{t-1}) and the predictions made up to period t-1 (i.e., $f(s_k)$, $s_k = s_{t-1} \mid k, k \leq t-1$). For example, \mathcal{I}_{t-1} can be equal to 1 if $f(s_{t-1}) \in [\frac{j}{n}, \frac{j+1}{n}]$ for some j < n and zero otherwise. Alternatively, \mathcal{I}_{t-1} can be equal to 1 if t is even and 0 if t is odd. Consider an arbitrary countable collection $\mathcal{I}^i = (\mathcal{I}^i_0, ..., \mathcal{I}^i_{t-1}, ...), i \in N$, of indicator functions. The calibration test requires that for all $i \in N$

$$\frac{1}{m}\sum_{t=1}^{m} [f(s_{t-1}) - J_t(s_t)] \mathcal{I}_{t-1}^i \underset{m \to \infty}{\longrightarrow} 0.$$
(6.1)

These calibration tests require a match between average forecasts and empirical frequencies on specific subsequences. These subsequences could be, as in Foster and Vohra (1998), those in which the forecasts are near $p \in [0, 1]$. Then the test requires the empirical frequencies of 1 be close to p in the periods that followed a forecast of 1 that was close to p. Alternatively, these subsequences could also be, as in Lehrer (2001), periods in which a certain outcome was observed. In general, the calibration test rejects a theory f if (6.1) does not hold.

Proposition 3. Given $\varepsilon > 0$, there exists a regular ε -test T' that is harder than the calibration test.

The intuition of proposition 3 is the same as that of proposition 2. A sophisticated law of large numbers shows that, under the null hypothesis that P^f is the data generating process, almost surely, the calibration scores in (6.1) eventually approach zero. Hence, with arbitrarily high probability, these calibration scores must remain small if the string of data is long enough. Let T' be the test that rejects the theory f whenever the calibration scores are not small and the string of data is long. By construction, the test T' is harder than the calibration test and does not reject the truth with high probability. Moreover, the test T' does not make use of future predictions because the calibration scores depend only on the forecasts made along the observed history.

By Propositions 1 and 3, the calibration tests can be ignorantly passed with arbitrarily high probability. Hence, a false expert can produce forecasts that, in the future, once the data is revealed, will prove to be calibrated. This result combines the Foster and Vohra (1998) result (where the indicator function depends only on the forecasts) and the Lehrer (2001) result (where the indicator function depends only on the data). However, the examples presented here (likelihood and calibration tests) are just illustrations of the general point that several statistical tests can be associated with harder regular tests.

7. Conclusion

Strategic manipulation of tests is difficult to prevent. An expert can strategically produce forecasts that, once the data is revealed, will not be rejected by any given regular empirical test. This holds even under the extreme assumptions that the expert knows nothing about the data generating process, and that the tester has unbounded data at her disposal.

However, if forecasters must deliver an entire theory of a stochastic process, then tests that make use of future predictions can be employed. Some of these tests can dismiss false experts without dismissing informed experts. These results suggest the necessity of providing theories for a successful screening of correct forecasts from strategically produced forecasts.

8. Proofs

We use the following terminology: Let $\Omega = \{0, 1\}^{\infty}$ be the set of all *paths*, i.e., infinite histories. Given a path s, let $s \mid t$ be the first t coordinates of s. A cylinder with base on $s_t \in \{0, 1\}^t$ is the set $C(s_t) \subset \{0, 1\}^{\infty}$ of all infinite extensions of s_t . We endow Ω with the topology that comprises of unions of cylinders with finite base. Let \mathfrak{F}_t be the algebra that consists of all finite unions of cylinders with base on $\{0, 1\}^t$. Denote by N the set of natural numbers. Let \mathfrak{F} is the σ -algebra generated by the algebra $\mathfrak{F}^0 := \bigcup_{t \in N} \mathfrak{F}_t$, i.e., \mathfrak{F} is the smallest σ -algebra which contains \mathfrak{F}^0 .

Let $\Delta(\Omega)$ the set of all probability measures on (Ω, \Im) . We endow $\Delta(\Omega)$ with the weak-* topology and with the σ -algebra of Borel sets, (i.e., the smallest σ -algebra which contains all open sets in weak-* topology). Let $\Delta\Delta(\Omega)$ be the set of probability measures on $\Delta(\Omega)$. We endow $\Delta\Delta(\Omega)$ also with the weak-* topology. It is well-known that $\Delta(\Omega)$ and $\Delta\Delta(\Omega)$ are compact metric spaces. It is also well known that there is a correspondence between theories $f \in F$ and probability measures $P \in \Delta(\Omega)$. Every theory f determines uniquely by (4.1) a measure P^f . We refer to $P^f \in \Delta(\Omega)$ as the probability measure associated with the theory $f \in F$. The other way round, every probability measure $P \in$ $\Delta(\Omega)$ determines a probability of 1 conditional on any finite history s_t such that $P(C(s_t)) > 0$.

As in the main text, we identify T(f) with set of all infinite extensions of histories from T(f).

Definition 5. A test T is called *finite* if for every theory f there exists a number $m \in N$ such that $s_t \in T(f)$, where t > m, if and only if $s_t \mid m \in T(f)$.

Definition 6. A test T does not reject an informed expert with probability $1 - \varepsilon$ if for every theory $f \in F$ there exists a theory $\tilde{f} \in F$ such that

$$P^f(T(\widetilde{f})) \le \varepsilon.$$

Definition 7. A test T_1 is harder than the test T_2 if for any $f \in F$, $s_t \in T_2(f)$ implies that $s_t \in T_1(f)$.

