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Abstract

This entry in The New Palgrave Dictionary of Economics, Second Edi-
tion, provides a brief overview of equilibrium existence results for continuous
and discontinuous non-cooperative games. JEL Classi�cation Number: C7

1. Introduction

Nash equilibrium is the central notion of rational behavior in noncooperative game
theory.1 Our purpose here is to discuss various conditions under which a strategic
form game possesses at least one Nash equilibrium.
Strategic settings arising in economics are often naturally modeled as games

with in�nite strategy spaces. For example, models of price and spatial competi-
tion (Bertrand (1883), Hotelling (1929)), quantity competition (Cournot (1838)),
auctions (Milgrom and Weber (1982)), patent races (Fudenberg et. al. (1983)),
etc., typically allow players to choose any one of a continuum of actions. The
analytic convenience of the continuum from both an equilibrium characterization
and comparative statics point of view is perhaps the central reason for the preva-
lence and usefulness of in�nite-action games. Because of this, our treatment will
permit both �nite-action and in�nite-action games.
Games with possibly in�nite strategy spaces can be divided into two categories:

those with continuous payo¤s and those with discontinuous payo¤s. Cournot
oligopoly models and Bertrand price-competition models with di¤erentiated prod-
ucts, as well as all �nite-action games, are important examples of continuous

1See Osborne (2005) and Osborne and Rubinstien (1994) for a discussion of Nash equilibrium,
including motivation and interpretation.



games, while Bertrand price-competition with homogeneous products, auctions,
and Hotelling spatial competition, are important examples in which payo¤s are
discontinuous. Equilibrium existence results for both continuous and discontinu-
ous games will be reviewed here. We begin with some notation.
A strategic form game, G = (Si; ui)Ni=1; consists of a positive �nite number, N;

of players, and for each player i 2 f1; :::; Ng; a non empty set of pure strategies,
Si; and a payo¤ function ui : S ! R; where S = �Ni=1Si: The notation s�i
and S�i have their conventional meanings: s�i = (s1; :::; si�1; si+1; :::; sN) and
S�i = �j 6=iSj: Throughout, we shall assume that each Si is a subset of some metric
space and that if any �nite number of sets are each endowed with a topology, then
the product of those sets is endowed with the product topology.

2. Continuous Games

2.1. Pure Strategy Nash Equilibria

Pure strategy equilibria are more basic than their mixed strategy counterparts for
at least two reasons. First, pure strategies do not require the players to possess
preferences over lotteries. Second, mixed strategy equilibrium existence results
often follow as corollaries of the pure strategy results. It is therefore natural to
consider �rst the case of pure strategies.

De�nition 2.1. s� 2 S is a pure strategy Nash equilibrium of G = (Si; ui)Ni=1 if
for every player i; ui(s�) � ui(si; s��i) for every si 2 Si:

An important and very useful result is the following.

Theorem 2.2. If each Si is a non empty, compact, convex subset of a metric
space, and each ui(s1; :::; sN) is continuous in (s1; :::; sN) and quasi-concave in si;
then G = (Si; ui)Ni=1 possesses at least one pure strategy Nash equilibrium.

Proof. For each player i; and each s�i 2 S�i; let Bi(s�i) denote the set of maxi-
mizers in Si of ui(�; s�i): The continuity of ui and the compactness of Si ensure that
Bi(s�i) is non empty and also ensure, given the compactness of S�i; that the cor-
respondence, Bi : S�i � Si is upper hemicontinuous. The quasiconcavity of ui in
si implies that Bi(s�i) is convex. Consequently, each Bi is upper hemicontinuous,
non empty-valued and convex-valued. All three of these properties are therefore
inherited by the correspondence B : S � S de�ned by B(s) = �Ni=1Bi(s�i) for
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each s 2 S: Consequently, we may apply Glicksberg�s (1952) �xed point theorem
to B and conclude that there exists ŝ 2 S such that ŝ 2 B(ŝ): This ŝ is therefore
a pure strategy Nash equilibrium. Q.E.D.

