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1. INTRODUCTION

Does incompleteness of financial markets impede risk sharing? This pa-
per presents a simple model suggesting that it may not, provided consumers
are patient, risk is purely idiosyncratic, and bond markets are open.

To make this point, we consider a one-good, infinite horizon exchange
economy. Intertemporal trade is accomplished through short-lived real as-
sets, one of which is a riskless real bond. The population consists of a finite
number of infinitely lived consumers, who maximize discounted expected
utility relative to stationary period utility functions. Consumers share com-
mon probability assessments and a common subjective discount factor ρ.
Risk is purely idiosyncratic; that is, each consumer’s endowment follows
an iid process, but the social endowment is constant. Our conclusion is that,
when the discount factor is close to 1 (that is, when consumers are suffi-
ciently patient), equilibrium utilities are close to the utilities of perfect risk
sharing.

Of course the idea that patient consumers can self-insure is not a new one.
Yaari (1976) for example, considers a perfectly patient consumer who lives
a long but finite lifetime, faces an uncertain endowment stream, and can
borrow and save at a zero interest rate. Yaari shows that the optimal plan
for such a consumer has the property that, as the consumer’s lifetime tends
to infinity, the per period average utility converges to the utility of con-
stant average consumption. Our work differs fundamentally from Yaari’s
however, because we treat an equilibrium problem, not just an individual
optimization problem. In particular, we derive the equilibrium interest rate.
Moreover, although this rate cannot be much above 0, it might be quite neg-
ative. Because saving is difficult when the interest rate is quite negative, an
argument like Yaari’s cannot be made in our environment. Indeed, our ar-
gument rests on the ability of consumers to self-insure by borrowing alone,
without ever saving.

The questions we ask here are reminiscent of what Friedman (1957)
called the permanent income hypothesis: that consumers behave in such
a way to maintain a constant marginal utility of income. See Yaari (1976)
and Bewley (1980) for theoretical formulations and analysis of Friedman’s
idea. Our work parallels simulations carried out by Telmer (1993) and Lu-
cas (1994), who found that market incompleteness is not sufficient to ex-
plain observed large variances in riskless interest rates (the “riskless rate
puzzle”) or the observed large premium over equities over riskless securi-
ties (the “equity premium puzzle”).

Some of our assumptions are quite strong. Levine and Zame (1999) ex-
amines similar questions under weaker assumptions. Roughly speaking,
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that paper concludes that market incompleteness is compatible with per-
fect risk sharing even if endowments are recurrent Markov (rather than iid)
and there is aggregate risk, provided options on the social endowment are
traded. On the other hand, riskless bonds alone do not provide perfect risk
sharing when there is aggregate risk. Moreover, if there is more than one
consumption good, then price risk — introduced endogenously through the
action of the market — may interfere further with perfect risk sharing.

2. THE ECONOMY

2.1. Time and Uncertainty. Time and uncertainty are represented by a
countably infinite tree S. Each node on the tree represents a date-event.
The initial date-event (the root of the tree) is denoted by 0 ∈ S. For date-
events s,s′ ∈ S, we write s ≤ s′ to mean that s′ follows s (and s precedes
s′). For each date-event s ∈ S other than 0, we write s− for the (unique)
date-event that immediately precedes s and s+ for the set of date-events that
immediately follow s. For simplicity, we assume s+ is finite.

Each s ∈ S is a finite history of exogenous events; we denote the length of
that history by τ(s). Thus τ(s−) = τ(s)− 1 and τ(0) = 0. A complete path
through the tree S is a complete history of exogenous events; write H for the
set of all such infinite histories. Given a history h ∈ H and a date t, write ht
for the history up to and including time t. Thus ht ∈ S and τ(ht) = t. In our
notation, S is the set of finite histories and H is the set of infinite histories.

2.2. Commodities. There is a single consumption good available at each
date-event. The commodity space is the space `∞(S) of bounded functions
x : S → R. For x ∈ `∞(S), we write xs ∈ R for the bundle specified at node
s. A consumption plan is an element of `∞(S)+; that is, a bounded function
x : S → R+. Since there is a single consumption good, we normalize so that
its spot price is 1 at each date event s ∈ S, and henceforward suppress spot
prices.