Definition 8. A set $F' \subseteq F$ is δ -dense in $F, \delta > 0$, if for every theory $g \in F$ there exists a theory $f \in F'$ such that

$$\sup_{A \in \mathfrak{S}} \left| P^f(A) - P^g(A) \right| < \delta.$$

8.1. Proof of Proposition 1

We will use the following three lemmas. Let X be a metric space. Recall that a function $u: X \to R$ is *lower semi-continuous* at an $x \in X$ if for every sequence $(x_n)_{n=1}^{\infty}$ converging to x:

$$\forall_{\varepsilon>0} \quad \exists_{\overline{n}} \quad \forall_{n\geq \overline{n}} \quad u(x_n) > u(x) - \varepsilon.$$

The function u is lower semi-continuous if it is lower semi-continuous at every $x \in X$.

Lemma 1. Let $U \subset X$ be an open set where X is a compact metric space. Equip X with the σ -algebra of Borel subsets. Let $\Delta(X)$ be the set of all probability measures on X. Equip $\Delta(X)$ with the weak-* topology. The function $H : \Delta(X) \to [0, 1]$ defined by

$$H(P) = P(U)$$

is lower semi-continuous.

Proof: See Dudley (1989), Theorem 11.1.1(b).

Theorem 8.1. (Fan (1953)) Let X be a compact Hausdorff space, which is a convex subset of a linear space, and let Y be a convex subset of linear space (not necessarily topologized).¹⁹ Let G be a real-valued function on $X \times Y$ such that for every $y \in Y$, G(x, y) is lower semi-continuous with respect to x. If G is also convex with respect to x and concave with respect to y, then

$$\min_{x \in X} \sup_{y \in Y} G(x, y) = \sup_{y \in Y} \min_{x \in X} G(x, y).$$

The following lemma follows from the proof of proposition 1 in Olszewski and Sandroni (2007c); we provide the proof only completeness of presentation.

Lemma 2. Fix $\varepsilon \in [0,1]$ and $\delta \in (0, 1 - \varepsilon]$. Let T be a finite test that does not reject an informed expert with probability $1 - \varepsilon$. Then, the test T can be ignorantly passed with probability $1 - \varepsilon - \delta$.

 $^{^{19}\}mathrm{Fan}$ allows for X and Y that may not be subsets of linear spaces. We, however, apply his theorem only to subsets of linear spaces.

Proof: Let $X = \Delta(\Omega)$. Let Y be the subset of $\Delta(F)$ of all random generator of theories with finite support. So, an element ζ of Y can be described by a finite sequence of theories $\{f_1, ..., f_n\}$ and positive weights $\{\pi_1, ..., \pi_n\}$ that add up to one (i.e., ζ selects P_i with probability π_i , i = 1, ..., n). Let the function $G: X \times Y \to R$ defined by

$$G(P,\zeta) := \sum_{i=1}^{n} \pi_i P(T(f_i)^c).$$
(8.1)

We now check that the assumptions of Fan's theorem are satisfied. Since T is a finite test, the set $T(\overline{f})^c$ is open for every $\overline{f} \in F$. Therefore, by Lemma 1,

 $P(T(\overline{f})^c)$

is a lower semi-continuous function of P. Thus, for every $\zeta \in Y$, the function $G(P,\zeta)$ is lower semi-continuous on X as a weighted average of lower semicontinuous functions.

By definition, G is linear on X and Y, and so it is convex on X and concave on Y. By the Riesz and Banach-Alaoglu Theorems, X is a compact space in weak-* topology; it is a metric space, and so Hausdorff, (see for example Rudin (1973), Theorem 3.17).

Thus, by Fan's Theorem,

$$\min_{P \in \Delta(\Omega)} \sup_{\zeta \in \Delta(F)} G(P,\zeta) = \sup_{\zeta \in \Delta(F)} \min_{P \in \Delta(\Omega)} G(P,\zeta).$$

Notice that the left-hand side of this equality exceeds $1 - \varepsilon$, as the test T is assumed not to reject an informed expert with probability $1 - \varepsilon$; indeed, for a given $P \in \Delta(\Omega)$, take ζ such that $\zeta(\{f\}) = 1$, where f is any theory with $P^f = P$. Therefore the right-hand side exceeds $1 - \varepsilon$, which yields the existence of a random generator of theories $\zeta \in \Delta(F)$ such that

$$G(P,\zeta) > 1 - \varepsilon - \delta$$

for every $P \in \Delta(\Omega)$. Taking, for any s, the measure P such that $P(\{s\}) = 1$, we obtain that

$$\zeta(\{\overline{f}\in F: \forall_{t\in N} \ s_t\notin T(\overline{f})\}) > 1-\varepsilon-\delta.$$

Let γ be a sequence of positive numbers $(\gamma_t)_{t=1}^{\infty}$. Given γ , let R be a sequence of finite sets $(R_t)_{t=1}^{\infty}$ such that $R_t \subset (0, 1), t \in N$, and

$$\forall_{x \in [0,1]} \exists_{r \in R_t} |x - r| < \gamma_t$$

Given R, let $\mathfrak{F} = (\mathfrak{F}_m)_{m=1}^{\infty}$ be a sequence of subsets of F defined by

$$\mathfrak{F}_m = \left\{ f \in F : \forall_{t=0,\dots,m} \ \forall_{s_t \in \{0,1\}^t \ (\text{or } s_t = s_0 \ \text{if } t=0)} \quad f(s_t) \in R_{t+1} \right\}.$$
(8.2)

It is convenient to define a supporting subset sequence $\mathfrak{F} = (\mathfrak{F}_m)_{m=1}^{\infty}$ as a sequence of subsets of F such that ?? is satisfied for some sequence of finite sets $R = (R_t)_{t=1}^{\infty}$. It is also worth pointing out that in any supporting subset sequence, $\mathfrak{F}_m \supset \mathfrak{F}_{m+1}$.

