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1. Introduction

Groups do not act as individuals - as Olson [11] and others have emphasized incentives within

groups matter. Here we study self-sustaining group discipline that overcomes free-riding problems

through costly peer punishment. We investigate schemes that might be adopted by a collusive

group to minimize the cost of enforcing actions which are not Nash equilibria in the absence of

punishment, and use the model to determine how the strength of the group - as measured, for

example, by contributions to a public good - depends on the size of the group.

Punishment naturally has a repeated characteristic: one alternative is simply to model a group

as playing repeated game as in the partnership literature. In practice, however, punishment is

usually distinct from the actions of a group: for example theft is generally punished by incarceration

and not by stealing from the thief. This leads us to consider an initial base game in which group

members take actions that have both individual and group costs and bene�ts, followed by a repeated

and open-ended game of peer punishment. In the open-ended peer punishment game group members

repeatedly audit each other and determine punishments for bad behavior.3 While this does not

describe the method used to provide incentives in all groups at all times the setting is an important

one for many of groups of practical interest: depending on the group these punishments for violating

social norms may range from - in the case of unions, for example - social ostracism to - in the case

of criminal gangs, for example - physical abuse. We should emphasize that while the simple version

of the model is a highly structured model of auditing neither the audits nor the way in which

they are conducted needs to be highly structured. When we consider extensions we show that

the basic results are robust to the way in which the audits are conducted, and in many practical

circumstances audits may be of a relatively informal nature - more akin to gossip than to audits

conducted by trained auditors.

An essential feature of the model is the recursive nature of punishment: failure to punish is

itself punishable - this is a condition which has been found crucial also in �eld work such as that

conducted by Elinor Ostrom and reported for instance in Ostrom [12] and Ostrom, Walker and

Gardner [13]. From a conceptual point of view punishment cannot have a de�nite end. As Juvenal

asked in the 2nd Century CE �Quis custodiet ipsos custodes?� - who will guard the guardians?

Repeated game theorists know the answer to that question: they must guard each other and for

that to be possible the game should not have a de�nite ending.4

Our model is a simple adaptation of the Kandori [8] model of social norms in which the punishers

are distinct from the aggrieved. We adapt the model in two dimensions: �rst we allow for noisy

3Our auditing procedure is simpler than that considered in the auditing literature, for example Border and Sobel
[3] and Di Porto, Persico and Sahuguent [4], because no signal is observed prior to conducting the audit. While those
papers focus on a one-shot audit, our focus here is not on optimal methods of conducting audits, but rather how
group members monitor each in a repeated setting.

4A recent paper by Rahman [14] also raises the issue of who will guard the guardians. However his model is a
static model with a principal who has unlimited commitment power and rewards agents for monitoring each other.
It is very unlike the Kandori [8] setting we adopt which also answers the question of who will guard the guardians,
but, because players are peers, in a way that addresses the issue as originally raised by Juvenal.
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signals - this leads to essentially the strongly symmetric computation of Abreu, Pearce and Stachetti

[1].5 Second, we view the problem as one of mechanism design for the group: it has control over

the basic design of the punishment game, which consists in determining the probability with which

the game ends. In e�ect the discount factor becomes endogenous and subject to group choice. The

basic trade-o� is that if the game ends too quickly insu�cient incentives to avoid free-riding are

provided; on the other hand if it ends too slowly too much e�ort is spent in auditing. The other

parameters of the peer-punishment game - the basic technology of punishment and monitoring -

we view as economic fundamentals over which the group has no control. In this setting our main

results characterize the optimal schemes for the group.

The use of punishments and rewards to induce desired behavior over basic actions is not a

new idea. It is the basis of the e�ciency wage model as described, for example, in Shapiro and

Stiglitz [15], and also of models of collusion proofness as described, for example, by La�ont [9].

Generally speaking, these models have not had costs associated with enforcement - in the e�ciency

wage model there is generally no punishment on the equilibrium path, while in the La�ont model

punishments and rewards take the form of transfer payments so that there is no net cost. In

practice however, there is punishment on the equilibrium path - as in La�ont - but practical forms

of punishment, such as exclusion, generally have a net cost associated with them. Moreover it is

generally costly to observe the signals that are needed to trigger punishment. In our setup we allow

the possibility of costs on the equilibrium path, and in addition model the enforcement of �rst stage

punishments through subsequent rounds of auditing rather than through a commitment to carry

out punishments.

As a simple application we examine how peer monitoring works in the context of a group that

faces a linear public good contribution problem. We show that if the social bene�t of the public

good is low then - regardless of the availability of peer discipline technology - in small groups full

e�ort is provided but in large groups no e�ort is provided. If, on the other hand, the bene�t is large

then peer discipline makes all the di�erence. When peer discipline is not feasible it remains the case

that only small groups provide e�ort. However when peer discipline is feasible full e�ort provision

is induced regardless of how large the group is. This is important because we observe contributions

to public goods even in very large groups such as farm lobbies and voting constituencies. This

result is more subtle than the simple Olson [11] theory that group e�ectiveness diminishes with

size.

We initially present a stripped down version of the model and derive the optimal schemes for

the group. The stripped down model has a number of limitations. After studying an application

we remove many of these restrictions. We show how to incorporate renegotiation, how to allow for

general matching technologies, how to introduce social costs of punishment, how to endogenize the

costs of auditing and punishment, and how to incorporate general signaling technologies.

5The structure of peer games is not subject to the types of complications found in more general repeated games
as described in Fudenberg Levine and Maskin [6] and Sugaya [17].
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2. The Basic Peer Discipline Model

We �rst introduce a streamlined model - this model has a number of limitations: we discuss

both the limitations and extensions in Section 5 below.

There are N > 2 identical members i = 1, . . . , N of a collusive group. The group plays one time

a primitive game in period 0 which members choose actions ai ∈ A where A is �nite. Each member

gets an expected payo� u(ai, a−i). As we will deal with symmetric equilibria, it is convenient to

write payo�s as a function of individual action ai and the common action of the other members aR

as u(ai, aR) = u(ai, aR, . . . , aR). To avoid triviality and since we have allowed only a �nite number

of (possibly mixed) actions, we assume that there is at least one symmetric static Nash equilibrium,

that is, there exists an aR ∈ A such that for all ai ∈ A we have u(ai, aR) ≤ u(aR, aR).

