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1. INTRODUCTION

Fudenberg and Levine [1994] (FL) showed that the limit of the set of
perfect public equilibrium payoffs of a repeated game as the discount factor
goes to one can be characterized by the solution of a family of static linear
programming problems. This result has been applied and extended by a
number of subsequent authors, including Kandori and Matsushima [1998],
Dellarocas [2003], and Ely et al [2003].

The FL result requires that the set of payoff vectors obtained by the al-
gorithm should have “full dimension,” that is, the dimension is equal to
the number of long-run players in the game. This paper extends the lin-
ear programming characterization to cases where this “full-dimensionality”
condition fails, either because of the payoff structure of the stage game, or
because of a restriction to equilibrium strategies whose continuation payoffs
are on a lower-dimensional set. We apply our result to three such restrictions
from the literature. The first application is to repeated games with all long-
run players and observed actions, where the feasible payoffs in the stage
game lie in a lower-dimensional set. The linear programming characteriza-
tion allows us to generalize the results of Abreu et al [1994], who assumed
a condition called NEU condition and of Wen [1994], who assumed that
mixed strategies are observed. The second application is to the strongly
symmetric equilibrium studied by Abreu [1986] and Abreu et al [1986],
which restricts the continuation payoffs to the one-dimensional set where
all players’ payoffs are identical. The third application is to the restriction
that all payoffs lie on a line segment of the Pareto frontier, which we use
to derive a sufficient condition for the exact achievability of first-best out-
comes. Equilibria of this type, for which all continuation payoffs lie on the
Pareto frontier, have a strong renegotiation-proofness property: regardless
of the history, players can never unanimously prefer another equilibrium.

2. MODEL

We consider a repeated game with imperfect public monitoring played by
long-run and short-run players. We follow FL in the notation. In the stage
game, each player i = 1, . . . ,n simultaneously chooses a pure action ai from
a finite set Ai. a ∈ A ≡ ∏n

i=1 Ai induces a publicly observed outcome y ∈ Y
with probability πy(a). Player i’s payoff to an action profile a is gi(a). For
each mixed action profile α ∈ A ≡ ∏n

i=1 Ai, we can induce πy(α) and gi(α).
For i ∈ LR ≡ {1, . . . ,L}, L 6 n, i is a long-run player whose objective is

to maximize the average discounted value of per-period payoffs {gi(t)},

(1−δ)
∞

∑
t=1

δt−1gi(t).
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The remaining players j ∈ SR ≡ {L+1, . . . ,n} represent short-run players,
each of whom plays only once. Let

B : A1 ×·· ·×AL → AL+1 ×·· ·×An

be the correspondence that maps any mixed action profile αLR = (α1, . . . ,αL)
for the long-run players to the corresponding static equilibria αSR = (αL+1, . . . ,αn)
for the short-run players. That is, for each α ∈ graph(B) ≡ {(αLR,αSR) ∈
A | αSR ∈ B(αLR)} and each j = L+1, . . . ,n, α j maximizes g j(α′

j,α− j).
Let A0 be a subset of graph(B). We focus on A 0-perfect public equilib-

ria: strategy profiles in which all players choose action profiles from A 0,
depending only on the public history, and in which following every pub-
lic history the remaining public strategy profile forms a Nash equilibrium.
Note that an action profile specified by an equilibrium belongs to A 0 even
after an off-path history, but that each player’s deviations from the equilib-
rium need not be in A0. E(A0,δ) is the set of average present values for the
long-run players in A0-perfect public equilibria. We will characterize the
limit of E(A0,δ) without the “full-dimensionality” condition.

3. ALGORITHM

We fix A0 throughout this section. We define the sequence X 0,Q0,X1,Q1,X2,Q2, . . .
where Xm are affine subspaces of RL and Qm are compact convex subsets of
Xm by the following procedure. Let X 0 = RL. Let gLR(α) denote the vector
of payoffs for long-run players only. For given X m, we consider a linear
programming problem for given α ∈ A0 with gLR(α) ∈ Xm, λ ∈ RL \ {0}
parallel to Xm, and δ ∈ (0,1):

km(α,λ,δ) = max
v,w

λ · v subject to

(a) vi = (1−δ)gi(ai,α−i)+δ ∑
y∈Y

πy(ai,α−i)wi(y)

for i ∈ LR and ai ∈ Ai s.t. αi(ai) > 0,
(b) vi > (1−δ)gi(ai,α−i)+δ ∑

y∈Y
πy(ai,α−i)wi(y)

for i ∈ LR and ai ∈ Ai s.t. αi(ai) = 0,
(c) λ · v > λ ·w(y) for y ∈ Y ,
(d) w(y) ∈ Xm for y ∈ Y .

If there is no (v,w) that satisfies constraints (a)-(d), then we set km(α,λ,δ)=
−∞. Note that k0(α,λ,δ) corresponds to k∗(α,λ,δ) in FL. Similarly to
Lemma 3.1 (i) in FL, km(α,λ,δ) is independent of δ, and thus denoted by



PERFECT PUBLIC EQUILIBRIUM WHEN PLAYERS ARE PATIENT 3

km(α,λ).1 Set

km(λ) = sup
α∈A0,gLR(α)∈Xm

km(α,λ),

Hm(λ) = H(λ,km(λ)),

Qm =
\

λ∈RL\{0} : parallel to Xm
Hm(λ)∩Xm,

where H(λ,k) = {v ∈ RL | λ · v 6 k}. If Qm = /0 or Qm is a singleton whose
element does not correspond to a static equilibrium in A 0, we stop the al-
gorithm and define Q∗(A0) = /0.2 If Qm is a singleton consisting of a static
equilibrium payoff profile in A0 or we have dimQm = dimXm, we stop the
algorithm and define Q∗(A0) = Qm. Otherwise, let Xm+1 be the affine hull
of Qm, which is the smallest affine space including Qm, and we again solve
a linear programming problem after X m is replaced by Xm+1.

Note that every time the algorithm continues, the dimension of X m de-
creases by at least 1, so the algorithm stops in a finite number of steps.

As is standard in this literature, payoff profile v is the target that will be
supported by some equilibrium, and the function w gives the continuation
payoffs w(y) starting tomorrow if the current outcome is y. Constraints
(a) are the accounting identities that define the expected payoff profile v,
and constraints (b) are the incentive constraints, requiring that playing α
maximizes expected payoff provided that continuation payoffs are given by
w. Constraints (c) require that all of the continuation payoffs are included
in the half-space defined by v and λ; loosely speaking, the continuation
payoffs are not allowed to be “better” (in the λ direction) than v is.