Lemma 3. For every $\delta > 0$, there exists a supporting subset sequence $\mathfrak{F} = (\mathfrak{F}_m)_{m=1}^{\infty}$ such that \mathfrak{F}_m is δ -dense in F for every m = 1, 2, ...

Proof: For now consider an arbitrary sequence of positive numbers $\gamma = (\gamma_t)_{t=1}^{\infty}$. Given $g \in F$ take $f \in \mathfrak{F}_m$ such that

$$\forall_{t=0,\dots,m} \; \forall_{s_t \in \{0,1\}^t \; (\text{or } s_t = s_0 \; \text{if } t = 0)} \quad |f(s_t) - g(s_t)| < \gamma_t$$

and

$$\forall_{t=m+1,\dots}\forall_{s_t\in\{0,1\}^t} \quad f(s_t)=g(s_t).$$

We now show that there exists a sequence $(\gamma_t)_{t=1}^{\infty}$ such that

$$\left|P^{f}(C(s_{r})) - P^{g}(C(s_{r}))\right| < \frac{\delta}{2}$$

$$(8.3)$$

for every cylinder $C(s_r)$. Indeed,

$$|P^{f}(C(s_{q})) - P^{g}(C(s_{q}))| = |h^{f}(s_{1}) \cdot ... \cdot h^{f}(s_{q}) - h^{g}(s_{1}) \cdot ... \cdot h^{g}(s_{q})|,$$

where $q = \min\{r, m+1\}$, and

$$\begin{aligned} \left| h^{f}(s_{1}) \cdot \ldots \cdot h^{f}(s_{q}) - h^{g}(s_{1}) \cdot \ldots \cdot h^{g}(s_{q}) \right| &\leq \\ &\leq \left(h^{g}(s_{1}) + \gamma_{1} \right) \cdot \ldots \cdot \left(h^{g}(s_{q}) + \gamma_{q} \right) - h^{g}(s_{1}) \cdot \ldots \cdot h^{g}(s_{q}) \leq \\ &\leq \left[\prod_{t=1}^{q} (1 + \gamma_{t}) - 1 \right] \leq \left[\prod_{t=1}^{\infty} (1 + \gamma_{t}) - 1 \right], \end{aligned}$$

where $s_k = s_r \mid k$ for k < r. The first inequality follows from the fact that

$$|(a_1 + b_1) \cdot \dots \cdot (a_q + b_q) - a_1 \cdot \dots \cdot a_q| \le (a_1 + |b_1|) \cdot \dots \cdot (a_q + |b_q|) - a_1 \cdot \dots \cdot a_q \quad (8.4)$$

for any sets of numbers $a_1, ..., a_q > 0$ and $b_1, ..., b_q$; apply (8.4) to $a_k = h^g(s_k)$ and $b_k = h^f(s_k) - h^g(s_k)$, k = 1, ..., q. The second inequality follows from the fact that the function

$$(a_1+b_1)\cdot\ldots\cdot(a_q+b_q)-a_1\cdot\ldots\cdot a_q$$

is increasing in $a_1, ..., a_q$ for any sets of positive numbers $a_1, ..., a_q$ and $b_1, ..., b_q$.

So, (8.3) follows if we take a sequence $(\gamma_t)_{t=1}^{\infty}$ such that

$$\prod_{t=1}^\infty (1+\gamma_t) < 1+\frac{\delta}{2}$$

We now show that a slightly stronger condition

$$\prod_{t=1}^{\infty} (1+2\gamma_t) < 1 + \frac{\delta}{4}$$

guarantees that $|P^f(U) - P^g(U)| < \delta/2$ for every union of cylinders U, not only for every single cylinder.

Indeed, suppose first that there is an n such that U is a union of cylinders with base on s_t with $t \leq n$. Since every cylinder with base on s_t can be represented as the union of two cylinders with base on $s'_{t+1} = (s_t, 0)$ and $s''_{t+1} = (s_t, 1)$ respectively, the set U is the union of a family of cylinders C with base on histories of length n. Thus,

$$\begin{split} \left| P^{f}(U) - P^{g}(U) \right| &\leq \sum_{C(s_{n}) \in C} \left| P^{f}(C(s_{m})) - P^{g}(C(s_{m})) \right| \\ &\leq \sum_{C(s_{n}) \in C} \left[(h^{g}(s_{1}) + \gamma_{1}) \cdot \ldots \cdot (h^{g}(s_{n}) + \gamma_{n}) - h^{g}(s_{1}) \cdot \ldots \cdot h^{g}(s_{n}) \right] \leq \\ &\leq \sum_{s_{n} \in \{0,1\}^{n}} \left[(h^{g}(s_{1}) + \gamma_{1}) \cdot \ldots \cdot (h^{g}(s_{n}) + \gamma_{n}) - h^{g}(s_{1}) \cdot \ldots \cdot h^{g}(s_{n}) \right] = \\ &= \sum_{s_{n} \in \{0,1\}^{n}} (h^{g}(s_{1}) + \gamma_{1}) \cdot \ldots \cdot (h^{g}(s_{n}) + \gamma_{n}) - 1 = \end{split}$$