The focus of this paper is on sustainability of actions aR which are possibly not Nash equilibria

through an incentive compatible peer monitoring scheme. We assume in particular that the group

has access to a peer discipline technology - based on Kandori [8]'s information systems approach -

in which members audit each others behavior. The model accounts for the self-referential nature of

punishment equilibria by supposing that the group plays a potentially unlimited number of audit

rounds t = 1, 2, . . ..

The auditing scheme is made possible by signals of behavior in the primitive games and in the

subsequent auditing rounds. Actions in the primitive game generate a signal of individual play

zi ∈ {0, 1} where we interpret 0 as �bad� and 1 as �good.� The probability of the bad signal 0 about

member i is π0(a
i, aR). Following the primitive game and the corresponding signals and utilities,

a sequence of audit rounds t = 1, 2, . . . commences. During these rounds players are matched in

pairs as auditor i and auditee j. To describe the matching scheme it is convenient to imagine that

members are located on a circle, so that we can identify member 0 with member N and member

N + 1 with member 1. We assume that j = i− 1, that is, that each member audits the member to

his left. In round t ≥ 1 the auditor i assigned to audit member j chooses whether or not to conduct

the audit. Depending on whether the auditor i conducts the audit or not, another bad-good signal

zit ∈ {0, 1} is generated. If the auditor did conduct the audit then the bad signal is generated with

probability π; otherwise with probability πp ≥ π. If the auditor does conduct the audit he privately
observes the signal zjt−1 ∈ {0, 1} of the behavior of the auditee in the previous round and if the

signal is 0 (interpreted as �bad� behavior) the auditee is punished. This punishment has a cost to

the auditee of P > 0 while the cost to the auditor of conducting the audit is θtP ≥ 0 where θt = θ

for t > 1. We allow the costs of the initial audit to be di�erent than that of subsequent audits since

determining compliance in the primitive game is di�erent than determining whether an audit was

conducted. To emphasize how this works: in the initial audit round the auditor assesses whether

the auditee played the �correct� action. In subsequent audit rounds the auditor assesses whether

the auditee conducted the audit in the previous round.

The super-game starts with an initial �meeting� in which members agree on a scheme to maxi-

mize the utility of group members - this makes sense since members are ex ante identical, so there

is no con�ict of interest. At this meeting the group agrees on a common action aR and for each
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round t = 0, 1, . . . beginning with the primitive round 0 it also agrees on a probability δt that the

next audit round will take place. Note that 1− δt is the probability that the game ends after round

t - this is determined endogenously by the group. We assume that auditing rounds take place

su�ciently quickly so that there is no discounting beyond that induced by δt.

Since the group is bound by incentive constraints only incentive compatible plans can be chosen.

We say that a plan aR, δt|∞t=0 is peer feasible if the individual strategies of playing aR in the primitive

round and always conducting an audit in the audit rounds is a Nash equilibrium of the super-game

induced by the continuation probabilities δt. At the initial meeting the group may either choose a

peer feasible plan, or it may choose a static Nash equilibrium of the primitive game together with

δ0 = 0. Among these plans the group chooses the plan that maximizes the ex ante expected utility

of the members.

3. Enforceability, Peer Feasibility, and Optimal Group Plans

We study the optimality of group plans in three parts. First, we analyze which actions can

be enforced by some punishment scheme. Second, we analyze which actions are peer feasible

and the corresponding cost minimizing continuation probabilities. Finally, we use these results to

characterize the optimal group plan.

3.1. Enforceability

Recall that in the initial primitive round the probability of a �bad� signal 0 is π0(a
i, aR) and

utility is u(ai, aR). Following the repeated game literature such as Fudenberg Levine and Maskin [6]

we say that aR is enforceable if there is some punishment scheme based on the signal such that aR

is incentive compatible. In the case of a binary signal, this means there must be some punishment

P1 such that for all ai we have u(aR, aR) − π0(aR, aR)P1 ≥ u(ai, aR) − π0(ai, aR)P1. If for all ai

we have u(ai, aR) − u(aR, aR) ≤ 0 we reiterate that aR is static Nash. This case is not terribly

interesting since no peer discipline is required to implement it as an outcome.

We now characterize enforceability. Let σ0(a
i, aR) ≡ π0(a

i, aR) − π0(aR, aR) be the signal in-

crease. We use this to de�ne a gain function G̃(ai, aR). If σ0(a
i, aR) = 0, so that ai is indistinguish-

able from aR, and u(ai, aR) = u(aR, aR) the gain function is G̃(ai, aR) = 0. If ai is indistinguishable

from aR and u(ai, aR) 6= u(aR, aR) the gain function is G̃(ai, aR) = [u(ai, aR)− u(aR, aR)] · ∞. For

actions ai that are distinguishable from aR in the sense that σ0(a
i, aR) 6= 0 we de�ne the gain

function to be

G̃(ai, aR) =
u(ai, aR)− u(aR, aR)

σ0(ai, aR)
.

Lemma 1. The group action aR is enforceable with the punishment P1 ≥ 0 if and only if

max
σ0(ai,aR)≥0

G̃(ai, aR) ≤ P1 ≤ min
σ0(ai,aR)<0

G̃(ai, aR)

Proof. Rearranging the incentive constraint u(aR, aR)−π0(aR, aR)P1 ≥ u(ai, aR)−π0(ai, aR)P1 as

u(ai, aR)− u(aR, aR) ≤
[
π0(a

i, aR)− π0(aR, aR)
]
P1
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gives the result.

If max{0,maxσ0(ai,aR)≥0 G̃(ai, aR)} ≤ minσ0(ai,aR)<0 G̃(ai, aR) de�ne

G(aR) ≡ max{0, max
σ0(ai,aR)≥0

G̃(ai, aR)}

otherwise set G(aR) = ∞.6 Lemma 1 implies that aR is enforceable for some P1 if and only if

G(aR) <∞.

3.2. Peer Feasibility

We �rst work out the optimal decision making of the group concerning implementation of a

particular action aR, below we address the question of which aR to choose. De�ne the audit signal

increase σ = πP − π and notice by assumption that this is non-negative.

Theorem 1. If the action aR is not static Nash it is peer feasible for some δt|∞t=0 if and only

P ≥ G(aR), θ1/σ ≤ 1 and θ/σ < 1, in which case the group optimally chooses the termination

probabilities

δ0 = G(aR)/P, δt>0 = θ/σ.