Remark 1. The theorem remains valid when �metric space�is replaced by �lo-
cally convex Hausdor¤ topological vector space.�

Remark 2. The convexity property of strategy sets and the quasiconcavity of
payo¤s in own action cannot be dispensed with. For example, strategy sets are
not convex in matching pennies, and even though the continuity and compactness
assumptions hold there, no pure strategy equilibrium exists. On the other hand,
in the two-person zero-sum game in which both players� compact convex pure
strategy set is [�1; 1] and player 1�s payo¤ function is u1(s1; s2) = js1 + s2j ; all of
the assumptions of Theorem 2.2 hold except the quasiconcavity of u1 in s1. But
this is enough to preclude the existence of a pure strategy equilibrium because
in any such equilibrium player 2�s payo¤ would have to be zero (given s1; 2 can
choose s2 = �s1) and 1�s payo¤ would have to be positive (given s2; 1 can choose
s1 6= �s2):

Remark 3. More general results for continuous games can be found in Debreu
(1952) and Schafer and Sonnenschein (1975). Existence results for games with
strategic complements on lattices can be found in Milgrom and Roberts (1990)
and Vives (1990).

2.2. Mixed Strategy Nash Equilibria

A mixed strategy for player i is a probability measure, mi; over Si: If Si is �nite,
then mi(si) denotes the probability assigned to si 2 Si by the mixed strategy mi;
and i�s set of mixed strategies is the compact convex subset of Euclidean space
Mi = fmi 2 [0; 1]#Si :

P
si2Simi(si) = 1g:

In general, we shall not require Si to be �nite. Rather, we shall suppose only
that it is a subset of some metric space. In this more general case, a mixed strategy
for player i is a (regular, countably-additive) probability measure, mi; over the
Borel subsets of Si; for any Borel subset A of Si; mi(A) denotes the probability
assigned to A by the mixed strategy mi: Player i�s set of such mixed strategies,
Mi; is then convex. Further, if Si is compact, the convex set Mi is compact in the
weak-� topology.2

2See, e.g. Billingsley (1968).
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Extend ui : S ! R to M = �Ni=1Mi by an expected utility calculation.3

That is, de�ne ui(m1; :::;mN) =
R
S1
:::
R
SN
ui(s1; :::; sN)dm1:::dmN for all m =

(m1; :::;mN) 2 M:4 Finally, let �G = (Mi; ui)
N
i=1 denote the mixed extension of

G = (Si; ui)
N
i=1:

De�nition 2.3. m� 2M is a mixed strategy Nash equilibrium of G = (Si; ui)Ni=1
if m� is a pure strategy Nash equilibrium of the mixed extension, �G; of G. That
is, if for every player i; ui(m�) � ui(mi;m

�
�i) for every mi 2Mi:

Because ui(mi;m�i) is linear, and therefore quasi-concave, inmi 2Mi for each
m�i 2M�i; and because continuity of ui(�) on S implies continuity of ui(�) on M
(in the weak-� topology), Theorem 2.2 applied to the mixed extension of G yields
the following basic mixed strategy Nash equilibrium existence result

Corollary 2.4. If each Si is a non-empty compact subset of a metric space, and
each ui(s) is continuous in s 2 S; then G = (Si; ui)Ni=1 possesses at least one mixed
strategy Nash equilibrium, m� 2M:

Remark 4. Note that Corollary 2.4 does not require ui(si; s�i) to be quasiconcave
in si; nor does it require the Si to be convex.

Remark 5. Corollary 2.4 yields von Neumann�s (1928) classic result for two-
person zero-sum games as well as Nash�s (1950, 1951) seminal result for �nite
games as special cases. To obtain Nash�s result, note that if each Si is �nite, then
each ui is continuous on S in the discrete metric. Hence, the corollary applies and
we conclude that every �nite game possesses at least one mixed strategy Nash
equilibrium.

Remark 6. To see how Theorem 2.2 can be applied to obtain the existence of
mixed strategy equilibria in Bayesian games, see Milgrom and Weber (1985).