$$= \sum_{\substack{s_{n-1} \in \{0,1\}^{n-1} \\ s_{n-1} \in \{0,1\}^{n-1} \\ + \sum_{\substack{s_{n-1} \in \{0,1\}^{n-1} \\ s_{n-1} \in \{0,1\}^{n-1} \\ (h^{g}(1) + \gamma_{1}) \cdot (h^{g}(1,s_{1}) + \gamma_{2}) \cdot \dots \cdot (h^{g}(1,s_{n-1}) + \gamma_{n}) - 1} \leq \\ \leq [h^{g}(0) + \gamma_{1} + h^{g}(1) + \gamma_{1}] \cdot \\ \cdot \max \left\{ \sum_{\substack{s_{n-1} \in \{0,1\}^{n-1} \\ \sum_{s_{n-1} \in \{0,1\}^{n-1} \\ (h^{g}(0,s_{1}) + \gamma_{2}) \cdot \dots \cdot (h^{g}(0,s_{n-1}) + \gamma_{n}), \\ \sum_{s_{n-1} \in \{0,1\}^{n-1} \\ (h^{g}(0,s_{1}) + \gamma_{2}) \cdot \dots \cdot (h^{g}(1,s_{n-1}) + \gamma_{n}), \\ \sum_{s_{n-1} \in \{0,1\}^{n-1} \\ (h^{g}(0,s_{1}) + \gamma_{2}) \cdot \dots \cdot (h^{g}(0,s_{n-1}) + \gamma_{n}), \\ \sum_{s_{n-1} \in \{0,1\}^{n-1} \\ (h^{g}(1,s_{1}) + \gamma_{2}) \cdot \dots \cdot (h^{g}(1,s_{n-1}) + \gamma_{n}), \\ \end{array} \right\} - 1 =$$

We can estimate each sum in this last display in a similar manner to that we have used to estimate $\sum_{s_n \in \{0,1\}^n} (h^g(s_1) + \gamma_1) \cdot \ldots \cdot (h^g(s_n) + \gamma_n)$; we can continue in this fashion to conclude that

$$|P^{f}(U) - P^{g}(U)| \le \left[\prod_{t=1}^{n} (1+2\gamma_{t}) - 1\right] < \frac{\delta}{4}.$$

Now, suppose that U is the union of an arbitrary family of cylinders C. Represent U as

$$U = \bigcup_{n=1}^{\infty} U_n$$

where U_n is the union of cylinders $C \in \mathcal{C}$ with base on s_t with $t \leq n$. Since the sequence $\{U_n : n = 1, 2, ...\}$ is ascending, $|P^f(U) - P^f(U_n)| < \delta/8$ and $|P^g(U_n) - P^g(U)| < \delta/8$ for large enough n. Thus,

$$|P^{f}(U) - P^{g}(U)| \le |P^{f}(U) - P^{f}(U_{n})| +$$

+ $|P^{f}(U_{n}) - P^{g}(U_{n})| + |P^{g}(U_{n}) - P^{g}(U)| < \delta/2.$

Finally, observe that $|P^f(A) - P^g(A)| < \delta$ for every $A \in \mathfrak{S}$. Indeed, take a set $U \supset A$, which is a union of cylinders, such that $|P^f(U) - P^f(A)|, |P^g(U) - P^g(A)| < \delta/4$. Since $|P^f(U) - P^g(U)| < \delta/2$,

$$\left|P^{f}(A) - P^{g}(A)\right| \le \left|P^{f}(U) - P^{f}(A)\right| +$$

+
$$|P^{f}(U) - P^{g}(U)| + |P^{g}(U) - P^{g}(A)| < \delta.$$

Given a test T and a period $m \in N$, define the test T_m by

$$s_t \in T_m(f)$$
 if $t < m$ and $s_t \in T(f)$ or $t \ge m$ and $s_t \mid m \in T(f)$;
 $s_t \notin T_m(f)$ otherwise.

Given a test T, a period $m \in N$ and a supporting subset sequence \mathfrak{F} , define the test $T_m^{\mathfrak{F}}$ by

$$s_t \notin T_m^{\mathfrak{F}}(f)$$
 if $f \in \mathfrak{F}_m$ and $s_t \notin T_m(f)$;
 $s_t \in T_m^{\mathfrak{F}}(f)$ otherwise.

Lemma 4. Fix an arbitrary finite history $s_t \in S_{\infty}$, a supporting subset sequence \mathfrak{F} , a period $k \in N$ and a test T that does not make use of future predictions. The set

$$\{f \in F : s_t \in T_k^{\mathfrak{F}}(f)\}$$

is open in the weak-* topology.²⁰

Proof: We can assume without loss of generality that t = k. Indeed, for $t > k, s_t \in T_k^{\mathfrak{F}}(f)$ if and only if $s_t \mid k \in T_k^{\mathfrak{F}}(f)$; for $t < k, s_t \in T_k^{\mathfrak{F}}(f)$ if and only if $s_k \in T_k^{\mathfrak{F}}(f)$ for every s_k with $s_k \mid t = s_t$, and there is only a finite number of such extensions s_k .

By the definition of $T_k^{\mathfrak{F}}$, $s_k \in T_k^{\mathfrak{F}}(f)$ for every $f \notin \mathfrak{F}_k$. Take now any $f \in \mathfrak{F}_k$. Since T that does not make use of future predictions then T_k and $T_k^{\mathfrak{F}}$ do not make use of future predictions either. Thus, the test uses as an input only on the predictions made by a theory f up to period k whether a history s_k belongs to $T_k^{\mathfrak{F}}(f)$.

If $f \in \mathfrak{F}_k$ then there is only a finite number of possible predictions

$$\left\{f(\widetilde{s}_{0})\right\} \cup \left\{f(\widetilde{s}_{1}): \widetilde{s}_{1} \in \{0,1\}^{1}\right\} \cup \ldots \cup f(\widetilde{s}_{k}): \widetilde{s}_{k} \in \{0,1\}^{k-1}\right\}$$

that the theory f can make up to period k. The set of possible predictions can be divided into two subsets, say A and B, such that if a theory makes predictions from A, then $s_k \in T_k^{\mathfrak{F}}(f)$, and if a theory makes predictions from B, then $s_k \notin T_k^{\mathfrak{F}}(f)$.