The corresponding utility attained by each member is

U = u(aR, aR)−
(
π0(a

R, aR) + θ1 +
θ1(θ + π)

σ − θ

)
G(aR).

Proof. Let πt = π0(a
R, aR) if t = 1 and πt = π otherwise. Then the objective function of the group

is

U = u(aR, aR)−
∞∑
t=1

(
t−1∏
τ=0

δτ

)
(θt + πt)P,

which is strictly decreasing in δt for each t.
Incentive compatibility in the primitive round is dealt with by Lemma 1 with P1 = δ0P . Since

the objective function requires us to minimize δ0, we see that δ0 = G(aR)/P and since δ0 ≤ 1 we
also have the condition P ≥ G(aR).

Consider next the decision by auditor i not to audit in round t. The only consequences of
this decision are the saving of the cost θtP and the increased probability of punishment in the
subsequent round σδtP. The incentive constraint is therefore σδt ≥ θt. Since δt ≤ 1 this gives the
condition θt/σ ≤ 1. If the incentive constraint holds with strict inequality, then we should lower δt,
so the optimum requires this constraint hold with exact equality, that is, σδt = θt. Hence δ1 = θ1/σ
and for t > 1 we have δt = θ/σ. If the cost of auditing is to be �nite, the latter must be less than
one, giving the condition θ/σ < 1 . Substituting in we �nd

U = u(aR, aR)− δ0P

((
π0(a

R, aR) + θ1
)

+ (θ1/σ)

[ ∞∑
t=1

(θ/σ)t−1 (θ + π)

])
,

adding up the geometric series, and substituting for δ0P using δ0 = G(aR)/P from above we get
the result.

6Note that minσ(ai,aR)<0 G̃(ai, aR) ≥ 0 if and only if σ(ai, aR) ≥ 0 for all ai with u(ai, aR)− u(aR, aR) > 0.
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Remark. Observe that we can always increase δ slightly during the audit stage and obtain an
equilibrium that is strict in all the audit rounds - the price is a small reduction in group welfare.
Such an equilibrium can be more robust as it does not require individuals to �make the right choice�
when indi�erent. In the �rst period, by Theorem 1 we can achieve strict incentive compatibility if
and only if max{0,maxσ0(ai,aR)≥0 G̃(ai, aR)} < minσ0(ai,aR)<0 G̃(ai, aR).

3.3. The Optimal Group Plan and Comparative Statics

To analyze the choice of primitive group action aR observe that Theorem 1 tells us for given aR

that satis�es P ≥ G(aR), θ1/σ ≤ 1 and θ/σ < 1, so is peer feasible, that the optimum peer feasible

utility for each member U has a very simple form. De�ne v(aR) = u(aR, aR)− π0(aR, aR)G(aR) to

be the initial net utility of each member from playing aR net of the minimum cost of punishment

required to make aR incentive compatible. De�ne the unit cost of auditing as

C = θ1 +
θ1(θ + π)

σ − θ

Then the optimum peer feasible utility attainable from action aR for each member is U = v(aR)−
CG(aR).

In addition to choosing for each aR an optimal audit procedure, the group must also choose an

optimal aR. One possibility is always to choose the static Nash equilibrium that maximizes group

utility with corresponding audit cost of zero. If C is very large this will certainly be optimal. For

smaller C the group may instead wish to choose a U - maximizing peer feasible plan. The next

result says that this entails larger v(aR) and G(aR) as C declines:

Theorem 2. The optimal aR has v(aR) and G(aR) weakly decreasing in C.

Proof. Suppose C ′ > C and that v′, v and G′, G are the respective values of v(aR) and G(aR)
corresponding to optimal aR for C ′ and C respectively. Then v−CG ≥ v′−CG′, v′−C ′G′ ≥ v−C ′G
. From the �rst inequality v− v′ ≥ C(G−G′) and from the second inequality v− v′ ≤ C ′(G−G′).
Since C ′ > C these inequalities imply G ≥ G′. Rewriting the inequalities as (1/C)(v−v′) ≥ G−G′
and from the second inequality (1/C ′)(v − v′) ≤ G−G′ shows that v ≥ v′ as well.

The theorem says that as the unit cost of auditing declines, it becomes optimal to accept larger

gains to deviation in exchange for higher group net utility in the primitive game. Finally, we can

do comparative statics by analyzing the properties of C.

Theorem 3. C is increasing in θ1, θ, π, 1/σ.

In particular if the group can choose between di�erent auditing technologies, it will prefer

technologies that have low cost θ1, θ, a low failure rate on the equilibrium path π, and a high

ability to discriminate cheating as measured by the auditing signal increase σ. Note that even with

perfect monitoring - π = 0, πp = 1 - the unit cost C = θ1/(1−θ) is still positive provided that there

is a cost of conducting the initial audit, and this is true even if the cost of subsequent audits θ is

zero. On the other hand, if the cost of conducting an initial audit θ1 is zero then the unit cost of

auditing is also zero. In the case C = 0 the group will simply choose the action aR that maximizes

v(aR), the initial net utility.
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4. Group Size and the Strength of Groups

What determines strength of a group? A simple measure of group e�ectiveness is its ability to

mobilize resources. In this section we analyze a simple model of contribution to a public good and

focus particularly on the role of group size in determining strength. This group e�ectiveness can

have a variety of interpretations - for example the group might be attempting to corrupt a politician

as in Ades and DiTella [2] or Slinko and Yakovlev [16], or it could be a consortium bidding on a

contract.

We consider as a base game a simple public good contribution game: each group member

chooses between two actions ai ∈ A = {0, 1} representing the utility cost of contributing to the

public good. If a contribution is made, that is, ai = 1 this results in a bene�t to the group of

s > 1 divided equally among all N members. In this case aR = 0 means that nobody except for i

contributes while aR = 1 means that everybody except for i contributes. So u(ai, aR) is given by

aR = 0 aR = 1

ai = 0 0 s− (s/N)

ai = 1 (s/N)− 1 s− 1

Notice that the condition for contribution in the primitive game is N ≤ s. We assume that

neither π0(a
i, aR), π nor πp depend on the size of the group - in other words we assume that auditors

are close to the auditees regardless of size. The general picture is described in the following

Theorem 4. Abbreviate σ0 = σ0(0, 1) = π0(0, 1)− π0(1, 1). De�ne

N(s, P ) =


s/
(

1− σ0(s−1)
π0(1,1)+C

)
for s ≤ 1 + [π0(1, 1) + C] ·min{P, 1/σ0}

s/ (1− σ0P ) for s ≥ 1 + [π0(1, 1) + C]P, P < 1/σ0
∞ for s ≥ 1 + [π0(1, 1) + C]/σ0, P ≥ 1/σ0

.