Each step of this algorithm differs from FL’s only in constraints (d) and
A0. Constraints (d) require that all of the continuation payoffs are included
by the affine hull of Qm−1 in the previous step, and A0 is a restriction on
equilibrium action profiles. In the case of A 0 = graph(B), the first step of
the algorithm is exactly the same as FL’s linear programming problem. Ac-
tually, Q0 is equal to what FL call Q. If we assume the full dimensionality
of Q, that is, dim Q = L, then the algorithm stops at the first step, and we
have Q∗(graph(B)) = Q.

By this algorithm, we obtain the limit of A0-perfect public equilibrium
payoffs, which is a generalization of Theorem 3.1 in FL.

1We should point out that the condition given in FL Lemma 3.1 (iii) is sufficient but not
necessary for k∗(α,λ) = λ ·gLR(α); FL incorrectly assert that the condition is necessary as
well. The condition is only necessary under the additional assumption that all outcomes
have positive probability under α.

2Qm = /0 is possible only if A0 contains no static equilibrium.
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Let E∗(A0,δ) be the set of A0-perfect public equilibrium payoff profiles
when public randomization devices are available at the beginning of each
period. E∗(A0,δ) is a bounded convex set that contains E(A 0,δ).

Theorem. E∗(A0,δ) ⊆ Q∗(A0) for any δ. If Q∗(A0) 6= /0, then for any
compact set K in the relative interior of Q∗(A0), there exists δ̄ < 1 such that
K ⊆E(A0,δ) for any δ > δ̄.3 Hence limδ→1 E(A0,δ) = limδ→1 E∗(A0,δ) =
Q∗(A0).

Proof. We show that E∗(A0,δ) ⊆ Qm for any m by induction. Suppose
that E∗(A0,δ) ⊆ Xm, and we show that E∗(A0,δ) ⊆ Qm ⊆ Xm+1. If not,
since E∗(A0,δ) is bounded, we may find a positive number ε > 0, a point
v ∈ E∗(A0,δ), and a unit vector λ ∈ RL \{0} parallel to Xm such that λ ·v =
k > km(λ)+ [(1−δ)/δ]ε and E∗(A0,δ) ⊆ H(λ,k + ε). Then v is written as

v =
Z 1

0
v(ω)dω,

where, for almost every realization ω ∈ [0,1] of a public randomization
device, v(ω) is enforceable with some current action profile α(ω) ∈ A 0 and
continuation payoff profiles w(y,ω) in E∗(A0,δ)⊆ H(λ,k+ε)∩Xm. Since
v(ω) ∈ E∗(A0,δ) ⊆ Xm, we have gLR(α(ω)) ∈ Xm. Pick ω ∈ [0,1] such
that λ · v(ω) > k. For this ω, by shifting payoff profiles independently of y,
we can enforce the shifted target payoff profile v′(ω) = v− [(1−δ)/δ]ελ by
α(ω) and w′(y,ω)= w(y,ω)−(1/δ)ελ∈H(λ,k′)∩Xm, where k′ = k− [(1−
δ)/δ]ε > km(λ). So the score λ · v′(ω) > k′ is attained with continuation
payoff profiles in H(λ,k′)∩Xm, which contradicts the definition of km(λ).

If Q∗(A0) is set to be the empty set because, at some step of the al-
gorithm, Qm is a singleton whose element does not correspond to a static
equilibrium in A0, then, since there is no static equilibrium in A 0 and con-
tinuation payoffs need to be constant, we have E∗(A0,δ) = /0 = Q∗(A0).
Otherwise, we have E∗(A0,δ) ⊆ Qm = Q∗(A0) for some m.

Now suppose that Q∗(A0) 6= /0, and let K be a compact set in the relative
interior of Q∗(A0). We will show that K ⊆ E(A0,δ) for all sufficiently large
δ. If Q∗(A0) is a singleton, then E(A0,δ) = Q∗(A0) for any δ. Otherwise,
let X∗ be the affine hull of Q∗(A0). Then the proof differs from FL’s original
one mainly in that we use the relative topology induced on X ∗ instead of the
standard topology on RL.4 Since K is a compact set in the relative interior
of Q∗(A0), there exists a smooth, convex, and compact set W ⊇ K in the

3The relative interior of a subset S of RL is the interior of S under the topology induced
on the affine hull of S.

4Our proof also differs because it does not assume the existence of static equilibria in
A0.
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relative interior of Q∗(A0). We show that W ⊆ E(A0,δ) for sufficiently
large δ. Since W is compact and convex, it is enough to show that for each
v ∈ W , there exist δ < 1 and a relatively open neighborhood U of v with
U ⊆ P(A0,δ,W ), where P(A0,δ,W ) is the set of payoff profiles generated
by some α ∈ A0 and W (Fudenberg et al [1994, Lemma 4.2]).

First, suppose that v is on the relative boundary of W . Let λ be parallel
to X∗ and normal to W at v. Let k = λ ·v, and let H = H(λ,k) be the unique
half-space in the direction of λ such that H ∩X ∗ contains W and its relative
boundary is tangent to W at v. Since W is in the relative interior of Q∗(A0),
there exists an action profile α ∈ A0 with gLR(α) ∈ X∗ that generates a
point v′ ∈ X∗ with λ · v′ > k using continuation payoffs in H(λ,λ · v′)∩X∗.
Then, for some δ′ < 1 and ε > 0, (α,v) can be enforced with respect to
H(λ,k− ε)∩X∗.

Second, suppose that v is in the relative interior of W . Pick any λ parallel
to X∗. Let k = λ ·v and H = H(λ,k). Similarly to the above argument, there
exists α ∈ A0 such that, for some δ′ < 1 and ε > 0, (α,v) can be enforced
with respect to H(λ,k− ε)∩X∗.

For any δ′′ > δ′, we may find w(y,δ′′) that enforce (α,v) and κ̄ > 0 such
that

w(y,δ′′) ∈ H
(

λ,k− δ′(1−δ′′)
δ′′(1−δ′)

ε
)

∩X∗,

and |w(y,δ′′)− v| < κ̄(1−δ′′).
Consider the ball U(δ′′) around v of radius κ̄(1− δ′′) in X∗. Since W is

smooth in X∗, for δ′′ sufficiently close to 1 there exists κ̃ > 0 such that the
difference between H ∩X ∗ and H ∩W in U(δ′′) is at most κ̃(1− δ′′)2. It
follows that there exists δ < 1 such that (α,v) can be enforced by continu-
ation payoffs w(y,δ) in the relative interior of W . Since w(y,δ) are in the
relative interior, they may be translated by a small constant independent of
y generating incentive compatible payoffs in a relative neighborhood U of
v. �

Remark. Our Theorem shows that allowing public randomizations does not
change the limit set. For a fixed δ, however, E∗(A0,δ) may be larger than
E(A0,δ).