²⁰This is the key place in the proof, where we use the assumption that the test T does not make use of future predictions. This assumption is essential here. If a test T makes use of future predictions, then the set $\{f \in F : s_t \in T_k^{\mathfrak{F}}(f)\}$ is typically not open in the weak–* topology.

Thus, $\{f \in F : s_k \notin T_k^{\mathfrak{F}}(f)\}$ consists of the theories that make predictions from the set B. By the finiteness of B, the set $\{f \in F : s_k \notin T_k^{\mathfrak{F}}(f)\}$ is closed in in the weak-* topology. Therefore, every set of the form $\{f \in F : s_k \in T'_k(f)\}$ is open in the weak-* topology. \blacksquare

Lemma 5. Fix $\delta > 0$ and a test T that does not make use of future predictions and does not reject an informed expert with probability $1 - \varepsilon$. There exists a supporting subset sequence \mathfrak{F} and a random generator of theories ζ such that

 $\zeta(\{f \in F : s_t \in T_k^{\mathfrak{F}}(f)\}) \leq \varepsilon + \delta$ for every $s_t \in S_\infty$ and period $k \in N$.

Proof: For every period $m \in N$, the test T_m does not reject the truth with probability $1 - \varepsilon$ because the test T is harder than the test T_m .

By Lemma 3, let \mathfrak{F} be a supporting subset sequence such that \mathfrak{F}_m is $\delta/4$ -dense in F, for every $m \in N$.

So, $T_m^{\mathfrak{F}}$ is a finite test that does not reject the informed expert with probability $1 - \varepsilon - \delta/4$. It now follows from Lemma 2 (applied to $\varepsilon' = \varepsilon + \delta/4$ and $\delta' = \delta/4$) that there exists a random generator of theories $\zeta_m \in \Delta\Delta(\Omega)$ such that for all finite histories $s_t \in S_{\infty}$,

$$\zeta_m(\{f \in F : s_t \in T_m^{\mathfrak{F}}(f)\}) \le \varepsilon + \delta/2.$$

Notice now that the test $T_{m+1}^{\mathfrak{F}}$ is harder than the test $T_m^{\mathfrak{F}}$ (because T_{m+1} is harder than T_m and $\mathfrak{F}_m \supset \mathfrak{F}_{m+1}$). Thus, if $m \geq k$ then

$$\zeta_m(\{f \in F : s_t \in T_k^{\delta}(f)\}) \le \varepsilon + \delta/2 \text{ for all } s_t \in S_{\infty}.$$

By the compactness of $\Delta\Delta(\Omega)$, there exists a convergent subsequence of the sequence $(\zeta_m)_{m=1}^{\infty}$, also indexed by m, with a limit $\zeta \in \Delta\Delta(\Omega)$, i.e., $\zeta_m \xrightarrow[m \to \infty]{} \zeta$ (in the weak-* topology).

By Lemma 4, $\{f \in F : s_t \in T_k^{\mathfrak{F}}(f)\}$ is an open set. It now follows from Lemma 1 that $\xi(\{f \in F : s_t \in T_k^{\mathfrak{F}}(f)\})$ is a lower semi-continuous function of $\xi \in \Delta\Delta(\Omega)$. Hence, there is an $\overline{m} \in N$ such that if $m \geq \overline{m}$ then

$$\zeta_m(\{f \in F : s_t \in T_k^{\mathfrak{F}}(f)\}) \ge \zeta(\{f \in F : s_t \in T_k^{\mathfrak{F}}(f)\}) - \delta/2,$$

and so

$$\zeta(\{f \in F : s_t \in T_k^{\mathfrak{s}}(f)\}) \le \varepsilon + \delta.$$

Lemma 6. Let T be a test that does not make use of future predictions and does not reject an informed expert with probability $1 - \varepsilon$. There exists a random generator of theories ζ such that

$$\zeta(\{f \in F : s_t \in T_k(f)\}) \leq \varepsilon$$
 for every $s_t \in S_\infty$ and period $k \in N$.

Proof: By lemma 5, for every $j \in N$, there exists a random generator of theories ζ^{j} and a supporting subset sequence \mathfrak{F}^{j} such that

$$\zeta^{j}(\{f \in F : s_t \in T_k^{\mathfrak{F}^{j}}(f)\}) \le \varepsilon + \frac{1}{j} \text{ for every } s_t \in S_{\infty} \text{ and period } k \in N.$$

Note that the supporting subset sequence \mathfrak{F}^{j} is defined by a sequence γ^{j} of positive numbers $(\gamma_{t}^{j})_{t=1}^{\infty}$ such that

$$\{ f \in F : s_t \notin T_k^{\mathfrak{F}^j}(f) \} \subseteq \{ f \in F : s_t \notin T_k^{\mathfrak{F}^{j+1}}(f)$$

$$f \in \mathfrak{F}_k^j \Longrightarrow f \in \mathfrak{F}_k^{j+1}$$

$$\mathfrak{F}_k^j \subseteq \mathfrak{F}_k^{j+1}$$

$$R^j \subseteq$$

Let γ be a sequence of positive numbers $(\gamma_t)_{t=1}^{\infty}$. Given γ , let R be a sequence of finite sets $(R_t)_{t=1}^{\infty}$ such that $R_t \subset (0, 1), t \in N$, and

$$\forall_{x \in [0,1]} \exists_{r \in R_t} |x - r| < \gamma_t.$$

Given R, let $\mathfrak{F} = (\mathfrak{F}_m)_{m=1}^{\infty}$ be a sequence of subsets of F defined by

$$\mathfrak{F}_{m} = \left\{ f \in F : \forall_{t=0,\dots,m} \; \forall_{s_{t} \in \{0,1\}^{t} \; (\text{or } s_{t}=s_{0} \; \text{if } t=0)} \quad f(s_{t}) \in R_{t+1} \right\}.$$
(8.5)

