Copyright (C) 2003 David K. Levine

This document is an open textbook; you can redistribute it and/or modify it under the terms of version 1 of the open text license amendment to version 2 of the GNU General Public License. The open text license amendment is published by Michele Boldrin et al at http://levine.sscnet.ucla.edu/general/gpl.htm; the GPL is published by the Free Software Foundation at http://www.gnu.org/copyleft/gpl.html.

Long Run versus Short Run Player

a fixed simultaneous move stage game

Player 1 is long-run with discount factor δ
actions $a^{1} \in A^{1}$ a finite set
utility $u^{1}\left(a^{1}, a^{2}\right)$

Player 2 is short-run with discount factor 0
actions $a^{2} \in A^{2}$ a finite set
utility $u^{2}\left(a^{1}, a^{2}\right)$
the "short-run" player may be viewed as a kind of "representative" of many "small" long-run players

- the "usual" case in macroeconomic/political economy models
- the "long run" player is the government
- the "short-run" player is a representative individual

Example 1: Peasant-Dictator

Example 2: Backus-Driffil

	Low	High
Low	0,0	$-2,-1$
High	$1,-1$	$-1,0$

Inflation Game: LR=government, SR=consumers consumer preferences are whether or not they guess right

Low
High
High

0,0	$0,-1$
$-1,-1$	$-1,0$

with a hard-nosed government

Repeated Game

history $h_{t}=\left(a_{1}, a_{2}, \ldots, a_{t}\right)$
null history h_{0}
behavior strategies $\alpha_{t}^{i}=\sigma^{i}\left(h_{t-1}\right)$
long run player preferences
average discounted utility
$(1-\delta) \sum_{t=1}^{T} \delta^{t-1} u^{i}\left(a_{t}\right)$
note that average present value of 1 unit of utility per period is 1

Equilibrium

Nash equilibrium: usual definition - cannot gain by deviating
Subgame perfect equilibrium: usual definition, Nash after each history
Observation: the repeated static equilibrium of the stage game is a subgame perfect equilibrium of the finitely or infinitely repeated game

- strategies: play the static equilibrium strategy no matter what

"perfect equilibrium with public randomization"

may use a public randomization device at the beginning of each period to pick an equilibrium
key implication: set of equilibrium payoffs is convex

Example: Peasant-Dictator

normal form: unique Nash equilibrium high, eat

	eat
low	grow
high	$0^{*}, 1$
$0^{*}, 1^{*}$	$1,2^{*}$

payoff at static Nash equilibrium to LR player: 0

precommitment or Stackelberg equilibrium
precommit to low get 1
mixed precommitment to $50-50$ get 2
minmax payoff to LR player: 0
utility to long-run player
mixed precommitment/Stackelberg $=2$
best dynamic equilibrium = ?
pure precommitment/Stackelberg = 1
Set of dynamic equilibria
static Nash $=0$
worst dynamic equilibrium = ?
$-\operatorname{minmax}=0$

Repeated Peasant-Dictator

finitely repeated game
final period: high, eat, so same in every period
Do you believe this??

Infinitely repeated game
begin by low, grow
if low, grow has been played in every previous period then play low, grow
otherwise play high, eat (reversion to static Nash)
claim: this is subgame perfect
clearly a Nash equilibrium following a history with high or eat SR play is clearly optimal
for LR player
may high and get $(1-\delta) 3+\delta 0$
or low and get 1
so condition for subgame perfection

$$
\begin{aligned}
& (1-\delta) 3 \leq 1 \\
& \delta \geq 2 / 3
\end{aligned}
$$

equilibrium utility for LR

General Deterministic Case (Fudenberg, Kreps and Maskin)

$+\max u^{1}(a)$
mixed precommitment/Stackelberg
\bar{v}^{1} best dynamic equilibrium
pure precommitment/Stackelberg
Set of dynamic equilibria
static Nash
v^{1} worst dynamic equilibrium
minmax
$-\min u^{1}(a)$

