
Micro II Final Exam: Solutions

Question 1

By definition x � y ⇐⇒ (x % y)∧¬(y % x) so ⇒ is evident. It is left to show that ¬(y % x)⇒ (x % y)
which by definition ((A ⇒ B) ⇐⇒ (¬A ∨ B)) is equivalent to (y % x) ∨ (x % y); but this is true by
definition (comleteness) in weak order.

Question 2

Bob being more risk averse than Ann. By definition we have that for all prospects x and for all outcomes
α, if α ∼A x⇒ α %B x. This is equivalent to CEB(x) < CEA(x), so we just take CEB(x) < p < CEA(x)
and apply definitions.

Question 3

a. In the simultaneous game there are 2 Nash equilibria in pure actions, (Opera,Opera) and (Game,Game)
and one in mixed actions ((αr(Opera) = 2/3, αr(Game) = 1/3), (αc(Opera) = 1/3, αc(Game) =
2/3)).

b. In the extensive form game with perfect information where the row player (r) moves first, the column
player (c) has two information sets: one coinciding with the node reached after r playing Opera
(hOperac ) and the other coinciding with the node reached after player r playing Game (hGamec ). A
strategy for c player is thus a vector of two elements specifying the prescribed action at each infor-
mation set. Moreover notice that the game has three subgames: one that is the game itself and two
that are the sub games originating respectively in the two information sets of player c. Optimality
in those two sub games requires that c player chooses Opera in (hOperac ) and Game in (hGamec ). The
unique SPE of the game is thus (Opera, (Opera in (hOperac ), Game in (hGamec ))).

c. We begin noticing that the SPE found before is also Nash by construction. Moreover we can find two
additional Nash equilibria in pure strategies which are not SPE: (Opera, (Opera in (hOperac ), Opera in (hGamec )))
and (Game, (Game in (hOperac ), Game in (hGamec ))). There are also many Nash Equilibria in mixed
strategies: they all have in common the fact that player c assigns 0 probability to the strictly domi-
nated pure strategy (Game,Opera). The following sets are all NE in mixed strategies:

- all the mixed strategy profiles where r plays Opera with probability 1 and c plays any mixture
between pure strategies (Opera,Game) and (Opera,Opera).

- all the mixed strategy profiles where r plays Game with probability 1 and c plays a mixture
between (Opera,Game) and (Game,Game) that assigns a probability smaller or equal to 1/2
to (Opera,Game).

Question 4

a. The mixed Nash equilibria of the simultaneous move game in strategic form are given by the following
set of mixed actions’ profiles

MN := {(αLR, αSR) ∈ ∆({+1,−1})×∆({Out, In}) : αLR(+1) ∈ [0, 1/2] and αSR(Out) = 1}
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Note that the set MN contains the unique Nash equilibrium (−1, Out) in pure actions which gives
the LR player a VNM utility equal to 0. The minmax payoff for the LR player is also 0.

b. The pure Stackelberg equilibrium of the extensive game where the LR player moves first is the action
profile (+1, In) that gives a VNM utility of 1 to LR.

c. As seen in class, we characterize the set of PPE in terms of the lowest and the highest VNM utility for
the LR player, v1 and v̄1 respecttively. Given that the static Nash payoff (0) is equal to the minmax
payoff (see point a.), v1 = 0.

In order to determine v̄1 we have to find the worst in the support (WIS):

αLR(+1) BR2 WIS
0 Out 0

∈ (0, 1/2) Out 0
1/2 any mixture of Out and In ≤ 1

∈ (1/2, 1) In 1
1 In 1

We conclude that v̄1=1 (the highest WIS) that is equal to the pure Stackelberg payoff.

The minimum value of δ that sustains the pure Stackelberg equilibrium (+1, In) is such that the LR
player does not want to deviate from it. In the incentive constraint we have to consider the most
tempting deviation for LR, which is −1, and set the continuation payoff equal to the worst dynamic
equilibrium payoff (Static Nash payoff (SN)), which is 0.

=1︷︸︸︷
v̄1 = (1− δ)

=2︷ ︸︸ ︷
u1(−1, In) +δwLR(−1)

=⇒ wLR(−1) =
1− (1− δ)2

δ
= SN (= 0)

=⇒ δ = 1/2

For any discount factor greater or equal than 1/2 the LR player has the incentives to sustain the best
dynamic equilibrium and the set of PPE payoffs is the closed interval [0, 1].

d. In this case there we have a situation of imperfect public monitoring: the action of LR is not perfectly
observed by SR players that observes noisy signals. Let us call the signals y+ and y−. The good signal
y+ is observed with probability (1− ε) if the LR player plays +1 while it is observer with probability
ε if the LR player plays −1. Following the notation introduced in class we write the probability of
the observed outcome (signal) as a function of the action profile as

ρ(y+|a) =

{
1− ε if a1 = +1
ε if a1 = −1

ρ(y−|a) =

{
ε if a1 = +1
1− ε if a1 = −1

We want to find the best equilibrium payoff v̄1ε for LR in this environment. First we notice that it
has to be that v̄1ε ∈ [v1, v̄1] = [0, 1]. Second, we know by public perfect randomization that the set of
equilibrium payoffs will be a compact set (closed line interval [v1ε , v̄

1
ε ]). In particular the lower bound

will still be 0: this payoff is clearly enforceable through the repetition of the static Nash.

Let us now define the continuation payoff as function of the signals

w : {y+, y−} → [0, v̄1ε ]

Looking for the best equilibrium payoff we have to enforce (+1, In).

v̄1ε = (1− δ)
=1︷ ︸︸ ︷

u1(+1, In) +δ[(1− ε)w(y+) + εw(y−)] (1)
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In order to do this the continuations have to satisfy the following dynamic incentive constraint

(1− δ)1 + δ[(1− ε)w(y+) + εw(y−)] ≥ (1− δ)
=2︷ ︸︸ ︷

u1(−1, In) +δ[εw(y+) + (1− ε)w(y−)]

Rearranging we get

w(y+) ≥ w(y−) +
1− δ

δ(1− 2ε)
(2)

Notice that the continuation payoff difference shrinks as δ increases (as the temptation of current
deviation diminishes) and as ε decreases (as the observed outcome becomes more responsive to actual
play). Given imperfect monitoring, we have to choose the highest possible reward for LR when there
is a big probability that she did good, i.e. we have to impose

w(y+) = v̄1ε (3)

But we also have to choose the highest possible continuation when the bad signal is observed but still
there is some probability that LR played +1, i.e. we have to choose the smallest punishment. In
order to do this we impose (2) holding as an equality.

Combining (1), (2) holding as an equality and (3) we get

v̄1ε = 1− ε

1− 2ε

This is the highest payoff that we can get for δ high enough.

Notice that v̄1ε ≤ v̄1: this is the inefficiency due to moral hazard.

Moreover v̄1ε ≥ v1 ⇐⇒ ε ≤ 1/3. For ε ≥ 1/3 the only enforceable equilibrium is the static Nash.
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