For N ≤ s the group contributes full e�ort, requires no costly auditing, and achieves utility U =
u(1, 1) = s − 1. For s < N ≤ N(s, P ) and θ1/σ ≤ 1, θ/σ < 1 the group employs costly auditing,

contributes full e�ort and achieves utility

U = s− 1− [π0(1, 1) + C][1− (s/N)]/σ0.

For N > N(s, P ) or θ1/σ > 1 or θ/σ ≥ 1 the group contributes no e�ort and achieves utility U = 0.

Proof. The gain to cheating is u(0, 1)−u(1, 1) = 1− (s/N) from which we see that if s ≥ N there is
no gain to cheating and voluntary contributions sustain an equilibrium with utility u(1, 1) = s− 1.
Otherwise we have GR = (1− (s/N))/σ0 and require P ≥ GR and θ1/σ ≤ 1, θ/σ < 1. The �rst of
these conditions can be written as s ≥ N(1−σ0P ). In addition if the group is to wish to cooperate
then it must be that the optimum peer feasible utility is U as given in the statement. Since s < N ,
the condition for willingness to audit is U ≥ u(0, 0), which then reads

s− 1− [π0(1, 1) + C][1− (s/N)]/σ0 ≥ 0.

Starting with the constraint U ≥ u(0, 0): if s ≥ 1 + [π0(1, 1) + C]/σ0 this holds for all N .
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Otherwise it holds with equality when

N = NU (s) ≡ s/
(

1− σ0(s− 1)

π0(1, 1) + C

)
,

and we may de�ne NU (s) =∞ when s ≥ 1 + [π0(1, 1) +C]/σ0. For smaller N the constraint holds
strictly, and for larger N it is violated. The function NU (s) is non-decreasing in s.

Turning to the constraint P ≥ GR: if P ≥ 1/σ0 this always holds. Otherwise it holds with
equality when

N = NG(s, P ) ≡ s/ (1− σ0P ) ,

and we may de�ne NG(s, P ) =∞ when P ≥ 1/σ0. For smaller N the constraint holds strictly, and
for larger N is is violated. The function NG(s, P ) is non-decreasing in s.

It follows from this that peer discipline is feasible and optimal exactly when

s ≤ N ≤ min{NU (s), NG(s, P )} = N(s, P )

Since NU (s), NG(s, P ) are weakly increasing in s so is N(s, P ). It remains to explicitly compute
the minimum.

Take �rst the case where P ≥ 1/σ0 so that NG(s, P ) = ∞. In this case N(s, P ) = NU (s).
This covers the cases s ≥ 1 + [π0(1, 1) + C]/σ0, P ≥ 1/σ0 and s ≤ 1 + [π0(1, 1) + C] min{P, 1/σ0},
P ≥ 1/σ0.

Finally suppose that P < 1/σ0. Observe that for s = s = 1 + [π0(1, 1) +C]P we have NU (s) =
NG(s, P ), and for s ≶ s̄ it is NU (s) ≶ NG(s, P ). This covers the remaining cases.

What does this theorem tell us? If peer discipline is not available because θ1/σ > 1 or θ/σ ≥ 1

there is a pure public goods problem, and the group contributes full e�ort as long as individuals have

adequate incentive to provide e�ort - that is N ≤ s. Once the group becomes too large the group

ceases to provide e�ort. If peer discipline is available, that is θ1/σ ≤ 1, θ/σ < 1, then the group

continues to provide full e�ort in the range s < N ≤ N(s, P ). In case N(s, P ) is �nite, qualitatively

this is similar to the pure public goods case - peer discipline can merely sustain contribution with a

larger group size. The comparative statics of N(s, P ) have the monotonicity properties we expect:

lower cost of peer discipline as measured by smaller π0(1, 1) + C and larger σ0 increase the size of

group that can sustain e�ort.

Of particular interest is the case in which N(s, P ) = ∞. This requires that the punishment

be adequately large for the given initial signal quality - P ≥ 1/σ0 - and that s be su�ciently

large: s ≥ 1 + [π0(1, 1) + C]/σ0. This case is useful to understand what happens with very large

groups. For example, consider the very large number of farms - about two million in the United

States. Here we have a problem similar to the paradox of voting: it is not very plausible that the

individual lobbying e�orts of a single farmer increase the chances of farm subsidies enough to be

individually worthwhile. Moreover, in countries of di�erent sizes the absolute number of farmers

varies considerably. If the peer discipline technology and the bene�t per farmer of farm subsidies

s are roughly the same in the di�erent countries, and if N(s, P ) is �nite, then in countries with

few farmers N ≤ N(s, P ) we should �nd lobbying e�ort and farm subsidies, while in countries

with many farmers N > N(s, P ) we should �nd no lobbying and no farm subsidies. However, we
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observe farm subsidies of similar per-farm value across countries with very di�erent sizes: Japan

and the United States, for example. The case where peer discipline leads to N(s, P ) = ∞ covers

this fact: full e�ort is provided independent of group size, so no matter the number of farmers or

size of country, the amount of per capita public good achieved should be roughly similar - as it is.

This argument seems to go against the Olson [11] idea that larger groups should be less e�ective.

Can we reconcile our peer discipline model with the Olsonian observation that a small group

(farmers) is often more e�ective than a large group (of non-farmers)? Observe that for farmers the

sF corresponding to receiving farm subsidies is large since few farmers receive the subsidy; for non-

farmers the sNF corresponding to paying for farm subsidies is small since many non-farmers divide

the costs. Hence, even if both groups have access to exactly the same peer discipline technology,

we can have sF ≥ 1+[π0(1, 1)+C]/σ0 for farmers and sNF < 1+[π0(1, 1)+C]/σ0 for non-farmers.

In this case, farmers will be e�ective and contribute full e�ort, but non-farmers will be ine�ective

and not contribute e�ort.

5. Extensions and Limitations

We have analyzed a very spare and stripped down model, which necessarily has many limitations.