2.3. Securities. Intertemporal trades takes place through the exchange of
securities. For simplicity, we assume that J securities are available at each
date-event, that security returns are denominated in units of the consump-
tion good, and that each security is short-lived, yielding returns only at the
immediate successor nodes. The portfolio θ ∈ RJ of securities acquired at
date-event s∈ S yields as dividends divσθ units of the numeraire commodity
at the date-event σ ∈ s+. (Note that divσ : RJ → R is a linear operator.) We
assume that a riskless bond (numbered A1) is traded at each node; A1

s (σ) = 1
for each σ ∈ s+.
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2.4. Utilities. There are N infinitely lived traders i = 1, . . . , I, having utility
functions U i : `∞(S)+ → R. We assume traders maximize the discounted
sum of expected utility, according to a stationary period utility function ui.
Thus

U i
ρ(x) = (1−ρ)

∞

∑
t=1

ρt ∑
τ(s)=t

πsui(xs).

We assume that ui is a smooth (C3) strictly concave function, with a strictly
positive first derivative. We frequently write U i

ρ in order to emphasize the
dependence on the discount factor ρ, which we think of as a parameter.
The leading factor (1−ρ) normalizes so that the discounted utility of the
constant consumption stream c is ui(c), independent of the discount factor
ρ.

2.5. Endowments. We asssume individual endowments are iid, and that
range of the endowment process is finite.

2.6. Budget Sets and Debt Constraints. Given security prices q, trader i
chooses a consumption plan xi : S → R+ and a portfolio trading plan θi :
S → RJ . At each date-event s, trader i faces a spot budget constraint which
may be written:

xi
s +qs ·θi

s ≤ ei
s +divsθi

s−

That is, expenditure to purchase consumption and to purchase securities
does not exceed income from sale of endowment and from dividends on se-
curities acquired at the previous date-event. In our infinite horizon setting,
these spot constraints are not sufficient to rule out Ponzi schemes (dou-
bling strategies) and hence unlimited amounts of borrowing. As we show
in Levine and Zame (1996), the additional constraints necessary to rule out
Ponzi schemes may be formalized in any of a number of ways, each of
which leads to an equivalent notion of equilibrium.1 Here we find it conve-
nient to formalize the constraints by requiring that it should be possible to
repay almost all the debt in finite time.

To this end, fix prices q, a consumption plan xi and a portfolio plan θi for
trader i that satisfies the spot budget constraint at each date-event s. Define
trader i’s debt at date event s as his obligation to repay on securities he holds
entering date event s:

ds = −divsθi
s−

If this quantity is positive, trader i is in debt. To meet this debt, trader i
must raise income from the sale of endowment and/or securities (selling
securities is borrowing). We constrain debt at date-event s by prescribing

1See also Magill and Quinzii (1994).
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a positive upper bound on ds.2 (Prescribing a negative upper bound would
require traders to save.) We say that the debt ds ≥ 0 can be repaid in T
periods from s if there are consumption and portfolio plans y,ϕ such that:

• y,ϕ satisfy the spot budget constraint at every date event
• if σ < s then yσ = xi

σ and ϕσ = θi
σ

• if s ≤ σ and t(σ)− t(s)≥ T then dσ ≤ 0

That is, the plans y,ϕ meet the spot budget constraints at every date-event,
agree with xi,θi prior to the date-event s, and leave no debt at any date-event
following s by T or more periods. The debt ds ≥ 0 can be repaid in finite
time from s if it can be repaid in T periods for some T . Define the finitely
effective debt constraints as:

Di
s = inf{d : d can be paid in finite time from s}

Finally, define the budget set for trader i at prices q as:

Bi(q) =
{

xi,θi : ∀s ∈ S,∀σ ∈ s+,xi
s +qs ·θi

s ≤ ei
s +divsθi

s− ,dσ ≤ Di
s
}

Note that we constrain behavior at date event s by limits on debt at succeed-
ing date events σ ∈ s+.