Characterization of Equilibrium Payoff

$\alpha=\left(\alpha^{1}, \alpha^{2}\right)$ where α^{2} is a b.r. to α^{1}
α represent play in the first period of the equilibrium
$w^{1}\left(a^{1}\right)$ represents the equilibrium payoff beginning in the next period
$v^{1} \geq(1-\delta) u^{1}\left(a^{1}, \alpha^{2}\right)+\delta w^{1}\left(a^{1}\right)$
$v^{1}=(1-\delta) u^{1}\left(a^{1}, \alpha^{2}\right)+\delta w^{1}\left(a^{1}\right), \alpha^{1}\left(a^{1}\right)>0$
$v^{1} \leq w^{1}\left(a^{1}\right) \leq \bar{v}^{1}$
strategy: impose stronger constraint using n static Nash payoff
for best equilibrium $n \leq w^{1}\left(a^{1}\right) \leq \bar{v}^{1}$
for worst equilibrium $\underline{v}^{1} \leq w^{1}\left(a^{1}\right) \leq n$
avoids problem of best depending on worst
remark: if we have static Nash = minmax then no computation is needed for the worst, and the best calculation is exact.

max problem

fix $\alpha=\left(\alpha^{1}, \alpha^{2}\right)$ where α^{2} is a b.r. to α^{1}
$\bar{v}^{1} \geq(1-\delta) u^{1}\left(a^{1}, \alpha^{2}\right)+\delta w^{1}\left(a^{1}\right)$
$\bar{v}^{1}=(1-\delta) u^{1}\left(a^{1}, \alpha^{2}\right)+\delta w^{1}\left(a^{1}\right), \alpha^{1}\left(a^{1}\right)>0$
$n^{1} \leq w^{1}\left(a^{1}\right) \leq \bar{v}^{1}$
how big can $w^{1}\left(a^{1}\right)$ be in = case?

Biggest when $u^{1}\left(a^{1}, \alpha^{1}\right)$ is smallest, in which case
$w^{1}\left(a^{1}\right)=\bar{v}^{1}$
$\bar{v}^{1}=(1-\delta) u^{1}\left(a^{1}, \alpha^{2}\right)+\delta \bar{v}^{1}$
conclusion for fixed α
$\min _{a^{1} \mid \alpha\left(a^{1}\right)>0} u^{1}\left(a^{1}, \alpha^{2}\right)$
i.e. worst in support
$\bar{v}^{1}=\max _{\alpha^{2} \in B R^{2}\left(\alpha^{1}\right)} \min _{a^{1} \mid \alpha\left(a^{1}\right)>0} u^{1}\left(a^{1}, \alpha^{2}\right)$
observe:
mixed precommitment $\geq \bar{v}^{1} \geq$ pure precommitment

Peasant-Dictator Example

	eat	grow
low	$0^{*}, 1$	$1,2^{*}$
high	$3^{\star}, 0$	
$0^{*}, 1^{*}$		

$p($ low $)$	BR	worst in support
1	grow	1
$1 / 2<p<1$	grow	1
$\mathrm{p}=1 / 2$	any mixture	≤ 1 (low)
$0<p<1 / 2$	eat	0
$\mathrm{p}=0$	eat	0

check: $w^{1}\left(a^{1}\right)=\frac{\bar{v}^{1}-(1-\delta) u^{1}\left(a^{1}, \alpha^{2}\right)}{\delta} \geq n^{1}$ as $\delta \rightarrow 1$ then $w^{1}\left(a^{1}\right) \rightarrow \bar{v}^{1} \geq n^{1}$

min problem

fix $\alpha=\left(\alpha^{1}, \alpha^{2}\right)$ where α^{2} is a b.r. to α^{1}
$\underline{v}^{1} \geq(1-\delta) u^{1}\left(a^{1}, \alpha^{2}\right)+\delta w^{1}\left(a^{1}\right)$
$\underline{v}^{1} \leq w^{1}\left(a^{1}\right) \leq n^{1}$

Biggest $u^{1}\left(a^{1}, \alpha^{1}\right)$ must have smallest $w^{1}\left(a^{1}\right)=\underline{v}^{1}$
$\underline{v}^{1}=(1-\delta) u^{1}\left(a^{1}, \alpha^{2}\right)+\delta \underline{v}^{1}$
conclusion
$\underline{v}^{1}=\max u^{1}\left(a^{1}, \alpha^{2}\right)$
or
$\underline{v}^{1}=\min _{\alpha^{2} \in B R^{2}\left(\alpha^{1}\right)} \max u^{1}\left(a^{1}, \alpha^{2}\right)$
that is, constrained minmax

