Discrete Dynamic Programming Notes

David K. Levine March 11, 1998

We consider a decision problem taking place over time. In each time period, the single player can take an action by $\alpha \in A$, an action space. All information relevant to the future is incorporated in a state variable $y \in Y$, the state space. The dynamics of *y* are determined by a transition probability $\pi(y'|y,\alpha)$. We define the set of states reachable with some probability under some circumstances from a given state *y* as

$$S(y) \equiv \left\{ y' \middle| \exists \alpha \ \pi(y' \middle| y, \alpha) > 0 \right\}.$$

We assume

(1) A is a compact subset of a finite dimensional space.

(2) Y is countable

(3) $\pi(y'|y,\alpha)$ is continuous in α

(4) S(y) is finite

There are two main cases of interest

CASE 1: Y, A are finite

CASE 2: *Y* is a tree; only immediate successors have positive probability.

Preferences for this decision problem are given by a period utility $u(\alpha, y)$ and are additively separable over time (and states of nature) with discount factor $0 \le \delta < 1$. We assume

(5) *u* is bounded by \overline{u} and continuous in α

Definitions

We denote finite histories by $h = (y_1, y_2, ..., y_t)$. For any given history, we may recover the length of the history t(h) = t, the final state in the history $y(h) = y_t$, the history through the previous period $h - 1 = (y_1, y_2, ..., y_{t-1})$, and the initial state $y_1(h)$. Histories are naturally ordered according to whether or not a history can logically follow from one another. We write $h' \ge h$. We say that a history is feasible if $y_\tau \in S(y_{\tau-1})$; the set of histories that is not feasible has probability zero. We denote by H the space of all feasible finite histories. Since we have assumed S(y) finite, it follows that H is countable. The object of choice is a strategy which is a map from histories to actions $\sigma: H \to A$. We denote by Σ the space of all strategies. A strategy is called *strong Markov* if $\sigma(h) = \sigma(h')$ if y(h) = y(h'); that is actions are determined entirely by the state. Any strong Markov strategy is equivalent to a map

$$\sigma: Y \to A$$

Given a strategy we can define the probabilities of histories by

$$\pi(h|y_1, \sigma) \equiv \begin{cases} \pi(y(h)|y(h-1), \sigma(h-1))\pi(h-1|y_1, \sigma) & t(h) > 1 \\ 1 & t(h) = 1 \text{ and } y_1(h) = y_1 \\ 0 & t(h) = 1 \text{ and } y_1(h) \neq y_1 \end{cases}$$

We may also for any given initial state and strategy compute the expected average present value utility

$$V(y_1, \sigma) \equiv (1-\delta) \sum_{h \in H} \delta^{t(h)-1} u(\sigma(h), y(h)) \pi(h | y_1, \sigma) .$$

The Dynamic Programming Problem

The problem which we call (*) is to maximize $V(y_1, \sigma)$ subject to $\sigma \in \Sigma$. A (not the) *value function* is any map $v: Y \to \Re$ bounded by \overline{u} .

Essential to the study of dynamic programming are two infinite dimensional objects: strategies and value functions. These naturally lie in two different spaces. Strategies naturally lie in \Re^{∞} the space of infinite sequences of numbers with the product topology. Value functions naturally lie in ℓ_{∞} the space of bounded functions in the *sup* norm.

From the fact that the space of strategies is compact and utility continuous, it follows that

Lemma 1: a solution to (*) exists

This enables us to define the value function

$$v(y_1) \equiv \max_{\sigma \in \Sigma} V(y_1, \sigma)$$

The Bellman equation

We define a map $T: \ell_{\infty} \to \ell_{\infty}$ by w'=T(w) if

$$w'(y_1) = \max_{\alpha \in A} (1-\delta)u(\alpha, y_1) + \delta \sum_{y'_1 \in S(y_1)} \pi(y'_1 | y_1, \alpha)w(y'_1).$$

We refer to the operator *T* as the Bellman operator.

Lemma 2: the value function is a fixed point of the Bellman equation T(v) = v

Lemma 3: the Bellman equation is a contraction mapping $||T(w) - T(w')|| \le \delta ||w - w'||$

Corollary: the Bellman equation has a unique solution

<u>Conclusion 1</u>: the unique solution to the Bellman equation is the value function

Lemma 4: there is a strong Markov optimum that may be found from the Bellman equation

proof: We define the strong Markov plan in the obvious way, show recursively that it yields a present value equal to the value function

$$\begin{aligned} v(y_1(h)) &= \\ (1-\delta) \sum_{t(h) < T} \delta^{t(h)-1} \pi(h | y_1(h), \sigma) u(\sigma(h), y(h)) + \\ (1-\delta) \sum_{t(h) = T} \delta^T \pi(h | y_1(h), \sigma) v(h) \end{aligned}$$

© This document is copyrighted by the author. You may freely reproduce and distribute it electronically or in print, provided it is distributed in its entirety, including this copyright notice. Source: <u>\DOCS\Annual\98\CLASS\GRAD\DYNPROG</u> <u>DOCUMENT.DOC</u>