Several other choices of how to determine the sets X m lead to the same
result Q∗(A0). For example, at the beginning of the first step, we can choose
X0 to be any affine subspace of RL that contains gLR(α) for every α ∈ A0.
If 1 6 dimQm < dimXm, then we can move to the next step with any affine
subspace Xm+1 of Xm that contains Qm.



PERFECT PUBLIC EQUILIBRIUM WHEN PLAYERS ARE PATIENT 6

FIGURE 4.1. A three-player game in Fudenberg and
Maskin [1986]

1,1,1 0,0,0
0,0,0 0,0,0
0,0,0 0,0,0
0,0,0 1,1,1

It is easy to extend this theorem to games with infinitely many pure ac-
tions.5 However, allowing infinitely many signals would involve measure-
theoretic complications that are beyond the scope of this paper.

4. APPLICATIONS

4.1. Fudenberg and Maskin’s Example. To illustrate the algorithm, we
apply it to the example Fudenberg and Maskin [1986] used to motivate the
full dimensionality condition. We set L = n = 3, so that there are three long-
run players and no short-run players, set Y = A = {0,1}3, and set πy(a) = 1
if and only if y = a, so that the signal perfectly reveals the action profile.
Stage game payoffs are depicted in Figure 4.1.

Let A0 = A and X0 = R3, and solve the first step of our algorithm. By
a simple computation, we have Q0 = {(x,x,x) | 0 6 x 6 1}. Since Q0 has
a lower dimension than X 0, we set X1 = {(x,x,x) | x ∈ R} and move to the
second step of our algorithm.

In the second step, we have two directions parallel to X 1 (up to positive
constants), 1 = (1,1,1) and −1 = (−1,−1,−1). We first consider the case
of λ = −1. Fix any α. As Fudenberg and Maskin show, for any α, there
exist a player i and an action ai such that gi(ai,α−i) > 1/4. Since (v,w) in
the linear programming problem satisfies constraints (a) and (b), we have

vi > (1−δ)×
1
4 +δ∑

y
πy(ai,α−i)wi(y).

Since gLR(α) ∈ X1 and w(y) ∈ X1 for any outcome y by constraints (d),
it follows from constraints (a) that v ∈ X 1 as well. Then, since −3vi =
(−1) · v > (−1) ·w(y) = −3wi(y) for any outcome y by constraints (c), we
have

vi > (1−δ)×
1
4

+δ∑
y

πy(ai,α−i)wi(y) > (1−δ)×
1
4

+δvi,

5The proof carries over verbatim as long as stage-game payoff function gi is bounded for
every player i, “max” is replaced by “sup” in the definition of km(α,λ,δ), and constraints
(a) are required not only for every ai with positive point mass but also for almost every ai
with respect to αi.
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and hence vi > 1/4. Therefore, we have k1(α,−1) 6−3/4 for any α. Since
the equality holds when each player mixes the two actions with equal prob-
ability, we have k1(−1) = −3/4 and H1(−1) = H(−1,−3/4). We also
have H1(1) = H(1,3) by a simple computation.

Since Q1 = H1(1)∩H1(−1)∩X1 = {(x,x,x) | 1/4 6 x 6 1} and dimQ1 =
1 = dimX1, we stop the algorithm and conclude that Q∗(A)= Q1 is the limit
set of subgame-perfect equilibrium payoffs as δ → 1.

The same result is obtained by Fudenberg and Maskin [1986] and Wen
[1994]. Fudenberg and Maskin determine the limit set by a direct com-
putation in this specific game, whereas Wen uses effective minimax values.
Wen’s method is applicable to repeated games with perfect monitoring with-
out the full dimensionality condition. Note that our algorithm is even more
general, as we admit imperfect public monitoring and short-run players.

4.2. Characterization of the Limit Payoffs in General Stage Games
with Observed Actions and All Long-Run Players. Consider repeated
games with perfect monitoring and without short-run players, that is, Y = A,
πy(a) = 1 if and only if y = a, and n = L. We assume that A 0 ⊇ Ap ≡ {α ∈

A | α(a) = 1 for some a ∈ A}, i.e., A0 contains all pure action profiles.
We assume that no player is universally indifferent: for every player i,

there exist two action profiles a, a′ ∈ A such that gi(a) 6= gi(a′). Players i
and j have equivalent utility functions if there exist c ∈ R and d > 0 such
that g j(a) = c+dgi(a) for all a ∈ A. Denote by I+

i the set of players whose
utility functions are equivalent to gi. Similarly, denote by I−i the set of play-
ers whose utility functions are equivalent to −gi. The stage game satisfies
the nonequivalent utilities (NEU) condition if I+

i = {i} for all i (Abreu et al
[1994]).

Player i’s effective minimax payoff is given by
vi(A0) = inf

α∈A0
max{gi(a j,α− j) | j∈ I+

i ,a j ∈A j, or j ∈ I−i ,a j ∈A j s.t. α j(a j) > 0}.

If A0 is compact, then the infimum operator can be replaced by the min-
imum operator because the objective function is lower semi-continuous in
α.

Here we compare our effective minimax payoff with the standard mini-
max payoff

vs
i (A0) = inf

α∈A0
max{gi(ai,α−i) | ai ∈ Ai},

and Wen’s [1994] effective minimax payoff
vWen

i (A0) = inf
α∈A0

max{gi(a j,α− j) | j ∈ I+
i ,a j ∈ A j}.

Proposition 4.1. We have the following relations between the effective min-
imax and Wen’s effective minimax:
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FIGURE 4.2. A game in which vWen
1 (A) < v1(A)

0,0,0 3,3,−3
2,2,−2 4,4,−4
4,4,−4 2,2,−2
3,3,−3 4,4,−4

(1) vs
i (A0) 6 vWen

i (A0) 6 vi(A0).
(2) vWen

i (A0) = vi(A0) if A0 = Ap or I−i = /0.
(3) vs

i (A0) = vi(A0) if (A0 = Ap or A) and the NEU condition is satis-
fied.