Here we discuss these limitations and the relevant extensions of the basic model. We should

emphasize that we do not explore changing the basic structure of the model: ex ante identical

members and sequential auditing. Without ex ante identical members we do not have a clear

theory of what agreement they might reach, and with more complicated dynamic auditing we

cannot apply the simple Kandori [8] repeated game social norm computations. We also do not

consider more complicated dynamic games a group might play: for example repeated primitive

games and reputational e�ects.

5.1. Renegotiation

If the group can collude initially, why can it not do so later? If the group can costlessly collude

after the primitive game has been played it will always cancel the audits, since ex post these are

costly and the actions in the primitive round can no longer be changed. This makes peer discipline

impossible ex ante since everybody will know that the agreement to audit is not credible. Hence for

peer discipline to take place it must be costly to collude in order that the peer discipline mechanism

has commitment value.

It is sensible to assume that collusion is costly because in practice it is. In the simple model

we described the initial collusion as taking place in a �meeting.� This might be a single face-to-

face meeting of the entire group, or some more decentralized or less personal means of reaching

an agreement. We know that explicit discussions are important in practice since they are ex-

plicitly forbidden under anti-trust law yet never-the-less people are sometimes caught engaging in

these discussions. From a theoretical point of view we know that common knowledge is central to

Nash equilibrium, and again from practice we know that common knowledge is reinforced through

discussions and meetings - looking the other person in the eye both �guratively and actually.
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This leads us to introduce a simple model of costly collusion: we assume that collusion can take

place only if a �meeting� is held, and this meeting has a per participant cost - the cost of both

organizing and attending the meeting. There are two types of meetings that are important: the

initial meeting to decide the collusive scheme and subsequent meetings after the primitive round

in which the original scheme may be renegotiated. These subsequent meetings may be held at the

end of any round. We assume that each type of meeting has a cost associated with it, and that the

meeting is held if it is in the best interest of the group to meet at that time.

Formally we assume that the initial meeting has a cost per member κ0 associated with it, and

that if the meeting does not take place, a default outcome aR0 occurs. Since there is no meeting

to agree on collusion, it is natural to assume that aR0 is static Nash, and if there are several static

Nash outcomes, for simplicity we assume that the group can - even without a meeting - coordinate

on a most favorable static Nash equilibrium.

If a meeting is held subsequent to the initial primitive round the agenda is clear: the remaining

audits and punishments should be dropped and the game ended. Ex ante at the initial meeting

and prior to the initial round it is in the interest of the group to avoid this outcome, since it will

undermine the collusive peer discipline arrangement. Hence the group may undertake activities to

make subsequent meetings more costly and di�cult - to take an extreme example, at the end of the

initial meeting everybody may be required to smash their cell phones with a hammer. To model

this, we assume that the cost per member of subsequent meetings may depend upon the action,

that is, has the form κ(aR). In other words, some actions (�smash the cell phones�) may make

subsequent meetings more costly.

We say that an action aR is renegotiation feasible if it is peer feasible, if the optimal member

utility from implementing aR is at least κ0 and if at the end of any round the expected cost of

auditing and punishment is no greater than κ(aR). In other words, it pays to hold the initial

meeting and does not pay to hold subsequent meetings.

In e�ect our original simple model assured renegotiation feasibility by implicitly assuming that

κ0 = 0 and that κ(aR) =∞. We now consider the general case.

Theorem 5. If the action aR is not static Nash it is renegotiation feasible if and only if P ≥ G(aR),
θ1/σ ≤ 1 and θ/σ < 1 and

θ + π

σ − θ
(max{θ, θ1}P ) ≤ κ(aR)(

π0(a
R, aR) + θ1 + θ1

θ + π

σ − θ

)
G(aR) ≤ max{κ(aR), u(aR, aR)− u(aR0 , a

R
0 )− κ0}.

Proof. The �rst part simply reiterates the conditions for peer feasibility. The two displayed in-
equalities are the additional constraints that arise from costly meetings. There are two conditions:
it must be worth calling the initial meeting, and it should not be worthwhile to hold a subsequent
meeting.

If it is worth calling an initial meeting to implement aR if and only if the utility U from the
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implementation exceeds the default utility u(aR0 , a
R
0 ) by at least κ0, that is,

u(aR, aR)−
(
π0(a

R, aR) + θ1 + θ1
θ + π

σ − θ

)
GR − u(aR0 , a

R
0 ) ≥ κ0.

Rearranging this gives the second part of the maximum in the second displayed inequality of the
theorem.

Second and �nally it must not be strictly worth calling a meeting at the end of any round.
There are three possibilities: to call a meeting at the end of the primitive round 0, at the end of
the �rst round 1, and all subsequent rounds are identical, so if it is worth calling a meeting we
can assume that it is done right away - that is, at the end of round 2. The bene�t of any of these
meetings is saving the expected cost of auditing and punishment conditional on the current round.
In the primitive round we already know this to be

K0(a
R) =

(
π0(a

R, aR) + θ1 + θ1
θ + π

σ − θ

)
GR.

At the end of the �rst round we may compute

K1 =

∞∑
t=2

(
t−1∏
τ=1

δτ

)
(θt + πt)P = δ1

(
1 +

δ

1− δ

)
(θ + π)P =

θ + π

σ − θ
(θ1P )

and at the end of the second round

K =

∞∑
t=3

(
t−1∏
τ=2

δτ

)
(θt + πt)P =

δ

1− δ
(θ + π)P =

θ + π

σ − θ
(θP ).

Hence the additional necessary and su�cient conditions are K0(a
R) ≤ κ(aR) which is the �rst part

of the maximum in the second displayed inequality of the theorem and K1 ≤ κ(aR),K ≤ κ(aR)
which combine to form the �rst displayed inequality of the theorem.

To understand this result, note that the �rst inequality is di�erent in nature than the second.

In particular the left-hand-side θ+π
σ−θ (max{θ, θ1}P ) does not depend upon aR so that no matter

how good u(aR, aR) and how small a positive number is G(aR) this condition may none-the-less

fail. If κ(aR) = κ independent of the action taken, so that di�erent actions do not have di�erent

commitment value, then this condition either fails for all aR or is satis�ed for all aR. In this sense

the �rst inequality represents an absolute requirement, similar to the peer feasibility conditions

θ1/σ ≤ 1 and θ/σ < 1. Notice also that the inequality seems also to restrict the size of P - but this

is deceptive, because it really restricts θP, θ1P which is to say, not the size of the punishment, but

rather and more intuitively, the cost of auditing. If this is too great relative to the cost of having

a meeting then no renegotiation feasible arrangement is possible.