2.7. Equilibrium. An equilibrium consists of security prices q, consump-
tion plans (xi) and portfolio plans (θi) such that

• for each s:

∑
i

xi
s = ∑

i
ei

s

• for each s:

∑
i

θi
s = 0

• for each i:

(xi,θi) ∈ Bi(q) and (yi,ϕi) ∈ Bi(q) ⇒U i(xi) ≥U i(yi)

That is, commodity markets clear, security markets clear, traders optimize
in their budget sets. Levine and Zame (1996) show that (with assumptions
weaker than those made here) an equilibrium exists.

2The reader familiar with Levine and Zame (1996) will note that we use here the oppo-
site sign convention for debt and debt constraints.
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3. PERFECT RISK SHARING

We make 2 additional assumptions:
Assumption 1 The social endowment e = ∑h eh

s is constant across states
and time (no aggregate risk).3

Assumption 2 For each h, Duh is convex.
The latter assumption will be satisfied if absolute risk aversion is non-

increasing. To see this, differentiate absolute risk aversion:

0 ≥ D
[

−
D2uh

D2uh

]

= −
(D3uh)(Duh)− (D2uh)2

(D2uh)2

Simplifying and transposing yields

(D3uh)(Duh) ≥ (D2uh)2

We have assumed that Duh > 0, so we conclude that D3uh > 0 so that Duh

is convex as asserted.
We are interested in the nature of equilibrium for discount factors ρ close

to 1. It is convenient therefore to fix securities, endowments and period
utility functions ui. For each discount factor ρ < 1, write Eρ for the econ-
omy with the securities, endowments and period utility functions, in which
traders use the common discount factor ρ, and write Eρ for the set of equi-
libria of Eρ.

Because individual endowments are iid with finite range, they each pos-
sess a long run average; write ēi for the long run average of ei. Our as-
sumptions imply that, for every ρ, Pareto optimal allocations of Eρ consist
of constant shares of the constant social endowment. In particular, the per-
fect risk-sharing allocation ē = (ē1, . . . , ēN) at which each trader consumes
a constant amount, equal to his long run average endowment, is Pareto op-
timal (for every ρ).

Our main result below asserts that when ρ is sufficiently close to 1 (that
is, when consumers are sufficiently patient), equilibrium utilities are close
to the utilities of the perfect risk sharing allocation.

Theorem If Assumptions 1, 2 are satisfied then for every trader i:

lim
ρ→1

sup
Eρ

∣

∣

∣
U i

ρ(x
i)−ui(ēi)

∣

∣

∣
= 0

3Because the social endowment is constant and the number of consumers is finite, indi-
vidual endowments must necessarily be correlated with each other. However, this correla-
tion is an artifact of the finiteness of our model; a model with a continuum of consumers
would permit us to assume a constant social endowment and independent individual en-
dowments. We prefer the model with a finite number of consumers because we can rely on
Levine and Zame (1996) to guarantee that equilibrium exists.
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Before beginning the proof, we record two useful lemmas. The first
is simply a convenient version of Kolmogorov’s generalization of Cheby-
shev’s inequality; see Feller (1971, p. 242).

Lemma 1 Let (zt) be an iid sequence of bounded random variables with
mean 0 and variance V . Write

ZT =
T

∑
t=0

zt

Then

Prob
{

max
T<T0

|ZT | > AT0
1/2
}

<
V
A2

for every A > 0.

The second lemma provides a lower bound for the price of the riskless
bond (and hence an upper bound for the riskless interest rate).

Lemma 2 If q,xi,θi is an equilibrium, s is a date event and A1
s is a riskless

bond then q1
s ≥ ρ.