3Hence, the ui(s) are assumed to be von Neumann-Morgenstern utilities.
4This is an extension because we view S as a subset of M ; each s 2 S is identi�ed with the

m 2M that assigns probability one to s:
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3. Discontinuous Games

The basic challenge one must overcome in extending equilibrium existence results
from continuous games to discontinuous games is the failure of the best reply
correspondence to satisfy the properties required for application of a �xed point
theorem. For example, in auction or Bertrand price-competition settings, discon-
tinuities in payo¤s sometimes preclude the existence of best replies. The best
reply correspondence then fails to be non empty valued and Glicksberg�s theorem,
for example, cannot be applied.
A natural technique for overcoming such di¢ culties is to approximate the in-

�nite strategy spaces by a sequence of �ner and �ner �nite approximations. Each
of the approximating �nite games is guaranteed to possesses a mixed strategy
equilibrium (by Corollary 2.4) and the resulting sequence of equilibria is guaran-
teed, by compactness, to possesses at least one limit point. Under appropriate
assumptions, the limit point is a Nash equilibrium of the original game. This
technique has been cleverly employed in Dasgupta and Maskin�s (1986) pioneer-
ing work, and also by Simon (1987). However, while this �nite approximation
technique can yield results on the existence of mixed strategy Nash equilibria,
it is unable to produce equally general existence results for pure strategy Nash
equilibria. The reason, of course, is that the approximating games, being �nite,
are guaranteed to possess mixed strategy, but not necessarily pure strategy, Nash
equilibria. Consequently, the sequence of equilibria, and so also the limit point,
cannot be guaranteed to be pure.
One might be tempted to conclude that, unlike the continuous game case where

the mixed strategy result is a special case of the pure strategy result, discontinuous
games require a separate treatment of pure and mixed strategy equilibria. But
such a conclusion would be premature. A connection between pure and mixed
strategy equilibrium existence results similar to that for continuous games can be
obtained for discontinuous games by considering a di¤erent kind of approximation.
Rather than approximating the in�nite strategy spaces by a sequence of �nite
approximations, one can instead approximate the discontinuous payo¤ functions
by a sequence of continuous payo¤functions. This payo¤-approximation technique
is employed in Reny (1999), whose main result we now proceed to describe. All
of the de�nitions, notation, and conventions of the previous sections remain in
e¤ect. In particular, each Si is a subset of some metric space.5

5This is for simplicity of presentation only. The results to follow hold in non metrizable
settings as well. See Reny (1999).
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3.1. Better-Reply Security

De�nition. Player i can secure a payo¤ of � 2 R at s 2 S if there exists �si 2 Si;
such that ui(�si; s0�i) � � for all s0�i close enough to s�i:

Thus, a payo¤ can be secured by i at s if i has a strategy that guarantees at
least that payo¤ even if the other players deviate slightly from s:
A pair (s; u) 2 S � RN is in the closure of the graph of the vector payo¤

function if u 2 RN is the limit of the vector of player payo¤s for some sequence of
strategies converging to s: That is, if u = limn(u1(s

n); :::; uN(s
n)) for some sn ! s:

De�nition. A game G = (Si; ui)
N
i=1 is better-reply secure if whenever (s

�; u�)
is in the closure of the graph of its vector payo¤ function and s� is not a Nash
equilibrium, some player i can secure a payo¤ strictly above u�i at s

�:

All games with continuous payo¤ functions are better-reply secure. This is
because if (s�; u�) is in the closure of the graph of the vector payo¤ function of a
continuous game, we must have u� = (u1(s�); :::; uN(s�)): Also, if s� is not a Nash
equilibrium then some player i has a strategy �si such that ui(�si; s��i) > ui(s

�); and
continuity ensures that this inequality is maintained even if the others deviate
slightly from s�. Consequently, player i can secure a payo¤ strictly above u�i =
ui(s

�):
The import of better-reply security is that it is also satis�ed in many discon-

tinuous games. For example, Bertrand�s price-competition game, many auction
games, and many games of timing are better-reply secure.

3.2. Pure Strategy Nash Equilibria

The following theorem provides a pure strategy Nash equilibrium existence result
for discontinuous games.