Example

	L	M	R
U	$0,-3$	1,2	0,3
D	$0,3^{*}$	2,2	0,0

static Nash gives 0
minmax gives 0
worst payoff in fact is 0
pure precommitment also 0

mixed precommitment

p is probability of up
to get more than 0 must get SR to play M
$-3 p+(1-p) 3 \leq 2$ and $3 p \leq 2$
first one
$-3 p+(1-p) 3 \leq 2$
$-3 p-3 p \leq-1$
$p \geq 1 / 6$
second one
$3 p \leq 2$
$p \leq 2 / 3$
want to play D so take $p=1 / 6$
get $1 / 6+10 / 6=11 / 6$
utility to long-run player
$+\max u^{1}(a)=2$
mixed precommitment/Stackelberg=11/16
\bar{v}^{1} best dynamic equilibrium=1
pure precommitment/Stackelberg=0
Set of dynamic equilibria
static Nash=0
\underline{v}^{1} worst dynamic equilibrium $=0$
minmax=0
$\min u^{1}(a)=0$
calculation of best dynamic equilibrium payoff
p is probability of up

p	BR ${ }^{2}$	worst in support
$<1 / 6$	L	0
$1 / 6<p<5 / 6$	M	1
p $>5 / 6$	R	0

so best dynamic payoff is 1

Moral Hazard

choose $a^{i} \in A$
observe $y \in Y$
$\rho(y \mid a)$ probability of outcome given action profile
private history: $h^{i}=\left(a_{1}^{i}, a_{2}^{i}, \ldots\right)$
public history: $h=\left(y_{1}, y_{2}, \ldots\right)$
strategy $\sigma^{i}\left(h^{i}, h\right) \in \Delta\left(A^{i}\right)$
"public strategies", perfect public equilibrium

Moral Hazard Example

mechanism design problem
each player is endowed with one unit of income
players independently draw marginal utilities of income $\eta \in\{\bar{\eta}, \underline{\eta}\}$
player 2 (SR) has observed marginal utility of income player 1 (LR) has unobserved marginal utility of income
player 2 decides whether or not to participate in an insurance scheme
player 1 must either announce his true marginal utility or he may announce $\bar{\eta}$ independent of his true marginal utility
non-participation: both players get $\gamma=\frac{\bar{\eta}+\underline{\eta}}{2}$
participation: the player with the higher marginal utility of income gets both units of income
normal form
non-participation participate
truth
lie

γ, γ	$\frac{\bar{\eta}+\gamma}{2}, \frac{\bar{\eta}+\gamma}{2}$
γ, γ	$\frac{3 \gamma}{2}, \frac{\bar{\eta}}{2}$

$p^{*}=\frac{\underline{\eta}}{\gamma}$ makes player 2 indifferent

$$
\left\{\begin{array}{l}
\max u^{1}(a)=\frac{3 \gamma}{2} \\
\text { mixed precommitment/Stackelberg }=\frac{\bar{\eta}+\gamma}{2}+\left(1-\frac{\underline{\eta}}{\gamma}\right) \underline{\underline{\eta}} 2 \\
\bar{v}^{1} \text { best dynamic equilibrium }=\frac{\bar{\eta}+\gamma}{2} \\
\text { pure precommitment/Stackelberg }=\frac{\bar{\eta}+\gamma}{2} \\
\text { Sequilibria dynamic } \\
\text { static Nash= } \\
-\underline{v}^{1} \text { worst dynamic equilibrium }=\gamma \\
\min ^{2} u^{1}(a)=\gamma, \text { minmax }=\gamma
\end{array}\right.
$$

moral hazard case

player 1 plays "truth" with probability p^{*} or greater player 2 plays "participate"

$$
\begin{aligned}
& \bar{v}=(1-\delta) \frac{\bar{\eta}+\gamma}{2}+\delta\left(\frac{1}{2} w(\underline{\eta})+\frac{1}{2} w(\bar{\eta})\right) \\
& \bar{v} \geq(1-\delta) \frac{3 \gamma}{2}+\delta w(\bar{\eta}) \\
& \bar{v} \geq w(\underline{\eta}), w(\bar{\eta})
\end{aligned}
$$

$w(\bar{\eta})$ must be as large as possible, so inequality must bind; $w(\eta)=\bar{v}$

$$
\bar{v}=(1-\delta) \frac{3 \gamma}{2}+\delta w(\bar{\eta})
$$

solve two equations

$$
\begin{aligned}
& \bar{v}=\bar{\eta}-\frac{\gamma}{2} \\
& w(\bar{\eta})=\frac{\bar{v}-(1-\delta) 3 \gamma / 2}{\delta}
\end{aligned}
$$

check that $w(\bar{\eta}) \geq \gamma$
leads to $\delta \geq 2\left(2-\frac{\bar{\eta}}{\gamma}\right)$
from $\delta<1$ this implies
$\bar{\eta}>3 \underline{\eta}$