Proof. Parts 1 and 2 are obvious. Part 3 is also obvious, except for the case
in which A0 = A , the NEU condition is satisfied, and I−i 6= /0. Since the
NEU condition is satisfied and I−i 6= /0, I−i is a singleton { j}. Let α∗

−i be
a minimax action profile against player i, and α∗

i is a maximin action of
player i against player j when the other players’ action profile is fixed to be
α∗
−i j. By the minimax theorem, (α∗

i ,α
∗
j) is a Nash equilibrium of the game

between players i and j when the other players play α∗
−i j. Since α∗

i is a best
response to α∗

−i for player i, we have gi(ai,α∗
−i) 6 gi(α∗) for any ai ∈ Ai.

Also, since α∗
j is a best response to α∗

− j for player j, player j is indifferent
among all pure actions taken with positive probabilities under α∗

j , i.e., we
have g j(a j,α∗

− j) = g j(α∗) for any a j ∈ A j such that α∗
j(a j) > 0. Since

j ∈ I−i , we have gi(a j,α∗
− j) = gi(α∗) for any a j ∈ A j such that α∗

j(a j) > 0.
Therefore, we have vi(A) 6 gi(α∗) = vs

i (A). �

Example. We may have vWen
i (A0) < vi(A0). Consider the stage game in

Figure 4.2. Note that I+
1 = {1,2} and I−1 = {3}. We have vWen

1 (A) = 5/2,
where the solution α to Wen’s minimax problem is such that players 1 and
2 choose the first actions, and player 3 mixes the two actions with equal
probability. We also have v1(A) = 3, where the solution α to our minimax
problem is such that players 1 and 3 choose the first actions, and player 2
chooses the first action with probability more than or equal to 1/2.

Let V be the set of feasible payoff profiles, i.e., the convex hull of {g(a)∈
Rn | a ∈ A}. Let

V (A0) = {v ∈V | vi > vi(A0) for every player i},
V ∗(A0) = {v ∈V | vi > vi(A0) for every player i}

be the sets of feasible payoff profiles that weakly and strongly dominate
v(A0), respectively.
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Proposition 4.2. Q∗(A0) ⊆V (A0). If V ∗(A0) 6= /0, then Q∗(A0) = V (A0).
Abreu et al [1994] showed the folk theorem under the NEU condition,

which corresponds to Proposition 4.2 when (A0 = Ap or A) and the NEU
condition is satisfied. Wen [1994] showed the pure-strategy folk theorem,
which corresponds to Proposition 4.2 for A0 = Ap.6 These classical results
are stronger than Proposition 4.2 in the following sense. They show that
E(Ap,δ)⊆V (Ap) for any δ, and that, for any v∈V ∗(Ap), there exists δ < 1
such that v ∈ E(Ap,δ) (exactly attained as an equilibrium payoff profile) for
any δ > δ. On the other hand, combined with our Theorem, Proposition 4.2
claims that any point v ∈V (Ap) is approximately attained as an equilibrium
payoff profile. See Subsection 4.4 for a discussion of the exact attainability
of efficient payoffs.

We will show Proposition 4.2 by executing our algorithm explicitly. Let
X be the affine hull of V . We have dimX > 1 because of the absence of
universal indifference. A vector λ ∈ Rn \ {0} parallel to X is said to be a
punishment direction for player i if there exist c ∈ R and d > 0 such that
λ · v = c− dvi for every v ∈ X . If λ is a punishment direction for player i,
then we have H(λ,λ · v)∩X = {v′ ∈ X | v′i > vi}.

Lemma 4.3. There exists a punishment direction for player i.
Proof. Let λ be the projection of −ei to X , where ei is the vector whose
ith component is 1 and whose other components are 0. λ is nonzero since
player i is not universally indifferent. By construction, λ is a punishment
direction for player i. �

Let Xi = {vi ∈ R | v ∈ X} and Xi j = {(vi,v j) ∈ R2 | v ∈ X} be the projec-
tions of X to the i-axis and to the i j-plane, respectively.

Lemma 4.4. Xi = R; if j /∈ I+
i ∪ I−i , then Xi j = R2 .

Proof. Xi is a nonempty affine subspace of R, i.e., a point or R. Since player
i is not universally indifferent, Xi contains at least two points. So we have
Xi = R.

6As we noted in the example, in the class of mixed-strategy subgame-perfect equilibria
(A0 = A), Wen’s definition of effective minimax may be lower than ours. In this case,
the effective minimax value in his definition is not a tight lower bound for mixed-strategy
subgame-perfect equilibrium payoffs. Wen assumes that mixed strategies are observable
and constructs equilibria with payoffs as low as vWen

i (A) in general games. Our results
show that the assumption that mixed strategies are observable is not innocuous in cases
where the NEU condition is not satisfied. Intuitively, inducing players to randomize when
mixing probabilities are not observed requires the use of continuation payoffs to make the
player indifferent, and in the absence of the NEU condition, it may not be possible to
induce players to randomize without rewarding the opponent they are trying to “punish.”
See footnote 11 in Abreu et al [1994].
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Xi j is a nonempty affine subspace of R2, i.e., a point, a line, or R2, and
from the previous step Xi j is not a point or a vertical or horizontal line.
Since j /∈ I+

i ∪ I−i , Xi j is not a line with a nonzero slope, so Xi j = R2. �

We also have

Lemma 4.5. A mixed action profile α and player i’s payoff vi are enforce-
able with respect to {v′ ∈ X | v′i > vi} if and only if vi > gi(a j,α− j) for
any j ∈ I+

i and any a j ∈ A j and for any j ∈ I−i and any a j ∈ A j such that
α j(a j) > 0.

Proof. See the Appendix. �

Lemma 4.6. If λ is not a punishment direction for player i, then, for any
(x,k) ∈ R2, there exists v ∈ H(λ,k)∩X such that vi 6 x.

Proof. Since λ is not a punishment direction for player i, λ · v and −vi are
linear utility functions that represent different preference orderings on X .
Then there exist v1, v2 ∈ X such that (i) λ · v1 > λ · v2 and v1

i > v2
i , or (ii)

λ · v1 > λ · v2 and v1
i = v2

i .
In case (i), pick any v3 ∈ H(λ,k)∩X , and let v = v3 − c(v1 − v2). Then

we have v ∈ H(λ,k)∩X and vi 6 x for a sufficiently large c.
In case (ii), pick any v4, v5 ∈ X such that v4

i > v5
i , and let ṽ1 = v1 +ε(v4−

v5). It follows from Lemma 4.4 that such v4 and v5 exist. For a sufficiently
small ε > 0, we have λ · ṽ1 > λ · v2 and ṽ1

i > v2
i . Thus we can apply case (i)

to the pair (ṽ1,v2). �

Lemma 4.7. If λ is not a punishment direction for any player, then, every
pure strategy profile a ∈ A and the corresponding payoff profile v = g(a)
are enforceable with respect to H(λ,λ · v)∩X.