The second inequality embodies two conditions. The �rst is that G(aR) should not be too large,

the second is that u(aR, aR)−u(aR0 , a
R
0 ) should be fairly large. Both of these strengthen an already

existing requirement for a peer discipline implementation to be desirable in the sense of being better

than static Nash.

The fact that κ(aR) depends on aR obviously introduces a bias in favor of actions for which
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κ(aR) is large: all other things equal such actions are more likely to be renegotiation feasible.

The Public Good Contribution Case

A good way to see the meaning of the theorem is to apply it to our public good contribution

example. We suppose that all meetings have the same cost: that is, κ0 = κ(aR) = κ. In the

example the default action is to contribute e�ort if and only if N ≤ s - and it hardly needs a

meeting to decide that. For contribution enforced by peer discipline to be the group optimum we

need as before the peer feasibility conditions s ≥ N(1−σ0P ), θ1/σ ≤ 1 and θ/σ < 1. The �rst and

absolute condition for renegotiation feasibility is

θ + π

σ − θ
(max{θ, θ1}P ) ≤ κ,

while the �rst half of the second condition is

[π0(1, 1) + C][1− (s/N)]/σ0 ≤ κ

for which in turn a su�cient condition is the absolute one

[1 + C]/σ0 ≤ κ.

Hence if κ is large enough both these constraints are satis�ed.

On the other hand, large κ goes against the �nal constraint

[π0(1, 1) + C][1− (s/N)]/σ0 ≤ s− 1− κ,

which may also be written as

s− 1− [π0(1, 1) + C][1− (s/N)]/σ0 ≥ κ.

In the original model this condition with κ = 0 was exactly that needed for willingness to audit, so

that this condition simply strengthens the existing condition. It is no longer enough for the bene�t

of auditing to be positive: it must be larger than κ the cost of calling the meeting.

But in this �nal constraint large κ can be overcome by large s. Indeed for any κ if s is large

enough that

s− 1− (π0(1, 1) + C) /σ0 ≥ κ

then the group colludes on full contribution for all N . The key qualitative feature of the peer

discipline model of public goods contribution is preserved in the face of renegotiation.

5.2. Generalized Matching Procedures

The basic model supposes a very simple procedure in which each member j is audited by the

member i = j + 1 to his right and in which all the audits end at the same time as determined

by 1 − δt. However, more elaborate procedures are possible. We now describe a broader class of

procedures and show that the results based on simple matching are robust.
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Let I = {1, 2, . . . , N} be the set of members. In general we can consider a matching of auditees

to auditors described by maps mt : I → I with the convention that if a member is assigned to

audit himself mt(j) = j then no audit takes place. Moreover, we require that if i /∈ mt(I) then

mt+1(i) = i, that is, once a player does not conduct an audit, he cannot be audited next period as

there is nothing to audit. A generalized matching process is then a random choice of mt where the

probability distribution over matchings depends on the history of previous matchings. A generalized

matching process thus incorporates the random rule for ending the game. The simple base case

is that if the game has not ended mt(j) = j + 1 while if the game has ended mt(j) = j. With

generalized matching the group in its initial meeting does not choose ending probabilities but rather

a generalized matching process - which necessarily also incorporates the ending procedure.

Notice that we allow the possibility that an auditor is assigned to audit more than one auditee.

In this case we assume that each audit has a separate cost, that the auditor makes a separate

decision about whether to conduct each audit, and that in the next period if he is audited his

auditor must separately audit each of his audits. This means that from the perspective of incentive

compatibility each audit is a separate unit and it makes no di�erence if two audits are conducted

by the same or by di�erent members.

The key idea is the standard mechanism design procedure of standing the problem on its head.

Any generalized matching procedure induces initial probabilities pi0 that member i will be audited

and depending on the history for each assigned match ij at time t probabilities pijt that the audit

decision will in turn be audited the next period.

Our basic conclusion is that allowing generalized matching procedures makes essentially no

di�erence:

Theorem 6. If the action aR is not static Nash and it is peer feasible then pi0, p
ij
t is optimal if and

only P ≥ G(aR), θ1/σ ≤ 1 and θ/σ < 1 and

pi0 = G(aR)/P, pijt = θt/σ.

The corresponding optimal utility for a member is

U = u(aR, aR)−
(
θ1 + π0(a

R, aR) +
θ1(θ + π)

σ − θ

)
G(aR).

Proof. This is essentially an observation about the proof of Theorem 1. Obviously the incentive
constraints must be satis�ed with inequality pi0 ≥ G(aR)/P, pijt ≥ θt/σ. Reducing the probability
of audits reduces the expected number of audits in all future periods and so reduces the cost of
audits, hence optimality requires that the incentive constraints hold with exact equality. This of
course gives exactly the same expected cost of audits as in Theorem 1.

There is one proviso: we may wish to consider only matching procedures such as the simple one

with the property that no pair of members is assigned to repeatedly audit each other. The reason

is that when two members repeatedly audit each other they more or less costlessly �meet� and so

will collude to avoid the audits. This is why we have assumed from the beginning of the paper that

N ≥ 3.
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Notice that there are many generalized matching procedures that are not optimal, some ob-

viously so, such as ones that result in the game ending in �nite time. But besides the simple

procedure, many other procedures are possible. For example we might in the initial period only

audit only a fraction φ of the population and in subsequent periods audit all the auditors. Here

the probability of being audited after the primitive round is δ0φ. Hence the incentive compatibility

condition is δ0 = GR/(φP ). This means that we must require φ ≥ GR/P - that is, depending on

the gain to deviating and the available punishment, we cannot choose φ too small.

5.3. Punishment Cost Spillover

We have assumed that the cost of punishment is borne only by the �guilty� party. In practice,

however, the cost of punishment may spill over to other group members. The most common forms

of punishment - some sort of exclusion, ranging from being denied the opportunity to participate in

group events to imprisonment - will generally harm group members as well as the designated target

of the punishment. For example, if Tim is punished by being excluded from joining the group at

the bar after work then David su�ers the loss of Tim's companionship. Or it may be that David

feels sorry for Tim.