Proof Let K ≤ N be the number of traders whose equilibrium consumptions
at s are strictly positive. Re-numbering if necessary, assume that xk

s > 0 for
k = 1, . . . ,K and that xi

s = 0 for i > K.
Let M be the set of K-tuples µ = (µ1, . . . ,µK) ∈ RK

+ for which there are
consumptions c1, . . . ,cK such that ∑K

k=1 ck ≤ es and µk ≥ Duk(ck) for all
k = 1, . . . ,K. We assert that M is a convex set. Let µa,µb ∈ M. Then by the
definition of M there is ca,cb such that

µk
i ≥ Duk

i (c
k
i ) for i = a,b and all k = 1, . . . ,K

Let ck
λ ≡ λck

a + (1− λ)ck
b. Clearly ∑K

k=1 ck
λ ≤ es. Moreover since Duk is

convex

Duk(ck
λ) ≤ λDuk(ck

a)+(1−λ)Duk(ck
b) ≤ λµa +(1−λ)µb

which proves that λµa +(1−λ)µb is in M which shows that M is convex.
By assumption, at the date-event s each of the traders k ≤ K has strictly

positive consumption. Because A1
s is riskless, the first order condition for

an equilibrium implies that, for each k ≤ K,

q0
s Duk(xk

s) ≥ ρ ∑
σ∈s+

πσ
πs

Duk(xk
σ)

The definition of M guarantees that for each σ ∈ s+ the K-tuple
(

Duk(xk
σ)
)

belongs to M. Because ∑πσ/πs = 1, convexity of M guarantees that the K-
tuple

(

∑σ(πσ/πs)Duk(xk
σ)
)

also belongs to M. Hence the K-tuple
(

(q1
s/ρ)Duk(xk

s)
)

belongs to M. The definition of M guarantees that there are consumptions
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(ck) such that ∑ck ≤ e and (q1
s/ρ)Duk(xk

s) ≥ Duk(ck) for each k. Because
each uk is concave, Duk is decreasing. If q1

s/ρ < 1 then it would follow that
xk

s ≤ ck for each k, contradicting the fact that ∑ck ≤ e = ∑xk
s . We conclude

that q1
s/ρ ≥ 1, and hence that q1

s ≥ ρ, as asserted.

With these lemmas in hand, we turn to the proof of the Theorem.

Proof of Theorem Fix a discount factor ρ, a trader i and a small real num-
ber ε > 0. We show that equilibrium utility U i

ρ(x
i) cannot be much less

than ui(ēi), provided ρ is sufficiently close to 1. To accomplish this, we
construct alternative feasible consumption and portfolio plans yi,ϕi so that
U i

ρ(y
i) ≈ ui(ēi) for ρ close to 1. Individual optimization will guarantee that

equilibrium utilities are at least as large as U i
ρ(y

i); the nature of the Pareto
set will guarantee that equilibrium utilities cannot be much larger than this.

The alternative consumption and portfolio plans involve consumption
and buying and selling the riskless bond (only). The consumption plan
prescribes consumption level almost equal to ēi − ε until the debt exceeds
a predetermined limit; the portfolio plan prescribes buying and selling the
riskless bond in order to maintain this consumption level. Debt will be re-
paid when endowment is high and additional debt will be incurred when
endowment is low. The quantity ε represents the interest required to service
the debt.

There is no loss in assuming that ui(0) = 0. Set m = mins ei
s, and fix a

real number ε with 0 < ε < m. Set d∗ = ε/(1−ρ) and d = d∗− ēi. We use
d as a debt limit and ε as a set-aside to pay interest on the debt.

For each date event s, write ys for consumption and bs for the sales of
the riskless bond. No other securities will be bought or sold, so debt at date
event s is ds = bs− . We prescribe consumption and portfolio choices ys,bs
at date event s in the following way:

(1) If dσ ≤ d for all σ ≤ s and ei
s ≤ ēi, set ys = ēi − ε and

bs =
1
ρ
[ds− ε+ ēi − ei

s]

That is: if the debt limit has not been reached and ei
s < ēi, consume

ēi − ε, repay ε of the outstanding debt, and roll over the remaining
debt.