Proof. Define w(a′) ∈ H(λ,λ · v)∩X for each a′ ∈ A as follows:
• If there exists a unique player i such that a′i 6= ai, then, because

of Lemma 4.6, we can construct a sufficiently strong punishment
for player i by setting w(a′) ∈ H(λ,λ · v)∩ X such that wi(a′) 6

[vi− (1−δ)gi(a′i,a−i)]/δ.
• If a′ = a or a′j 6= a j for at least two players j, then let w(a′) = v.

Then (a,v) is enforced by w. �

Lemma 4.8. If V ∗(A0) 6= /0, then dimV ∗(A0) = dimX.

Proof. Here we use the relative topology induced to X . Suppose V ∗(A0) 6=
/0. Then there exists a relative interior point v of V such that v ∈ V ∗(A0).
Otherwise, V \V ∗(A0) is a closed proper subset of V that contains the whole
relative interior of V . This contradicts the fact that the closure of the relative
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interior of compact and convex set V is equal to V . Since V \V ∗(A0) is
closed, v is also a relative interior point of V ∗(A0), so V ∗(A0) and X have
the same dimension. �

Now we can prove Proposition 4.2 as follows.

Proof. We use our algorithm with the constraint X 0 = X on continuation
payoff profiles at the first step. Since A0 ⊇ Ap, it follows from Lemmas
4.3, 4.5, and 4.7 that we have Q0 = V (A0). Therefore, we have Q∗(A0) ⊆
V (A0).

If V ∗(A0) 6= /0, then, by Lemma 4.8, we have dimQ0 = dimX0. We stop
the algorithm at the first step, and obtain Q∗(A0) = V (A0). �

4.3. Symmetry Assumptions.

4.3.1. Strongly Symmetric Equilibria. Assume that the static game is sym-
metric for long-run players, i.e., A1 = · · · = AL and gi(a) = g j(a′) for any
i, j ∈ LR and a,a′ ∈ A if ai = a′j, a′LR is a permutation of aLR, and aSR = a′SR.
The signal structure is also symmetric, i.e., πy(a) = πy(a′) if a′LR is a per-
mutation of aLR, and aSR = a′SR.

A strategy profile is strongly symmetric (for long-run players) if all long-
run players take the same action after every history. In this case we take A 0

to be the set A s of symmetric mixed action profiles for the long-run players
in graph(B), and denote by Qs the result Q∗(A s) of our algorithm under
the restriction of A s. Our Theorem can characterize the limit of E(A s,δ)
by Qs. Set X0 = {(x, . . . ,x) ∈ RL | x ∈ R}, and compute Q0 in the first
step of our algorithm. Since A s contains at least one static equilibrium, we
have Q0 6= /0. No matter whether Q0 is a singleton (which must be a unique
symmetric static equilibrium payoff) or one-dimensional, we have Qs = Q0.
Since continuation payoffs are restricted to be symmetric, Qs may be strictly
smaller than FL’s Q without any restriction on continuation payoffs. This
corresponds to Abreu et al’s [1986] analysis for large δ.

As a corollary of our Theorem, we have the following.

Corollary 4.9. Qs = limδ→1 E(A s,δ). That is, Qs is the limit as δ goes to 1
of strongly symmetric equilibrium payoffs with discount factor δ.

4.3.2. Partially Symmetric Equilibria. We can consider partially symmet-
ric equilibria. Suppose that long-run and short-run players are divided into
several groups, for example, buyers and sellers. The players’ payoffs are
symmetric within groups, but may be asymmetric between groups. Then we
can restrict our attention to partially symmetric equilibria where the players
behave symmetrically within groups. As in the case of strongly symmet-
ric equilibria, let X0 be the set of payoff profiles symmetric within groups.
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Then, we can execute the first step of our algorithm, in which continuation
payoffs are constrained to be symmetric within groups.

Note that the FL result, on the one hand, cannot apply to partially sym-
metric equilibria when there are L− 1 or less groups because Q0 does not
satisfy the full-dimensionality condition. On the other hand, it is possible
to apply Abreu et al’s [1990] result and obtain the set of partially symmet-
ric equilibria for any fixed δ, but when the number of groups for long-run
players is 2 or more, it is difficult and sometimes practically infeasible to
compute the set P(A0,δ,W ) generated by W for any nonlinear constraint
W on continuation payoff profiles. By contrast, our algorithm is applicable
and relatively easy to carry out.

4.4. Exact Achievability of First-Best Outcomes. In the case of A 0 =
graph(B) and X0 = RL, FL showed that, under the assumption of dimQ0 =
L, for any compact set K in the interior of Q0, there exists δ̄ < 1 such that
K ⊆ E(graph(B),δ) for any δ > δ̄. Under an identifiability condition, Q0 is
a full-dimensional set containing all payoff profiles that Pareto-dominate a
static equilibrium (Fudenberg et al [1994, Theorem 6.1]). When this iden-
tifiability condition is satisfied, some efficient payoff profiles can be ap-
proximated by equilibrium payoff profiles as the discount factor tends to
1, even if the actions are imperfectly observed. However, this conclusion
leaves open the question of whether a given efficient payoff vector v can be
exactly attained by an equilibrium payoff for some large but fixed δ.

Recently Athey and Bagwell [2001] have provided sufficient conditions
for the exact achievability of first-best payoffs in a repeated duopoly game.
Our Theorem leads to the following generalization of their analysis.

Let V be the convex hull of {gLR(α) ∈ RL | α ∈ graph(B)}, let h be a
hyperplane tangent to V , and let Ah = {α ∈ graph(B) | gLR(α) ∈ h}. To
achieve a payoff profile in h, it is necessary for the players to take actions
in Ah at any on-path history (a public history which occurs with positive
probability). As an extreme case, if V ∩ h is a singleton {v}, then exactly
achieving v requires a stringent condition (Fudenberg et al [1994, Theorem
6.5]).