Given that T'_k is harder than T_k ,

$$\zeta(\{f \in F : s_t \notin T_k(f)\}) \ge 1 - \varepsilon - \delta.$$

Proof of proposition 1

Let $\chi_k : F \longrightarrow \{0, 1\}$ be the indicator function that is equal to 1 if $s_t \notin T_k(f)$ and zero otherwise. The last inequality can be written as

$$\int \chi_k d\zeta \ge 1 - \varepsilon - \delta$$

Moreover, $\chi_k \downarrow \chi$ as k goes to ∞ , where $\chi : F \longrightarrow \{0,1\}$ is the indicator function equal to 1 when $s_t \notin T(f)$ and zero otherwise. By the monotone converge theorem,

$$\int \chi d\zeta \ge 1 - \varepsilon - \delta$$

which means that $\zeta(\{f \in F : s_t \notin T(f)\}) \ge 1 - \varepsilon - \delta$.

8.2. Proof of Propositions 2 and 3

Let E^P and VAR^P be the expectation and variance operator associated with $P \in \Delta(\Omega)$. Let $(X_i)_{i=1}^{\infty}$ be a sequence of random variables such that X_i is \mathfrak{F}_i -measurable and its expectation conditional on \mathfrak{F}_{i-1} is zero (i.e., $E^P \{X_i \mid \mathfrak{F}_{i-1}\} = 0$); moreover, let the sequence of conditional variances $VAR^P \{X_i \mid \mathfrak{F}_{i-1}\}$ be uniformly bounded (i.e., $VAR^P \{X_i \mid \mathfrak{F}_{i-1}\} < M$ for some M > 0). We define

$$S_m := \sum_{i=1}^m X_i \text{ and } Y_m := \frac{S_m}{m}$$

Lemma 7. For every $\varepsilon' > 0$ and $j \in N$ there exists $\overline{m}(j, \varepsilon') \in N$ such that

$$P\left(\left\{s\in\Omega:\forall_{m\geq\bar{m}(j,\varepsilon')} \mid |Y_m(s)|\leq\frac{1}{j}\right\}\right)>1-\varepsilon'.$$

Proof: By definition, S_m is a martingale. By Kolmogorov's inequality (see Shiryaev (1996), Chapter IV, §2), for any $\delta > 0$,

$$P\left(\left\{s \in \Omega : \max_{1 \le m \le k} |S_m(s)| > \delta\right\}\right) \le \frac{Var(S_k)}{\delta^2} \le \frac{kM}{\delta^2}.^{21}$$

 $^{^{21}}$ Shiryaev (1996) shows this result for independent random variables, but it's extension to martingales is well-known.

Let $M_n := \max_{2^n < m \le 2^{n+1}} Y_m$. Then,

$$P\left(\left\{s\in\Omega:M_n(s)>\frac{1}{j}\right\}\right) \le P\left(\left\{s\in\Omega:\max_{2^n < m \le 2^{n+1}}|S_m(s)|>\frac{1}{j}2^n\right\}\right) \le$$
$$\le P\left(\left\{s\in\Omega:\max_{1\le m\le 2^{n+1}}|S_m(s)|>\frac{1}{j}2^n\right\}\right) \le 2Mj^2\frac{2^n}{4^n} = 2Mj^2\frac{1}{2^n}.$$

Therefore,

$$\sum_{n=m^*}^{\infty} P\left(\left\{s \in \Omega : M_n(s) > \frac{1}{j}\right\}\right) \le 2Mj^2 \sum_{n=m^*}^{\infty} \frac{1}{2^n} < \varepsilon' \text{ (for a sufficiently large } m^*\text{)}.$$

Let $\bar{m}(j, \varepsilon') = 2^{m^*}$ for this sufficiently large m^* . By definition,

$$\left\{s \in \Omega: \forall_{m \ge \bar{m}(j,\varepsilon')} \quad |Y_m(s)| \le \frac{1}{j}\right\}^c \subseteq \bigcup_{n=m^*}^{\infty} \left\{s \in \Omega: M_n(s) > \frac{1}{j}\right\}.$$

Hence,

$$P\left(\left\{s\in\Omega:\forall_{m\geq\bar{m}(j,\varepsilon')} \mid |Y_m(s)|\leq\frac{1}{j}\right\}\right)>1-\varepsilon'.$$

Proof of Proposition 2 Let

$$Z_t(s) = \log\left(\frac{h^{f_\delta}(s_t)}{h^f(s_t)}\right), \ s_t = s \mid t.$$

Then, for some $\eta > 0$ and for some M > 0,

$$E^{P^{f}} \{ Z_{t} \mid \mathfrak{S}_{t-1} \} < -\eta \text{ and } VAR^{P^{f}} \{ Z_{t} \mid \mathfrak{S}_{t-1} \} < M.$$

The first inequality (on conditional expectation) follows directly from Smorodinsky (1971), Lemma 4.5, page 20, and Lehrer and Smorodinsky (1996), Lemma 2. The second inequality (on conditional variance) follows directly from the fact that $h^{f_{\delta}}(s_t) \in [\delta, 1 - \delta]$ and the fact that the functions -plog(p) and $p(log(p))^2$ are bounded on [0, 1]. Let $X_i = Z_i - E^{P^f} \{Z_i \mid \Im_{i-1}\}$. Let $j \in N$ be a natural number such that $\frac{1}{j} < \frac{\eta}{4}$. Let $\overline{m}(j, \varepsilon)$ be defined as in Lemma 4. The test T is defined by

$$C(s_m) \subseteq T(f)$$
 if $\sum_{k=1}^m Z_k(s) > -m\frac{\eta}{2}$ whenever $m \ge \bar{m}(j,\varepsilon)$ and $s_m = s \mid m$.