In introducing spillover costs of punishment, we need to specify which group members su�er

from the spillover. The consequence of spillover to the auditor is more costly to the group than the

cost of spillover to other members: it increases the incentive of the auditor to not conduct the audit

so as to avoid the spillover cost. Consequently if di�erent group members su�er di�erent levels

of spillover costs, the group will want to appoint as auditor the member who least su�ers these

costs. For simplicity we assume that it is possible to appoint an auditor who su�ers no spillover

cost and that the spillover costs are equally divided among the remaining group members. Hence

when punishment is imposed on i there is a spillover cost of ψP divided equally among group

members other than i and his auditor i− 1. Since the punishment occurs only with probability πt

the expected cost is ψPπt. Since each member pays a share 1/(N − 2) of the cost of the N − 2

matches in which he is neither auditee nor auditor this is also the per capita expected spillover

cost, leading to a simple change in the computation of the optimal utility:7

U = u(aR, aR)−
(
θ1 + π0(a

R, aR)(1 + ψ) +
θ1(θ + π(1 + ψ))

σ − θ

)
G(aR).

Note that the spillover costs do not necessarily have to be positive, although we would generally

want to assume that ψ > −1 so that the punishment does not bring a net bene�t to the group.

Negative spillover cost corresponds to punishments that involve a transfer payment. The most

obvious example is the payment of a �ne, but there are other possibilities. For example, punishment

might involve a demotion, in which case another member of the group might bene�t from being

7It is easy to treat also the case in which the spillover costs are shared equally among all members including the
auditor. In this case the cost to the auditor of conducting the audit is (θt + ψπt/(N − 1))P , and the equation below
should be adjusted accordingly. Note however that if the group is relatively large, ψπt/(N − 1) will be very small
compared to θt, so that the adjustment will not make much di�erence.
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promoted to �ll the vacant spot. Since lower spillover costs are better, punishments involving

transfer payments are highly desirable if they are feasible - in the repeated game setting with

imperfect private information as in Fudenberg Levine and Maskin [6] it is the use of transfer

payment punishments that gives rise to near e�ciency as the discount factor approaches one.

5.4. Choice of Punishment

We have assumed that there is a single type of punishment P . In general we expect that there

are many types of punishments of varying severity, among which the group may choose. If we hold

�xed the audit costs θ1P, θP and unavoidable costs ψP we see as we increase P that θ1, θ, ψ decline

and this lowers the cost of discipline and raises group utility. If, however, increasing the level of

punishment raises these costs - for example excluding a member for a month is more costly to the

group than excluding the member for a week - then there is a trade-o� that we now spell out. For

simplicity we examine the case in which we may choose a punishment technology P1in the initial

period and a technology Pt = P in the subsequent periods t > 1, while we hold �xed the audit cost

At = θtPt and allow the spillover costs ψPt to vary. This also re�ects also our intuition that the cost

of auditing (for a �xed signal technology) should not much vary with the cost of punishment and

that as a practical matter the reason for using more moderate punishments - community service

rather than incarceration rather than the death penalty in the case of penal systems - is that the

spillover cost of more severe punishments is disproportionately large.

Formally, we assume that the trade-o� between punishment size and spillover cost is captured

by an increasing continuous function ψP = f(P ) de�ned on 0 ≤ P ≤ P where P is the worst

possible punishment. In general since randomization is possible we expect f to be convex, but this

is not essential. For any choice of P the audit costs A1 and At = A, t > 1 are held �xed implicitly

allowing θt to vary so that θt = At/Pt .

Theorem 7. If there is some technology pair ψ1P1 = f(P1), ψP = f(P ) with corresponding

θ1 = A1/P1, θ = A/P that satis�es the constraints 0 ≤ P1, P ≤ P , P1 ≥ G(aR), P ≥ A1/σ and

θ/σ < 1 then the problem of maximizing

U = u(aR, aR)−
(
θ1 + π0(a

R, aR)(1 + ψ1) +
θ1(θ + π(1 + ψ))

σ − θ
P

P1

)
G(aR)

subject to those constraints has a solution and it is an optimal peer discipline scheme.

Proof. First with respect to the constraints we have de�ned θ1 = A1/P1. This means that θ1/σ ≤ 1,
the old form of the constraint of adequate punishment for the �rst period audit, would be P1 ≥ A1/σ
which is not correct since the punishment for failure in the �rst period audit is now P not P1. Hence
we explicitly write out the constraint P ≥ A1/σ. Second, the objective function is the correct one:
the group is not constrained to choose the same technology in the �rst period as in subsequent
periods, nor since the incentive constraint is di�erent in the initial period than in subsequent
periods, will it generally wish to do so. However, we have imposed the constraint that after the
initial audit of play in the primitive game a single technology be chosen for use in all audits of
audits. Notice that G(aR) = δ0P1 while Pt = P may not equal P1 for t > 1, which explains the
factor of P/P1 in the cost of auditing for t > 1.
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The only issue in the maximization is the constraint θ/σ < 1. Notice that the solution for
P,ψ = f(P )/P, θ = A/P is independent of the rest of the problem and simply minimizes

J =
θ + π(1 + ψ)

σ − θ
P

subject to 0 ≤ P ≤ P , P ≥ A1/σ and θ/σ < 1, so the issue is the existence of a solution of
this problem. Since A1 > 0 we have P bounded away from zero, so J approaches +∞ at a rate
bounded below independent of the other parameters as θ/σ → 1 . It follows that if there exists a
feasible solution to the problem we can �nd an ε > 0 so that the problem subject to the constraint
θ/σ ≤ 1− ε also solves the problem subject to constraint θ/σ < 1. Basically it is not a very good
idea to choose a P so low that θ ends up very close to σ.

If the probabilities of punishment on the equilibrium path π0(a
R, aR) = π = 0 then the spillover

cost does not matter, and again it is best to choose the largest possible punishment to minimize

θ1, θ. Otherwise the solution may be a more moderate punishment.As we noted in the proof the

solution for P,ψ is independent of the rest of the problem. This has two consequences. First, it is

not a good idea to choose P very large when π > 0 since then the objective function J approaches

+∞. Indeed, if A = 0 so that audits other than the initial one are costless, we should choose P

as small as possible, that is, equal to A1/σ to minimize the cost of punishing the initial auditor.