Here we sketch how to obtain a sufficient condition for exact achiev-
ability. By our algorithm, we can characterize the limit of E(A h,δ).7 Let

7Imposing the restriction of Ah on off-path play does not lose much generality. If the
full support condition holds for Ah, i.e., πy(α) > 0 for any α ∈ Ah and y ∈ Y , then there
is no off-path public history, and hence any perfect public equilibrium which achieves a
payoff profile in h is always an Ah-perfect public equilibrium. Moreover, if the full support
condition is not satisfied but there is an inefficient static equilibrium, we can easily modify
our argument by analyzing on- and off-schedule deviations separately. See Athey and
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X0 = h. We compute the algorithm until we finally obtain Q∗(Ah). We
denote it by Qh.

Our Theorem implies the following.

Corollary 4.10. If Qh 6= /0, then the relative interior of Qh is nonempty,
and for any relative interior point v of Qh, there exists δ̄ < 1 such that
v ∈ E(Ah,δ) for any δ > δ̄.

Equilibria in Qh have the property that there is no history where players
unanimously prefer some other feasible outcome to the continuation payoffs
prescribed by the equilibria. This is a very strong form of renegotiation-
proofness, and implies that the equilibria are strongly renegotiation-proof
in the sense of Farrell and Maskin [1989].

In the case of two-player games, we can give a simple necessary and
sufficient condition for Qh to be nonempty. Fix two pure action profiles a1

and a2 whose payoff vectors g1 = g(a1) and g2 = g(a2) are on the Pareto
frontier. Suppose that gi

i < g j
i for i 6= j, so that ai is worse for player i than

a j. Let h = {v ∈ R2 | β1v1 + β2v2 = γ} with (β1,β2,γ) = (g1
2 − g2

2,g2
1 −

g1
1,g2

1g1
2 −g1

1g2
2) be the line connecting g1 and g2. Note that β1, β2 > 0. We

assume Ah = {a1,a2} for simplicity, i.e., no payoff profile other than g1 and
g2 attains h.8 We focus on Ah-perfect public equilibria.

Let gii = (gii
i ,gii

j ) ∈ h be defined by gii
i = maxai gi(ai,ai

j) and gii
j = (γ−

βigii
i )/β j. Let ` = {v ∈ h | g11

1 6 v1 6 g22
1 }. ` is the empty set if g11

1 > g22
1 ,

and a line segment if g11
1 < g22

1 . (If g11
1 = g22

1 , then ` is a point.)
Similarly, let gi j = (gi j

i ,gi j
j ) ∈ h be defined by gi j

j = maxa j 6=ai
j
g j(a j,ai

i)

and gi j
i = (γ−β jgi j

j )/βi.

Definition. The signal structure π has perfect detectability for player i if
the set Y of outcomes can be partitioned into Y i, Y ii, and Y i j such that for

πi(a) ≡ ∑
y∈Y i

πy(a), πii(a) ≡ ∑
y∈Y ii

πy(a), πi j(a) ≡ ∑
y∈Y i j

πy(a),

there exist ωi, ωi j > 0 such that
(1) πii(ai) < 1 and πi(ai)ωi +πi j(ai)ωi j = gii

i −gi
i,

Bagwell [2001]. Note also that allowing off-path play not in A h destroys the renegotiation-
proofness property of the equilibria.

8Ah = {a1,a2} if a1
i 6= a2

i for both players i and no three pure action payoff profiles lie
on a line. The latter condition is satisfied in generic finite stage games, but not in duopoly
games where both firms produce homogeneous goods with a common constant marginal
cost. If Ah ) {a1,a2}, then the condition of g11

1 > g22
1 in Part 1 of Proposition 4.11 is not

sufficient for Qh to be empty. There may be an equilibrium which prescribes action profiles
in Ah \{a1,a2} after some history.
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(2) πii(ai,ai
j) = 1 for any ai 6= ai

i, and
(3) πi(a j,ai

i)ω
i +πi j(a j,ai

i)ω
i j > gii

i −gi j
i for any a j 6= ai

j.

If π is perfect monitoring (i.e., Y = A and πy(a) = 1 if and only if y =
a), then π has perfect detectability for player i by setting Y i = {ai}, Y ii =
{(ai,ai

j) | ai 6= ai
i}, Y i j = {a | a j 6= ai

j}, ωi = gii
i − gi

i, and ωi j = max(gii
i −

gi j
i +1,0).

Proposition 4.11. Suppose that neither a1 nor a2 is a static Nash equilib-
rium.

(1) If g11
1 > g22

1 , then Qh = /0 under any signal structure, and there is no
Ah-perfect public equilibrium for any δ.

(2) If g11
1 < g22

1 , then for any signal structure π with perfect detectabil-
ity for the both players and any compact line segment in the rel-
ative interior of `, there exists ε > 0 such that Qh is a nonempty
set containing the line segment under any signal structure π̃ such
that maxy,a |πy(a)− π̃y(a)| < ε, so there exists δ̄ < 1 such that v ∈

E(Ah,δ) for any δ > δ̄.

Proof. see Appendix. �
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APPENDIX A. PROOFS

A.1. Proof of Lemma 4.5. We use the following lemma in the proof of
Lemma 4.5 below to deal with indifference conditions for players in J =
I+
i ∪ I−i . Fudenberg and Maskin [1990, Lemma 2] prove the same result

for the case of two players. For notational convenience, for a given mixed
action profile α, take S j = {a j ∈ A j | α j(a j) > 0}, S = ∏ j∈J S j, σ = αJ , and
u(σ) = gi(σ,α−J).

Lemma A.1. If σ j(s j) > 0 and x > u(s j,σ− j) for all j ∈ J and all s j ∈ S j,
then there exists f : S → R such that f (s) > x for all s ∈ S and

x = (1−δ)u(s j,σ− j)+δ ∑
s− j∈S− j

σ− j(s− j) f (s)

for all j ∈ J and all s j ∈ S j.