Note that

$$\left\{s \in \Omega: \forall_{m \ge \bar{m}(j,\varepsilon)} \quad \left|\frac{1}{m} \sum_{k=1}^{m} \left(Z_k(s) - E^{P^f} \left\{Z_k \mid \mathfrak{S}_{k-1}\right\}(s)\right)\right| \le \frac{1}{j}\right\} \subseteq \left(T(f)\right)^c$$

because

$$\frac{1}{m} \sum_{k=1}^{m} Z_k(s) \le \frac{1}{j} - \eta < -\frac{\eta}{2}$$

implies

$$\sum_{k=1}^m Z_k(s) < -t\frac{\eta}{2}.$$

By Lemma 4,

$$P^f\left(\left(T(f)\right)^c\right) > 1 - \varepsilon.$$

Hence, the test T does not reject the truth with probability $1-\varepsilon$. By definition, the test T does not use future predictions (in fact, whether the test T rejects a theory or not at s_t depends only on the forecasts $f(s_k)$, $s_k = s_t \mid k, k < t$). Finally, notice that

$$\sum_{k=1}^{t} Z_k(s) = \log\left(\frac{P^{f_\delta}(s_t)}{P^f(s_t)}\right), \ s_t = s \mid t.$$

Hence, if $s \notin T(f)$ then

$$\log\left(\frac{P^{f_{\delta}}(s_t)}{P^f(s_t)}\right) \xrightarrow[t \to \infty]{} -\infty$$

which implies that $s \notin R(f)$.

Proof of Proposition 3 Let

$$X_t^i(s) = [f(s_{t-1}) - J_t(s_t)]\mathcal{I}_{t-1}^i, \ s_t = s \mid t,$$

and

$$S_m^i := \sum_{t=1}^m X_t^i \text{ and } Y_m^i := \frac{S_m^i}{m}.$$

Let now $\varepsilon_{j,i}$, $(j,i) \in \mathbb{N}^2$, be such that $\varepsilon_{j,i} > 0$ and

$$\sum_{i=1}^{\infty}\sum_{j=1}^{\infty}\varepsilon_{j,i}<\varepsilon.$$

Given that $E^{P_f} \{ X_t^i \mid \mathfrak{S}_{t-1} \} = 0 \}$ and $VAR^P \{ X_i \mid \mathfrak{S}_{i-1} \}$ are uniformly bounded, let $\overline{m}(j, \varepsilon_{j,k})$ be defined as in Lemma 4. The test T' is defined by

$$C(s_m) \subseteq T'(f)$$
 if $|Y_m^i(s)| > \frac{1}{j}$ whenever $m \ge \bar{m}(j, \varepsilon_{j,i})$.

By Lemma 4,

$$\sum_{i=1}^{\infty} \sum_{j=1}^{\infty} P^f\left(\left\{s \in \Omega : \left|Y_m^i(s)\right| > \frac{1}{j} \text{ for some } m \ge \bar{m}(j, \varepsilon_{j,i})\right\}\right) < \varepsilon.$$

So,

$$P^f\left(\left(T'(f)\right)^c\right) > 1 - \varepsilon.$$

Hence, T' does not reject the truth with probability $1 - \varepsilon$. By definition, the test T does not use future predictions. Finally, notice that $s \notin T'(f)$ implies

$$|Y_m^i(s)| \leq \frac{1}{j}$$
 for all $m \geq \bar{m}(j, \varepsilon_{j,i})$ and $(j, i) \in N^2$.

Hence, for all $i \in N, |Y_m^i(s)| \xrightarrow[m \to \infty]{} 0.$

References

- [1] Al-Najjar, N. and J. Weinstein (2006) "Comparative Testing of Experts," mimeo.
- [2] Bewley, T. (1986) "Knightian Decision Theory, Part 1," Cowles Foundation, Yale University.
- [3] Casadesus-Masanell, R., P. Klibanoff, and E. Ozdenoren (2000), "Maxmin Expected Utility over Savage Acts with a Set of Priors," *Journal of Economic Theory* 92, 35-65.
- [4] Cesa-Bianchi, N. and G. Lugosi (2006): *Prediction, Learning and Games,* Cambridge University Press.