(2) If dσ ≤ d for all σ ≤ s and ei
s > ēi, set ys = ēi − ε and

bs =
1
ρ

max
{

[ds− ε+ ēi − ei
s] , 0

}

That is: if the debt limit has not been reached and ei
s ≥ ēi, consume

ēi − ε, repay ε +(ei
s − ēi) of the outstanding debt (but never repay
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more than the outstanding debt; i.e., never save), and roll over the
remaining debt.

(3) If dσ > d for some σ ≤ s, set ys = es − ε and

bs =
1
ρ
[d∗−m]

That is: if the debt limit has been reached, consume ei
s − ε, use ε to

service the existing debt, and roll the remaining debt.
By construction, this consumption/portfolio plan satisfies the spot budget
constraints at every date event. To see that it satisfies the debt constraints,
note first that, because ε < m, a debt of d∗ can be carried forever. (Use
ε of the endowment to repay part of the debt and and sell (1/q1

s)(d
∗− ε)

units of the riskless bond, leaving a debt of (1/q1
s )(d

∗ − ε) next period.
Because q1

s ≥ ρ, the next period’s debt will not exceed d∗.) Hence any
debt less than d∗ can be repaid in finite time. In particular, the specified
consumption/portfolio plan, which never attains a debt as large as d∗ at any
date event, satisfies the debt constraint.

To obtain a lower bound for U i
ρ(y

i) we estimate how long the consump-
tion/portfolio plan is likely to continue before hitting the debt constraint.
To this end, write M = maxei

s, and set z = ēi − ei; z is an iid process with
mean 0 and variance at most M. If the debt limit has not been exceeded at
the date event s, then the change in debt from s to s+ is (1/ρ)zs at the date
event s (debt increases if zs > 0 and decreases if zs < 0), except that debt is
never allowed to become negative. Thus the debt limit d will not be reached
before |∑t≤T zht | ≥ d/2.

Set

A = M1/2(1−ρ)−1/4

T0 =
1
4

(

ε
M1/2(1−ρ)3/4 −

(1−ρ)1/4

M1/2 ei

)2

Recall that H is the set of all infinite histories. For h ∈ H, write

ZT (h) = ∑
t≤T

zht

Let H0 be the set of histories h∈H such that |ZT (h)|≤ d/2 for every T < T0.
If trader i follows the plan yi,ϕi in the history h ∈ H0, he will consume at
least ēi − ε at every date T < T0 and at least 0 thereafter, so his utility in
history h will be at least

(1−ρ)
T0−1

∑
t=0

ρtui(ēi − ε) = (1−ρT0)ui(ēi − ε)
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(Recall that ui(0) = 0.) Our specifications of A,T0 imply that AT 1/2
0 = d/2

and M/A2 = (1−ρ)1/2, so Lemma 1 guarantees that

Prob{H : max
T<T0

|ZT (h)| >
d
2
} < (1−ρ)1/2

Hence Prob(H0) ≥ 1− (1− ρ)1/2, so consumer i’s expected utility if he
follows the plan yi,ϕi will be at least

U i
ρ(y

i) ≥
[

1− (1−ρ)1/2
]

[

1−ρT0
]

ui(ēi− ε)

From the definition of T0, we see that as ρ → 1, T0/ε2/4M(1−ρ)3/2 → 1.
Taking logarithms and applying L’Hospital’s rule, we see that

lim
ρ→1

ρ
ε2

4M(1−ρ)3/2 = 0

Hence
lim
ρ→1

inf
Eρ

U i
ρ(x

i) ≥ ui(ēi− ε)

for each i. Because ε > 0 is arbitrary, it follows that

lim
ρ→1

inf
Eρ

U i
ρ(x

i) ≥ ui(ēi)

for each i.
As we have already noted, the constant allocation (ēi) is Pareto optimal.

Strict concavity of utility functions implies that the Pareto set is strictly
convex. It follows that

lim
ρ→1

sup
Eρ

∣

∣

∣
U i

ρ(x
i)−ui(ēi)

∣

∣

∣
= 0

for each i, which is the desired result.
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