Proof. We will show the existence of f algorithmically. Let S0
j = S j and

r0
j(s j) = [x− (1−δ)u(s j,σ− j)]/δ for each j ∈ J and each s j ∈ S j. For each

step m = 0, 1, . . ., we define

pm
j = ∑

s j∈Sm
j

σ j(s j), pm = ∏
j∈J

pm
j , pm

− j =
pm

pm
j
,

xm = min
{

rm
j (s j)

pm
− j

| j ∈ J,s j ∈ Sm
j

}

,

Sm+1
j = Sm

j \

{

s j ∈ Sm
j |

rm
j (s j)

pm
− j

= xm
}

,

rm+1
j (s j) = rm

j (s j)− (pm
− j − pm+1

− j )xm.
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Note that ∑s j∈S0
j
σ j(s j)r0

j(s j) = [x− (1− δ)u(σ)]/δ is independent of j.
Inductively, if ∑s j∈Sm

j
σ j(s j)rm

j (s j) is independent of j, then

∑
s j∈Sm+1

j

σ j(s j)rm+1
j (s j) = ∑

s j∈Sm+1
j

σ j(s j)
[

rm
j (s j)− (pm

− j − pm+1
− j )xm

]

= ∑
s j∈Sm+1

j

σ j(s j)rm
j (s j)− pm+1

j (pm
− j − pm+1

− j )xm

= ∑
s j∈Sm

j

σ j(s j)rm
j (s j)− (pm − pm+1)xm

is also independent of j.
Let m∗ be the first step at which there exists j∗ ∈ J such that Sm∗+1

j∗ = /0.
If Sm∗+1

j 6= /0 for some j ∈ J, then we have the following contradiction:

pm∗xm∗
= ∑

s j∗∈Sm∗

j∗

σ j∗(s j∗)rm∗

j∗ (s j∗)

= ∑
s j∈Sm∗

j

σ j(s j)rm∗

j (s j)

> ∑
s j∈Sm∗

j

σ j(s j)pm∗

− jxm∗
= pm∗xm∗

,

where the second equality holds because ∑s j∈Sm∗
j

σ j(s j)rm∗

j (s j) is indepen-
dent of j, and the inequality holds because rm∗

j (s j)/pm∗

− j > xm∗ for all s j ∈

Sm∗

j with strict inequality for all s j ∈ Sm∗+1
j , and σ j(s j) > 0 for all s j ∈ Sm∗

j .
Thus we have Sm∗+1

j = /0 for all j ∈ J.
Since p0

j = 1 for all j ∈ J and x > max{u(s j,σ− j) | j ∈ J,s j ∈ S j}, we
have

x0 = min{r0
j (s j) | j∈ J,s j ∈ S j}=

x− (1−δ)max{u(s j,σ− j) | j ∈ J,s j ∈ S j}

δ
> x.

For any m < m∗ and for any s j ∈ Sm+1
j , we have

xm+1 >
rm+1

j (s j)

pm+1
− j

=
rm

j (s j)− (pm
− j − pm+1

− j )xm

pm+1
− j

>
pm
− jxm − (pm

− j − pm+1
− j )xm

pm+1
− j

= xm.

Therefore, we have xm > x for any m 6 m∗.
Let Sm ≡ ∏ j∈J Sm

j . For any s ∈ S, there exists a unique m(s) 6 m∗ such
that s ∈ Sm(s) \Sm(s)+1. Then we define f (s) = xm(s) > x for each s ∈ S.
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For any j ∈ J and any s j ∈ S j, there exists a unique m j(s j) 6 m∗ such that
s j ∈ Sm j(s j)

j \Sm j(s j)+1
j because Sm∗+1

j = /0. Then we have

(1−δ)u(s j,σ− j)+δ ∑
s− j∈S− j

σ− j(s− j) f (s)

= (1−δ)u(s j,σ− j)+δ
m j(s j)−1

∑
m=0

(pm
− j − pm+1

− j )xm + pm j(s j)
− j xm j(s j)

= (1−δ)u(s j,σ− j)+δ
m j(s j)−1

∑
m=0

(rm
j (s j)− rm+1

j (s j))+ rm j(s j)
j (s j)

= (1−δ)u(s j,σ− j)+δr0
j(s j) = x

for any j ∈ J and any s j ∈ S j. �

Lemma. 4.5. A mixed action profile α and player i’s payoff vi are enforce-
able with respect to {v′ ∈ X | v′i > vi} if and only if vi > gi(a j,α− j) for
any j ∈ I+

i and any a j ∈ A j and for any j ∈ I−i and any a j ∈ A j such that
α j(a j) > 0.
Proof. “If” part. Define w(a)∈ X with wi(a) > vi for each a ∈ A as follows:

• If there exists a unique player j such that α j(a j) = 0 and j ∈ I+
i , then

let w(a)∈ X be such that vi 6 wi(a) 6 [vi−(1−δ)gi(a j,α− j)]/δ. It
follows from Lemma 4.4 and vi > gi(a j,α− j) that such w(a) exists.

• If there exists a unique player j such that α j(a j) = 0 and j /∈ I+
i ,

then let w(a) ∈ X be such that wi(a) > vi and w j(a) 6 [v j − (1−
δ)g j(a j,α− j)]/δ. The existence of such w(a) follows from Lemma
4.4 .

• If we have α j(a j) > 0 for all players j, let J = I+
i ∪ I−i and de-

fine w(a) = wJ(aJ)+∑ j/∈J(w0−w j(a j)) ∈ X as follows: By setting
x = vi in Lemma A.1, we obtain a function f such that f (aJ) > vi,
any action in S j is indifferent for each player j ∈ J, and player i’s
total payoff is equal to vi. It follows from Lemma 4.4 that there ex-
ists wJ(aJ) ∈ X such that wJ

i (aJ) = f (aJ), and by the same lemma
we can make any action in S j indifferent for player j /∈ J with-
out changing player i’s payoff. For example, pick any w0 ∈ X ,
and choose w j(a j) ∈ X such that w j

i (a j) = w0
i and w j

j(a j) = [(1−
δ)/δ]g j(a j,α− j).

• If α j(a j) = 0 for at least two players j, let w(a) ∈ X be such that
wi(a) = vi. The existence of such w(a) follows from Lemma 4.4.

Then (α,vi) is enforced by w.
“Only if” part. Suppose that (α,vi) is enforced by continuation payoff

profiles w(a) ∈ X with wi(a) > vi.
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For any j ∈ I+
i and any a j ∈ A j, it follows from player j’s incentive con-

straints that we have
v j > (1−δ)g j(a j,α− j)+δ ∑

a− j∈A− j

α− j(a− j)w j(a).

Since j ∈ I+
i , we can transform the above inequality to the following in-

equality about player i’s payoffs:
vi > (1−δ)gi(a j,α− j)+δ ∑

a− j∈A− j

α− j(a− j)wi(a)

> (1−δ)gi(a j,α− j)+δvi,

thus we have vi > gi(a j,α− j).
For any j ∈ I−i and any a j ∈ A j such that α j(a j) > 0, we have

v j = (1−δ)g j(a j,α− j)+δ ∑
a− j∈A− j

α− j(a− j)w j(a).