- [5] Crawford, V. and J. Sobel (1982) "Strategic Information Transmission," *Econometrica*, 50, 1431—1452.
- [6] Dekel, E. and Y. Feinberg (2006) "Non-Bayesian Testing of a Stochastic Prediction," *Review of Economic Studies*, **73**, 893 906.
- [7] Dow, J. and G. Gorton (1997) "Noise Trading, Delegated Portfolio Management, and Economics Welfare," *Journal of Political Economy*, **105**, 1024-1050.
- [8] Dudley, R.M. (1989), *Real Analysis and Probability*, Wadsworth Inc., Belmont, California.
- [9] Ehrbeck, T. and R. Waldmann (1996) "Why Are Professional Forecasters Biased? Agency versus Behavioral Explanations," *Quarterly Journal of Economics*, **111**, 21-40.
- [10] Ellsberg, D. (1961) "Risk, Ambiguity, and the Savage Axioms," *Quarterly Journal of Economics*, **75**, 643-669.
- [11] Epstein, L. (1999) "A Definition of Uncertainty Aversion," The Review of Economic Studies, 66, 579-608.
- [12] Fan, K. (1953) "Minimax Theorems," Proceedings of the National Academy of Science U.S.A., 39, 42-47.
- [13] Feinberg, Y. and C. Stewart (2006) "Testing Multiple Forecasters," mimeo.
- [14] Fogel, R. (1967) "The Specification Problem in Economic History," Journal of Economic History, 27, 283-308.
- [15] Fortnow, L. and R. Vohra (2006) "The complexity of Forecast Testing," mimeo.
- [16] Foster, D. and R. Vohra (1998) "Asymptotic Calibration," Biometrika, 85, 379-390.
- [17] Fudenberg, D. and D. Levine (1999) "An Easier Way to Calibrate," Games and Economic Behavior, 29, 131-137.
- [18] Gilboa, I. (1987) "Expected Utility with Purely Subjective Non-Additive Probabilities," Journal of Mathematical Economics, 16, 65-88.

- [19] Ghirardato, P., F.Maccheroni, and M. Marinacci (2004) "Differentiating Ambiguity and Ambiguity Attitude," *Journal of Economic Theory*, **118**, 133– 173.
- [20] Gilboa, I. and D. Schmeidler (1989) "Maxmin Expected Utility with A Non-Unique Prior," Journal of Mathematical Economics, 18, 141–153.
- [21] Keane, M. and D. Runkle (1990) "Testing the Rationality of Price Forecasts: New Evidence from Panel Data," *American Economic Review*, **80**, 714-735.
- [22] Keane, M. and D. Runkle (1998) "Are Financial Analysts' Forecasts of Corporate Profits Rational?" Journal of Political Economy, 106, 768-805.
- [23] Klibanoff, P., M. Marinacci, and S. Mukerji (2005), "A Smooth Model of Decision Making under Ambiguity," *Econometrica*, 73, 1849-1892.
- [24] Knight, F. (1921): Risk, Uncertainty and Profit, Houghton Mifflin, Boston.
- [25] Laster, D., P. Bennett, and I. Geoum (1999) "Rational Bias in Macroeconomic Forecasts," *Quarterly Journal of Economics*, **114**, 293-318.
- [26] Lehrer, E. (2001) "Any Inspection Rule is Manipulable," Econometrica 69, 1333-1347.
- [27] Lehrer, E. and R. Smorodinsky (1996) "Compatible Measures and Merging," Mathematics of Operations Research, 21, 697-706.
- [28] LeRoy, S. and L. Singell (1987) "Knight on Risk and Uncertainty," Journal of Political Economy, 95, 394-406.
- [29] Lowell, M. (1986) "Tests of the Rational Expectations Hypothesis," American Economic Review, 76, 110-154.
- [30] Maccheroni, F., M. Marinacci, and A. Rustichini (2006), "Ambiguity Aversion, Robustness, and the Variational Representation of Preferences", *Econometrica*, 74, 1447–1498.
- [31] Medvec, V., S. Madey, and T. Gilovich (1995) "When Less is More: Counterfactual Thinking and Satisfaction among Olympic Medalists," *Journal of Personality and Social Psychology*, 69, 603-610.

- [32] McAfee, P. (1983) "American Economic Growth and the Voyage of Columbus," American Economic Review, 73, 735-739.
- [33] Morgan, J. and P. Stocken (2003) "An Analysis of Stock Recommendations," RAND Journal of Economics, 34, 380-391.
- [34] Olszewski W. (2007) "Preferences over Sets of Lotteries," Review of Economic Studies, 74, 567–595.
- [35] Olszewski W. and A. Sandroni (2007a) "Contracts and Uncertainty," Theoretical Economics, 2, 1-13.
- [36] Olszewski, W. and A. Sandroni (2007b) "A NonManipulable Test," mimeo.
- [37] Olszewski, W. and A. Sandroni (2007c) "Strategic Manipulation of Empirical Tests," mimeo.
- [38] Pigou, A. (1927): Industrial Fluctuations, McMillam, London.
- [39] Rudin, W. (1973), Functional Analysis, McGraw-Hill, Inc.
- [40] Savage, L. (1954): The Foundations of Statistics, Wiley, New York.
- [41] Schmeidler, D. (1989) "Subjective Probability and Expected Utility Without Additivity," *Econometrica*, **57**, 571–587.
- [42] Siniscalchi, M. (2006) "A Behavioral Characterization of Plausible Priors," Journal of Economic Theory 128, 91-135.
- [43] Sørensen, P. and M. Ottaviani (2006) "The Strategy of Professional Forecasting," Journal of Financial Economics, 81, 441-466.
- [44] Shiryaev A. (1996): *Probability*, Springer Verlag, New York Inc.
- [45] Sandroni A. (2003) "The Reproducible Properties of Correct Forecasts," International Journal of Game Theory, 32, 151-159.
- [46] Smorodinsky, M. (1971): Ergodic Theory, Entropy, Lecture Notes in Mathematics, Springer-Verlag.
- [47] Trueman, B. (1988) "A Theory of Noise Trading in Securities Markets," Journal of Finance, 18, 83-95.

- [48] Vovk, V. and G. Shafer (2005) "Good Randomized Sequential Probability Forecasting is Always Possible," *Journal of the Royal Statistical Society Series* B, 67, 747 - 763.
- [49] Wakker, P. (1989) "Continuous subjective expected utility with non-additive probabilities," *Journal of Mathematical Economics* 18, 1-27.