Theorem 3.1. (Reny (1999)) If each Si is a non empty, compact, convex subset
of a metric space, and each ui(s1; :::; sN) is quasi-concave in si; thenG = (Si; ui)Ni=1
possesses at least one pure strategy Nash equilibrium if in addition G is better-
reply secure.

Remark 7. Theorem 2.2 is a special case of Theorem 3.1 because every contin-
uous game is better-reply secure.
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Remark 8. A classic result due to Sion (1958) states that every two-person
zero-sum game with compact strategy spaces in which player 1�s payo¤ is upper-
semicontinuous and quasi-concave in his own strategy, and lower-semicontinuous
and quasi-convex in the opponent�s strategy has a value and each player has an
optimal pure strategy.6 It is not di¢ cult to show that Sion�s result is a special
case of Theorem 3.1.

Remark 9. A related result that weakens quasi-concavity but adds conditions
to the sum of the players�payo¤s can be found in Baye, Tian, and Zhou (1993).
Dasgupta and Maskin (1986) provide two interesting pure strategy equilibrium
existence results, both of which require each player�s payo¤ function to upper
semicontinuous in the vector of all players�strategies.

3.3. Mixed Strategy Nash Equilibria

One easily obtains from Theorem 3.1 a mixed strategy equilibrium existence result
(the analogue of Corollary 2.4) by treating each Mi as if it were player i�s pure
strategy set and by applying the de�nition of better-reply security to the mixed
extension �G = (Mi; ui) of G: This observation yields the following useful result.

Corollary 3.2. (Reny (1999)) If each Si is a non empty, compact, convex subset
of a metric space, then G = (Si; ui)Ni=1 possesses at least one mixed strategy Nash
equilibrium if in addition its mixed extension, �G = (Mi; ui); is better-reply secure.

Remark 10. Better-reply security of �G neither implies nor is implied by better-
reply security of G:7

Remark 11. Corollary 2.4 is a special case of Corollary 3.2 because continuity of
each ui(s) in s 2 S implies (weak-�) continuity of ui(m) in m 2M; which implies
that the mixed extension, �G; is better-reply secure.

Remark 12. Corollary 3.2 has as special cases the mixed strategy equilibrium ex-
istence results of Dasgupta and Maskin (1986), Simon (1987) and Robson (1994).

6Sion does not actually prove the existence of optimal startegies, but this follows rather
easily from his compactness assumptions and his result that the game has a value, i.e. that
infsup=supinf.

7See Reny (1999) for su¢ cient conditions for better-reply security.
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Remark 13. Theorem 3.1 can similarly be used to obtain a result on the existence
of mixed strategy equilibria in discontinuous Bayesian games by following Milgrom
andWeber�s (1985) seminal distributional strategy approach. One simply replaces
Milgrom and Weber�s payo¤ continuity assumption with the assumption that the
Bayesian game is better-reply secure in distributional strategies. An example of
this technique is provided in the next section.

3.4. An Application to Auctions

Auctions are an important class of economic games in which payo¤s are discon-
tinuous. Furthermore, when bidders are asymmetric, in general one cannot prove
existence of equilibrium by construction, as in the symmetric case. Consequently,
an existence theorem applicable to discontinuous games is called for. Let us very
brie�y sketch how Theorem 3.1 can be applied in this case.
Consider a �rst-price single-object auction with N bidders. Each bidder i

receives a private value vi 2 [0; 1] prior to submitting a sealed bid, bi � 0: Bidder
i�s value is drawn independently according to the continuous and positive density
fi: The highest bidder wins the object and pays his bid. Ties are broken randomly
and equiprobably. Losers pay nothing.
Because payo¤s are not quasiconcave in own bids, one cannot appeal directly

to Theorem 3.1 to establish the existence of an equilibrium in pure strategy bid-
ding functions. On the other hand, it is not di¢ cult to show that all mixed
strategy equilibria are pure and nondecreasing. Hence, to obtain an existence
result for pure strategies, it su¢ ces to show that there is an equilibrium in mixed,
or equivalently in distributional, strategies.8

Because the set of distributional strategies for each bidder is a non-empty
compact convex metric space and each bidder�s payo¤ is linear in his own distrib-
utional strategy, Theorem 3.1 can be applied so long as a �rst-price auction game
in distributional strategies is better-reply secure. Better-reply security can be
shown to hold by using the fact that payo¤ discontinuities occur only when there
are ties in bids and that bidders can always break a tie in their favor by increasing
their bid slightly. Consequently, a Nash equilibrium in distributional strategies
exists and, as mentioned above, this equilibrium is pure and nondecreasing.