Since j ∈ I−i , we have

vi = (1−δ)gi(a j,α− j)+δ ∑
a− j∈A− j

α− j(a− j)wi(a)

> (1−δ)gi(a j,α− j)+δvi,

thus we have vi > gi(a j,α− j). �

A.2. Proof of Proposition 4.11.
Proposition. 4.11. Suppose that neither a1 nor a2 is a static Nash equilib-
rium.

(1) If g11
1 > g22

1 , then Qh = /0 under any signal structure, and there is no
Ah-perfect public equilibrium for any δ.

(2) If g11
1 < g22

1 , then for any signal structure π with perfect detectabil-
ity for the both players and any compact line segment in the rel-
ative interior of `, there exists ε > 0 such that Qh is a nonempty
set containing the line segment under any signal structure π̃ such
that maxy,a |πy(a)− π̃y(a)| < ε, so there exists δ̄ < 1 such that v ∈

E(Ah,δ) for any δ > δ̄.

Proof. [Proof of Part 1] We use our algorithm under the restriction of A h =
{a1,a2} to compute the set of Ah-perfect public equilibrium payoff profiles.
Let Q0 be the result of the first step of the algorithm when continuation
payoffs are restricted to h. Since this is a one-dimensional problem, we
only need to consider two directions λ1 = (β2,−β1) and λ2 = (−β2,β1).

Consider the linear programming problem for action profile a2 and direc-
tion λ1. Let (v,w) be any collection of payoff profiles satisfying constraints
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(a)-(d). For any y ∈Y , since v, w(y) are chosen from h and λ1 ·v > λ1 ·w(y),
we have v2 6 w2(y). Then, by constraint (b), we have

v2 > (1−δ)g22
2 +δ∑

y
πy(a2

1,a22
2 )w2(y) > (1−δ)g22

2 +δv2,

where a22
2 is player 2’s action that maximizes g2(a2

1,a2). Therefore, v2 >

g22
2 , λ1 ·v 6 λ1 ·g22, and k0(a2,λ1) 6 λ1 ·g22. Since k0(a1,λ1) 6 λ1 ·g1, we

have
k0(λ1) 6 max(λ1 ·g22,λ1 ·g1).

Similarly, we have k0(λ2) 6 max(λ2 ·g11,λ2 ·g2). Therefore,

Q0 = H0(λ1)∩H0(λ2)∩h
⊆ {v ∈ h | min(g11

1 ,g2
1) 6 v1 6 max(g22

1 ,g1
1)} ≡ `′.

Since g11
1 > g22

1 , g11
1 > g1

1, g2
1 > g22

1 , and g2
1 > g1

1, we have min(g11
1 ,g2

1) >

max(g22
1 ,g1

1). Therefore, `′ is the empty set or a singleton. Since neither a1

nor a2 is a static Nash equilibrium, we have Qh = /0.
[Proof of Part 2] Similarly to Part 1, let Q0 be the result of the second

step of the algorithm when continuation payoffs are restricted to lie on h.
Let Y 1, Y 11, Y 12, ω1, and ω12 be defined in Definition. We will show that
for any η with

0 < η < min
a2 6=a1

2

(π1(a1
1,a2)ω1 +π12(a1

1,a2)ω12)− (g11
1 −g12

1 ),

action profile a1 and payoff vector v = g11 + (η,−(β1/β2)η) can be en-
forced for the both players with continuation payoffs on the ray {v′ ∈ h |
v′1 > v1} when π̃ is sufficiently close to π. Let the continuation payoffs be

w1(y) =











v1 +[(1−δ)/δ](ω1 +ζ) (y ∈ Y 1),

v1 (y ∈ Y 11),

v1 +[(1−δ)/δ](ω12 +ζ) (y ∈ Y 12),

w2(y) =
γ−β1w1(y)

β2
,

where

ζ =
(v1 −g1

1)− (π̃1(a1)ω1 + π̃12(a1)ω12)

1− π̃11(a1)
.

Since ω1, ω12 > 0 and ζ → η/(1−π11(a1)) > 0 as π̃ → π, all w(y) satisfy
w1(y) > v1 when π̃ is close to π.
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Observe that the overall payoff for player 1 that is generated by a1 and
w(y) is

(1−δ)g1
1 +δ∑

y
π̃y(a1)w1(y)

= (1−δ)g1
1 +δ

[

π̃1(a1)

{

v1 +
1−δ

δ
(ω1 +ζ)

}

+ π̃11(a1)v1

+ π̃12(a1)

{

v1 +
1−δ

δ
(ω12 +ζ)

}]

= v1.

If player 1 deviates to a1 6= a1
1, his payoff is at most

(1−δ)g11
1 +δ∑

y
π̃y(a1,a1

2)w1(y),

which converges to (1−δ)g11
1 +δv1 as π̃→ π. The limit is less than v1 since

η > 0. Therefore, this deviation is unprofitable for player 1 when π̃ is close
to π.

If player 2 deviates to a2 6= a1
2, his payoff is at most

(1−δ)g12
2 +δ∑

y
π̃y(a1

1,a2)w2(y).

Since g12 and w(y) are on the line h, this payoff is written as (γ−β1v′1)/β2,
where

v′1 = (1−δ)g12
1 +δ∑

y
π̃y(a1

1,a2)w1(y).

Since β1, β2 > 0, this deviation is unprofitable for player 2 if v′1 > v1 for π̃
close to π. Taking π̃ → π, we have

v′1 → (1−δ)g12
1 +δv1 +(1−δ)

[

π1(a1
1,a2)ω1 +π12(a1

1,a2)ω12 +η
1−π11(a1

1,a2)

1−π11(a1)

]

.

Since π1(a1
1,a2)ω1 +π12(a1

1,a2)ω12 > g11
1 −g12

1 +η and η > 0, the limit is
larger than

(1−δ)g12
1 +δv1 +(1−δ)(g11

1 −g12
1 +η) = v1.

Similarly, for any small η > 0, a2 and v = g22 − (η,−(β1/β2)η) can be
enforced with continuation payoffs on the ray {v′ ∈ h | v′1 6 v1} when π̃ is
close to π. Therefore, for any compact line segment in the relative interior
of `, if π̃ is sufficiently close to π, then Q0 includes the line segment, and
the algorithm stops with Qh = Q0. �
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