Second, the choice of P,ψ, θ does not depend on aR. By contrast the objective function determining

P1, ψ1, θ1 depends on π0(a
R, aR) and the constraint on G(aR). That is, the solution to this problem

di�ers from solutions we have considered previously in that the �rst period solution depends in

general on aR. Consequently we should write P1(a
R), ψ1(a

R), θ1(a
R). This minor generalization

of the theory makes perfectly good sense in any case: although we have heretofore assumed that

the �rst period audit procedure is independent of the particular target aR it also makes sense that

di�erent audit procedures with di�erent costs would be used to monitor di�erent target actions.

Note, however, that if A1 depends on aR then in general so will P, θ, ψ because the constraint

P ≥ A1/σ now depends on aR.

5.5. Multiple Signals

We have assumed that there is a simple signal whether or not a punishment is merited. While

this simpli�es notation and exposition, it turns out to be without loss of generality. We focus on

the case of the primitive game, since in practice the speci�cation of the game may naturally lead

to many signals. Similar considerations apply to the auditing games.

Suppose the signals Z ∈ Z can take on many values with probabilities π0(Z|ai, aR). There is a

common probability 1−δ0 that no audit takes place and nobody is punished and for each individual

a probability βZ conditional on the audit taking place that the individual is punished with P . Hence

the incentive constraint in the primitive round is u(ai, aR) − u(aR, aR) − δ0
∑

Z∈Z [π(Z|ai, aR) −
π(Z|aR, aR)]βZP ≤ 0. Since we may assume the group minimizes costs of auditing in subsequent
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rounds, the objective function is

V β = u(aR, aR)− δ0P

(∑
Z∈Z

π0(Z|aR, aR)βZ + θ1 +
θ1(θ + π)

σ − θ

)
.

For any non-negative vector of individual punishment probabilities β = (βZ)Z∈Z let |β| be the
sup norm. For any such β we de�ne a canonical binary signal process z as a random function of Z

by Pr(z = 0|Z) ≡ βZ/|β|, and let πβ0 (ai, aR) ≡ Pr(z = 0|ai, aR) =
∑

Z∈Z Pr(z = 0|Z)π0(Z|ai, aR).

For given aR and β let Gβ = G(aR) and πβ0 = π0(a
R, aR) and let B be the set of all pairs (Gβ, πβ0 )

generated by probability vectors β. De�ne

Uβ ≡ max
(Gβ ,πβ0 )∈B

u(aR, aR)−
(
πβ0 + θ1 +

θ1(θ + π)

σ − θ

)
Gβ

The basic result is this:

Theorem 8. For given aR there is an incentive compatible δ0, β if and only if aR is enforceable

with respect to the corresponding canonical binary process for some punishment 0 ≤ P1 ≤ P . In

case aR is enforceable with respect to some canonical binary process then max
(Gβ ,πβ0 )∈B

Uβ exists

and is the greatest utility achievable by any peer discipline scheme that uses the signals Z ∈ Z.

Proof. First, if there is an incentive compatible δ0, β there is an optimal one since the incentive con-
straints are de�ned by weak inequalities. Second, observe that δ0, β satisfy the incentive constraints
if and only if δ̂0 = |β|δ0, β̂ = β/|β| does so. Moreover the cost of initial punishment

δ0P

(∑
Z∈Z

π0(Z|aR, aR)βZ

)

is the same for both. However, if |β| < 1 we have δ̂0 < δ0 so that the scheme δ̂0, β̂ results in
no smaller a value of the objective function, and if θ1 > 0 a strictly larger value of the objective
function. Hence there is an optimal scheme in which |β| = 1.

Next �x δ0, β. By de�nition of the canonical binary process we have

πβ0 (ai, aR) =
∑
Z∈Z

π0(Z|ai, aR)βZ/|β|

so that u(ai, aR)−u(aR, aR)−δ0P
∑

Z∈Z [π0(Z|ai, aR)−π0(Z|aR, aR)]βZ ≤ 0 if and only if u(ai, aR)−
u(aR, aR)−δ0|β|P [πβ0 (z|ai, aR)−πβ0 (Z|aR, aR)] ≤ 0. Hence if πβ0 is enforceable with respect to δ0|β|P
then δ0, β is incentive compatible. Conversely if δ0, β is incentive compatible then πβ0 is enforceable
with respect toδ0|β|P .

Finally, observe that

Uβ − V β = δ0P (1− |β|)
(
θ1 +

θ1(θ + π)

σ − θ

)
Since there is an optimal multi-signal scheme with |β| = 1 the corresponding canonical scheme yields
exactly the same value of the objective function. On the other hand if there is a feasible canonical
scheme πβ0 that that yields a higher utility than this then the multi-signal scheme δ0 = Gβ/P, β/|β|
is incentive compatible and yields exactly the same utility as Uβ, a contradiction.
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6. Conclusion

We have developed a model of group behavior with explicit account of individual incentives in-

side the group. In a public goods contribution example we argue that the model is more appropriate

predictions with respect to large groups than a voluntary contribution approach.

Not all enforcement mechanisms are peer discipline mechanisms - hierarchical schemes - such

as those in the principal-agent model - are commonplace. Yet peer discipline mechanisms are

widespread even within hierarchical organizations. Two examples help clarify the point.

The �code of blue silence� is an unwritten rule that police o�cers do not report the misconduct of

other o�cers. The following quotation from Frank Serpico testifying before the Knapp Commission

on police corruption in New York City in 1971 reveals the enforcement scheme: �an honest police

o�cer can[not] act...[against corruption] without fear of ridicule or reprisal from fellow o�cers.�

Notice that peer monitoring must play an essential role in this - if an o�cer rats on another o�cer

other o�cers (the auditors) must report this to the police force more generally. We think we can

be reasonably con�dent - based on our avid watching of movies about police corruption if nothing

else - in asserting that failure to report a �rat� is itself subject to reprisal. In this case the peer

discipline mechanism serves to subvert the hierarchical organization.

Finally, consider the very hierarchical military. Here is a quotation from Senator James Inhofe8

�Army and Marines always feel that when we're out there, we're not doing it for the �ag or the

country; we're doing it for the guy in the next foxhole.� That is - in combat - despite the hierarchical

structure and severe punishments for cowardice - there are many opportunities to shirk. The

enforcement mechanism - the reason soldiers risk their lives when there is little chance that their

superiors will �nd out - is the enforcement by �the guy in the next foxhole.� In the military peer

enforcement reinforces rather than subverts the hierarchical organization.
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