8In this context, a distributional strategy for bidder i is a joint probability distribution over
his values and bids with the property that the marginal density over his values is fi (see Milgrom
and Weber (1985)).
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3.5. Endogenous Sharing Rules

Discontinuities in payo¤s sometimes arise endogenously. For example, consider a
political game in which candidates �rst choose a policy from the interval [0,1] and
each voter among a continuum then decides for whom to vote. Voters vote for
the candidate whose policy they most prefer and if there is more than one such
candidate it is conventional to assume that voters randomize equiprobably over
them. The behavior of voters in the second stage can induce discontinuities in the
payo¤s of the candidates in the �rst stage since a candidate can discontinuously
gain or lose a positive fraction of votes by choosing a policy that, instead of being
identical to another candidate�s policy is just slightly di¤erent from it.
An elegant way to handle such discontinuities is suggested by Simon and Zame

(1990). In particular, for the political game example above, they would not insist
that voters, when indi¤erent, randomize equiprobably. Indeed, applying subgame
perfection to the two-stage game would permit voters to randomize in any manner
whatsoever over those candidates whose policies they most prefer. With this in
mind, if s is a joint pure strategy for the N candidates specifying a location for
each, let us denote by U(s) the resulting set of payo¤vectors for the N candidates
when all best replies of the voters are considered. If no voter is indi¤erent, then
U(s) contains a single payo¤ vector. On the other hand, if some voters are indif-
ferent (as would be the case if two or more candidates chose the same location)
and U(s) is not a singleton, then distinct payo¤ vectors in U(s) correspond to
di¤erent ways the indi¤erent voters can randomize between the candidates among
whom they are indi¤erent.
The signi�cance of the correspondence U(�) is this. Suppose that we are able

to select, for each s; a payo¤ vector u(s) 2 U(s) in such a way that some joint
mixed strategy m� for the N candidates is a Nash equilibrium of the induced
policy-choice game between them when their vector payo¤ function is u(�): Then
m� together with the voter behavior that is implicit in the de�nition of u(s) for
each s; constitutes a subgame perfect equilibrium of the original two-stage game.
Thus, solving the original problem with potentially endogenous discontinuities
boils down to obtaining an appropriate selection from U(�): Simon and Zame
(1990) provide a general result concerning the existence of such selections, which
they also refer to as �endogenous sharing rules.�This method therefore provides
an additional tool for obtaining equilibrium existence when discontinuities are
present. Simon and Zame�s main result is as follows.
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Theorem 3.3. (Simon and Zame (1990)) Suppose that each Si is a compact sub-
set of a metric space and that U : S � RN is a bounded, upper hemicontinuous,
non empty-valued, convex-valued correspondence. Then for each player i; there
is a measurable payo¤ function, ui : S ! R; such that (u1(s); :::; uN(s)) 2 U(s)
for every s 2 S and such that the game (Si; ui)Ni=1 possesses at least one mixed
strategy Nash equilibrium.

Remark 14. Theorem 3.3 applies to the political game example above because
for any policy choice s of the N candidates, the resulting set of payo¤ vectors
U(s) is convex, a fact that follows from the presence of a continuum of voters. It
can also be shown that, as a correspondence, U(�) is upper hemicontinuous.

Remark 15. In the context of Bayesian games, an even more subtle endogenous-
sharing-rule result can be found in Jackson, Swinkels, Simon and Zame (2002).
This result too can be very helpful in dealing with discontinuous games. Indeed,
Jackson and Swinkels (2005) have shown how it can be used to obtain equilibrium
existence results in a variety of auction settings, including double auctions.
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